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Abstract

In this supplement material, we give more details on (1) related works, (2) the derivation of convex
approximations, (3) proof of theorems, and (4) additional experimental settings and results.

1 Related Works

1.1 Distance Metric Learning
Many studies [1, 2, 3, 4, 5, 6, 7] have investigated DML. Please refer to [8, 9] for a detailed review. Xing
et al. [1] learn a Mahalanobis distance by minimizing the sum of distances of all similar data pairs subject
to the constraint that the sum of all dissimilar pairs is no less than 1. Weinberger et al. [2] propose large
margin metric learning, which is applied for k-nearest neighbor classification. For each data example xi, they
first obtain l nearest neighbors based on Euclidean distance. Then among the l neighbors, some (denoted
by S = {xj}) have the same class label with xi and others (denoted by D = {xk}) do not. Then learn
a projection matrix L such that ‖L(xi − xk)‖22 − ‖L(xi − xj)‖22 ≥ 1 where xj ∈ S and xk ∈ D. Davis
et al. [3] learn a Mahalanobis distance such that the distance between similar pairs is no more than a
threshold s and the distance between dissimilar pairs is no greater than a threshold t. Guillaumin et al. [4]
define a conditional probability of the similarity/dissimilarity label conditioned on the Mahalanobis distance:
p(yij |(xi − xj)

>M(xi − xj)) = 1/(1 + exp((xi − xj)
>M(xi − xi))), where the binary variable yij = 1 if xi

and xj have the same class label. M is learned by maximizing the conditional likelihood of the training data.
Kostinger et al. [6] learn a Mahalanobis distance metric from equivalence constraints based on likelihood
ratio test. The Mahalanobis matrix is computed in one shot, without going through an iterative optimization
procedure. Ying and Li [5] formulate DML as an eigenvalue optimization problem. Zadeh et al. [7] propose a
geometric mean metric learning approach, based on the Riemannian geometry of positive definite matrices.
Similar to [6], the Mahalanobis matrix has a closed form solution without iterative optimization.

To avoid overfitting in DML, various regularization approaches have been explored. Davis et al. [3]
regularize the Mahalanobis matrix to be close to another matrix that encodes prior information, where the
closeness is measured using log-determinant divergence. Qi et al. [10] use `1 regularization to learn sparse
distance metrics for high-dimensional, small-sample problems. Ying et al. [11] use `2,1 norm to simultaneously
encourage low-rankness and sparsity. Trace norm is leveraged to encourage low-rankness in [12, 13]. Qian et
al. [14] apply dropout to DML. Many works [15, 16, 17, 18, 19, 20] study diversity-promoting regularization in
DML or hashing. They define regularizers based on squared Frobenius norm [15, 21, 16, 20] or angles [17, 18]
to encourage the projection vectors to approach orthogonal. Several works [22, 23, 24, 25, 26] impose strict
orthogonal constraint on the projection vectors. As observed in previous works [15, 21] and our experiments,
strict orthogonality hurts performance. Isotropic hashing [27, 28] encourages the variances of different
projected dimensions to be equal to achieve balance. Carreira-Perpinán and Raziperchikolaei [29] propose
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a diversity hashing method which first trains hash functions independently and then introduces diversity
among them based on classifier ensembles.

1.2 Orthogonality-Promoting Regularization
Orthogonality-promoting regularization has been studied in other problems as well, including ensemble
learning, latent variable modeling, classification and multitask learning. In ensemble learning, many studies
[30, 31, 32, 33] promote orthogonality among the coefficient vectors of base classifiers or regressors, with
the aim to improve generalization performance and reduce computational complexity. Recently, several
works [34, 35, 36, 37] study orthogonality-promoting regularization of latent variable models (LVMs), which
encourages the components in LVMs to be mutually orthogonal, for the sake of capturing infrequent patterns
and reducing the number of components without sacrificing modeling power. In these works, various
orthogonality-promoting regularizers have been proposed, based on Determinantal Point Process [38, 34]
and cosine similarity [33, 35, 37]. In multi-way classification, Malkin and Bilmes [39] propose to use the
determinant of a covariance matrix to encourage orthogonality among classifiers. Jalali et al. [40] propose
a class of variational Gram functions (VGFs) to promote pairwise orthogonality among vectors. While
these VGFs are convex, they can only be applied to non-convex DML formulations. As a result, the overall
regularized DML is non-convex and is not amenable for convex relaxation.

In the sequel, we review two families of orthogonality-promoting regularizers.

Determinantal Point Process [34] employed the Determinantal Point Process (DPP) [38] as a prior
to induce orthogonality in latent variable models. DPP is defined over K vectors: p({ai}Ki=1) ∝ det(L),
where L is a K ×K kernel matrix with Lij = k(ai,aj) and k(·, ·) as a kernel function. det(·) denotes the
determinant of a matrix. A configuration of {ai}Ki=1 with larger probability is deemed to be more orthogonal.
The underlying intuition is that: det(L) represents the volume of the parallelepiped formed by vectors in
the kernel-induced feature space. If these vectors are closer to being orthogonal, the volume is larger, which
results in a larger p({ai}Ki=1). The shortcoming of DPP is that it is sensitive to vector scaling. Enlarging the
magnitudes of vectors results in larger volume, but does not essentially affects the orthogonality of vectors.

Pairwise Cosine Similarity Several works define orthogonality-promoting regularizers based on the
pairwise cosine similarity among component vectors: if the cosine similarity scores are close to zero, then the
components are closer to being orthogonal. Given K component vectors, the cosine similarity sij between
each pair of components ai and aj is computed: sij = ai · aj/(‖ai‖2‖aj‖2). Then these scores are aggregated
as a single score. In [33], these scores are aggregated as

∑
1≤i<j≤K(1 − sij). In [35], the aggregation is

performed as − log( 1
K(K−1)

∑
1≤i<j≤K β|sij |)

1
β where β > 0. In [37], the aggregated score is defined as mean

of arccos(|sij |) minus the variance of arccos(|sij |).

2 Convex Approximations of BMD Regularizers

Approximation of VND regularizer Given AA> = UΛU>, according to the property of matrix
logarithm, log(AA>) = UΛ̂U>, where Λ̂jj = log λj . Then (AA>) log(AA>)− (AA>) = U(ΛΛ̂−Λ)U>,
where the eigenvalues are {λj log λj − λj}Rj=1. Since tr(M) =

∑R
j=1 λj , we have Ωvnd(A) =

∑R
j=1(λj log λj −

λj) +R. Now we consider a matrix A>A + εID, where ε > 0 is a small scalar. The eigenvalues of this matrix
are λ1 + ε, · · · , λR + ε, ε, · · · , ε. Then we have

Γvnd(A
>A + εID, ID)

= tr((A>A + εID) log(A>A + εID)− (A>A + εID)) +D

=
∑R
j=1((λj + ε) log(λj + ε)− (λj + ε)) +

∑D
j=R+1(ε log ε− ε) +D

=
∑R
j=1((λj + ε)(log λj + log(1 + ε

λj
))− (λj + ε)) + (D −R)(ε log ε− ε) +D

=
∑R
j=1(λj log λj − λj + λj log(1 + ε

λj
) + ε(log λj + log(1 + ε

λj
))− ε) + (D −R)(ε log ε− ε) +D

= Ωvnd(A)−R+
∑R
j=1(λj log(1 + ε

λj
) + ε(log λj + log(1 + ε

λj
))− ε) + (D −R)(ε log ε− ε) +D

(1)
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Since ε is small, we have log(1 + ε
λj

) ≈ ε
λj
. Then λj log(1 + ε

λj
) ≈ ε and the last line in the above equation

can be approximated with Ωvnd(A)−R+D +O(ε), and therefore

Ωvnd(A) ≈ Γvnd(A
>A + εID, ID) +R−D (2)

where O(ε) is small since ε is small, and is hence dropped.

Approximation of LDD regularizer

Γldd(A
>A + εID, ID)

=
R∑
j=1

λj +Dε− (D −R) log ε−
R∑
j=1

log(λj + ε)

=
R∑
j=1

λj +Dε− (D −R) log ε−
R∑
j=1

(log λj + log(1 + ε
λj

))

≈
R∑
j=1

(λj − log λj) +R log ε− ε
R∑
j=1

1
λj

+Dε−D log ε

= Ωldd(A) +R+R log ε+O(ε)−D log ε

(3)

Dropping O(ε), we obtain

Ωldd(A) = Γldd(A
>A + εID, ID)− (log ε+ 1)R+D log ε (4)

3 Comments on Proximal SSD and Projected SSD
Note that one can also solve the MDML-CBMD problems using projected stochastic subgradient descent
(SSD): (1) sampling a minibatch of data pairs and computing sub-gradient of the combined objective function
which is the sum of the data-dependent loss defined over the minibatch and the regularizer; (2) updating M
using subgradient descent; (3) projecting the updated M onto the positive semidefinite cone. We choose to
use proximal SSD because its complexity only depends on the Lipschitz constant of the subgradient of the
data-dependent loss, whereas that of projected SSD would depend on the sum of the Lipschitz constants of
the data-dependent loss and the regularizer.

4 Proof of Theorem 1

4.1 Proof Sketch
We make the following two assumptions.

• The size of similar and dissimilar set |S| and |D| are fixed.

• A∗ has full row rank R.

Denote the K classes as C1, C2, · · · CK . The probability that a sample is drawn from the kth class is pk, and∑K
k=1 pk = 1. Denote the class membership of example x as c(x). Denote the probability that x ∈ Cj ,y ∈ Ck

where (x,y) ∈ D as pjk = pjpk/(1−
∑K
l=1 p

2
l ). Define the SVD of matrix A∗ as U

√
ΛV> where U ∈ RR×R,

Λ ∈ RR×R, and V ∈ RD×R. Λ = diag(λ1, λ2, · · ·λR). then A∗>A∗ = VΛV>. Denote V = [v1,v2, · · ·vR].
Then ∀z = x− y, we have z>A∗>A∗z =

∑R
r=1 λr(v

>
r z)2. We see z>A∗>A∗z can be written as a sum of R

terms. Inspired by this, we define a vector function α(·) as α(u) =
∑K
j,k=1 pjk(u>(µj − µk))2. This function

measures the weighted sum of (u>(µj − µk))2 across all classes. Define G = span{µj − µk : j 6= k}.

Definition 1 (feature values and feature vectors). For a linear space G, define vectors w1,w2, · · ·wK−1 and
positive real numbers β1, β2, · · ·βK−1 as

w1 = arg min
‖u‖=1,u∈G

α(u), β1 = α(w1),
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wr = arg min
‖u‖ = 1,u ∈ G
u ⊥ wj , ∀j < r

α(u), βr = α(wr), ∀r > 1

∀r > K − 1, define βr = 0, and wr as an arbitrary vector which has norm 1 and is orthogonal to
w1,w2, · · ·wr−1. w1,w2, · · · are called feature vectors of G, and β1, β2, · · · are called feature values of
G.

We give a condition for the regularizers.

Condition 1. For a regularizer Ωφ(·), there exists a unique matrix function ϕ(·) such that for any A∗,

Ωφ(A∗) = ϕ(A∗A∗>) = ϕ(Λ).

The VND and LDD regularizer satisfy this condition. For the VND regularizer, ϕ(Λ) = tr(Λ log Λ−Λ)+R;
for the LDD regularizer, ϕ(Λ) = tr(Λ)− log det(Λ)−R. The SFN regularizer does not satisfy this condition.

Now we have enough preparation to give the following lemma. It shows that the linear space G can be
recovered if the second moment of noise is smaller than a certain value.

Lemma 1. Suppose R ≥ K − 1, maxj∈k ‖µj − µk‖2 ≤ B0, and the regularization parameter γ and distance

margin τ satisfy γ ≥ γ0, τ ≥ τ0. If ξ ≤ −B0+
√
B2

0+γK−1βK−1/(2tr(Λ))

4 , then

G ⊂ span(A∗>). (5)

Here span(A∗>) denotes the column space of matrix A∗>. Both λ0 and τ0 depend on µ1,µ2, · · ·µK and
p1, p2, · · · pK .

The next lemma shows that if Eq.(5) holds, we can bound the imbalance factor η with the condition
number of A∗A∗> (denoted by cond(A∗A∗>)). Note that the BMD regularizers Ωφ(A∗) encourage A∗A∗>

to be close to an identity matrix, i.e., encouraging the condition number to be close to 1.

Lemma 2. If Eq.(5) holds, and there exists a real function g such that

cond(A∗A∗>) ≤ g(Ωφ(A∗)),

then we have the following bound for the imbalance factor

η ≤ g(Ωφ(A∗))
maxj 6=k‖µj − µk‖2

minj 6=k‖µj − µk‖2
.

Next, we derive the explicit forms of g for the VND and LDD regularizers.

Lemma 3. For the VND regularizer Ωvnd(A
∗), define f(c) = c1/(c+1)(1+1/c), then f(c) is strictly increasing

on (0, 1] and strictly decreasing on [1,∞). Define the inverse function of f(·) on [1,∞) as f−1(·). Then if
Ωvnd(A

∗) < 1, we have
cond(A∗A∗>) ≤ f−1(2− Ωvnd(A

∗)).

For the LDD regularizer Ωldd(A
∗), we have

cond(A∗A∗>) ≤ 4eΩldd(A∗).

Combining Lemma 1, 2 and 3, we finish the proof of Theorem 1 in the main paper.

4.2 Proof of Lemma 1
In order to prove Lemma 1, we first need some auxiliary lemmas on the properties of the function α(·).
Denote µjk = µj − µk,∀j 6= k.
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Lemma 4. Suppose u1,u2, · · ·ur and v1,v2, · · ·vr are two sets of standard orthogonal vectors in Rd, and
span(u1,u2, · · ·ur) = span(v1,v2, · · ·vr), then we have

r∑
l=1

α(ul) =

r∑
l=1

α(vl).

Proof. By the definition of these two sets of vectors, there exists a r×r standard orthogonal matrix B = (bjk),
such that (u1,u2, · · ·ur) = (v1,v2, · · ·vr)B. Then we have

r∑
l=1

α(ul) =

r∑
l=1

∑
j 6=k

pjk((

r∑
s=1

blsvs)
>µjk)2

=

r∑
l=1

∑
j 6=k

pjk

r∑
s,t=1

blsbltv
>
s µjkv

>
t µjk

=

r∑
s=1

∑
j 6=k

pjk(v>s µjk)2
r∑
l=1

b2ls +
∑
j 6=k

pjk

r∑
s,t=1

v>s µjkv
>
t µjk

r∑
l=1

blsblt

Since B is a standard orthogonal matrix, we have ∀s,
∑r
l=1 b

2
ls = 1 and ∀s 6= t,

∑r
l=1 blsblt = 0. Further, we

have
r∑
l=1

α(ul) =

r∑
l=1

α(vl).

Lemma 5. For any positive integer r, any set of standard orthogonal vectors u1,u2, · · ·ur ∈ Rd, and real
numbers γ1 ≥ γ2 ≥ · · · ≥ γr ≥ 0, we have

r∑
l=1

γlα(ul) ≤
r∑
l=1

γlβl, (6)

where βl is the l-th feature value.

Proof. We first prove the situation that γ1 = γ2 = · · · = γr = 1, i.e.,
r∑
l=1

α(ul) ≤
r∑
l=1

βl. (7)

We prove it by induction on r. For r = 1, by the definition of feature values and feature vectors, Eq.(7) holds.
Now supposing Eq.(7) holds for r = s, we prove it holds for r = s+ 1 by contradiction. If Eq.(7) does not
hold, then there exist standard orthogonal vectors u1,u2, · · ·us+1 ∈ Rd, such that

s+1∑
l=1

α(ul) >

s+1∑
l=1

α(wl), (8)

where wl are feature vectors. Since the dimension of span(u1,u2, · · ·us+1) is s + 1, there exists w̃s+1 ∈
span(u1,u2, · · ·us+1), such that w̃s+1 ⊥ wl,∀1 ≤ l ≤ s. By the definition of feature vector ws+1, we have

s+1∑
l=1

α(wl) ≥
s∑
l=1

α(wl) + α(w̃s+1). (9)

Let w̃1, w̃2, · · · w̃s+1 be a set of standard orthogonal basis of span(u1,u2, · · ·us+1), by Lemma 4, we have

s+1∑
l=1

α(ul) =

s+1∑
l=1

α(w̃l). (10)
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Combine equation (8), (9) and (10) we get

s+1∑
l=1

α(w̃l) >

s∑
l=1

α(wl) + α(w̃s+1).

Thus we have
s∑
l=1

α(w̃l) >

s∑
l=1

α(wl).

This contradicts with our induction assumption. The proof for the γ1 = γ2 = · · · = γr = 1 case completes.
Next, we prove the situation that γl are not all equal to 1, by utilizing Eq.(7).

r∑
l=1

γlα(ul) =

r−1∑
l=1

[(γl − γl+1)

l∑
t=1

α(ut)] + γr

r∑
t=1

α(ut)

≤
r−1∑
l=1

[(γl − γl+1)

l∑
t=1

βt] + γr

r∑
t=1

βt

≤
r∑
l=1

γlβl

The proof completes.

Note that in Lemma 5, r can be larger than the number of nonzero feature values K − 1. This will be
used in the proof of Lemma 1 later.

Another auxiliary lemma needed to prove Lemma 1 is given below.

Lemma 6. Suppose w0 ∈ G, define linear space H = {v ∈ G : v ⊥ w0}. Then there are K − 2 nonzero
feature values of H. Denote them as β′1, β′2, · · ·β′K−2, then ∀ r ≤ K − 2, ∀ γ1 ≥ γ2 ≥ · · · ≥ γr ≥ 0,

r∑
l=1

γlβ
′
l ≤

r∑
l=1

γlβl

Proof. Note that the dimension of H is K − 2, then there are K − 2 nonzero feature values. The feature
vectors of H are also standard orthogonal vectors of the linear space G. By Lemma 5, we have

∑r
l=1 γlβ

′
l ≤∑r

l=1 γlβl, ∀ r ≤ K − 2.

Now we are ready to prove Lemma 1.

Proof. (of Lemma 1) We conduct the proof by contradiction. Assuming Eq.(5) does not hold, we prove A∗ can
not be the global optimal solution of PDML. Let U

√
ΛV> be the SVD of A∗. Define W = (w1,w2, · · ·wR)

as a matrix whose columns contain the feature vectors. Let Ã = U
√

ΛW>. Then by Condition 1, we have
Ωφ(A∗) = Ωφ(Ã). Define

L(A) = E
[ 1

|S|
∑

(x,y)∈S

‖Ax−Ay‖22 +
1

|D|
∑

(x,y)∈D

max(0, τ − ‖Ax−Ay‖22)
]
.

Assuming Eq.(5) does not hold, we prove L(A∗) > L(Ã), i.e., A∗ is not the optimal solution. We consider
two cases: ξ = 0 and ξ 6= 0. Define h(A∗, ξ) = L(A∗) and h(Ã, ξ) = L(Ã). When ξ = 0, we have:

h(A∗, 0) = E
[ 1

|S|
∑

(x,y)∈S

‖A∗µc(x) −A∗µc(y)‖22 +
1

|D|
∑

(x,y)∈D

max(0, τ − ‖A∗µc(x) −A∗µc(y)‖22)
]

=
∑
j 6=k

pjk max(0, τ − ‖A∗(µj − µk)‖22),
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and
h(Ã, 0) =

∑
j 6=k

pjk max(0, τ − ‖Ã(µj − µk)‖22).

Since Eq.(5) does not hold by assumption, there exists w0 ∈ G, w0 /∈ span(A∗). Denote H = {v ∈ G :
v ⊥ w0} and its K − 2 nonzero feature values as β′1, β′2, · · ·β′K−2. ∀u ∈ span(A∗), let u′ be the projection of
u to the space H and u′ is rescaled to have norm 1. Then α(u′) ≥ α(u). Thus, ∀r, the r-th feature value of
span(A∗) is no larger than the r-th feature value of G. By Lemma 6, we have

∑r
l=1 γlβ

′
l ≤

∑r
l=1 γlβl. By the

definition of feature values, we have

∑
j 6=k

pjk‖A∗(µj − µk)‖22 =

R∑
l=1

γlα(al) ≤
R∑
l=1

γlβ
′
l.

Since H has only K − 2 nonzero feature values, we have

R∑
l=1

γlβ
′
l =

K−2∑
l=1

γlβ
′
l ≤

K−2∑
l=1

γlβl =

K−1∑
l=1

γlα(wl)− γK−1βK−1 =
∑
j 6=k

pjk‖Ã(µj − µk)‖22 − γK−1βK−1.

So we have ∑
j 6=k

pjk‖Ã(µj − µk)‖22 ≥
∑
j 6=k

pjk‖A∗(µj − µk)‖22 + γK−1βK−1.

Next, we establish a relationship between h(A∗, 0) and h(Ã, 0), which is given in the following lemma.

Lemma 7. There exist constants τ0, γ0 which are determined by p1, p2, · · · pK and µ1,µ2, · · · ,µK , such that
if τ ≥ τ0, γ ≥ γ0, then we have

h(A∗, 0)− h(Ã, 0) >
1

2
γK−1βK−1.

Proof. If ‖Ã(µj−µk)‖22 ≤ τ and ‖A∗(µj−µk)‖22 ≤ τ for all j 6= k, we have h(A∗, 0)−h(Ã, 0) = γK−1βK−1.
Since maxj 6=k ‖µj − µk‖2 = B0, we have

‖A∗(µj − µk)‖22 ≤ tr(Λ)B2
0 ,

‖Ã(µj − µk)‖22 ≤ tr(Λ)B2
0 , ∀j 6= k.

(11)

Select τ0 such that τ0 ≥ K(1 + ε0)B2
0 , where ε0 is any positive constant. For the VND and LDD regularizers,

as γ →∞, Λ→ IR. Thereby, there exists γ0, such that if γ ≥ γ0, ∀j, |λj − 1| ≤ ε. Hence, if γ ≥ γ0, τ ≥ τ0,

tr(Λ)B2
0 ≤ K(1 + ε0)B2

0 ≤ τ0.

Combining this inequality with Eq.(11), we finish the proof.

Now we continue to prove Lemma 1. In Lemma 7, we have already proved that h(A∗, 0) is strictly larger
than h(Ã, 0). We then prove that if the noise is smaller than a certain value, h(A∗, ξ) is strictly larger than
h(Ã, ξ). By the definition of ξ, we have

|h(A∗, ξ)− h(A∗, 0)|

≤E
1

|S|
∑

(x,y)∈S

‖A∗(x− y)‖22 + E
1

|D|
∑

(x,y)∈D

[‖A∗(x− y)‖22 − ‖A∗(µc(x) − µc(y))‖22]

≤4tr(Λ)ξ2 + (4B0ξ + 4ξ2)tr(Λ)

=8ξ2tr(Λ) + 4B0ξtr(Λ). (12)

Similarly, we have
|h(A∗, ξ)− h(A∗, 0)| ≤ 8ξ2tr(Λ) + 4B0ξtr(Λ). (13)

Combining Lemma 7 with Eq.(12) and Eq.(13), we have if ξ ≤ −B0+
√
B2

0+γK−1βK−1/(2tr(Λ))

4 , then L(A∗) >

L(Ã), i.e., A∗ is not the global optimal solution. By contradiction, Eq.(5) holds. The proof completes.
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4.3 Proof of Lemma 2
Proof. For any vector u ∈ G, since the condition of Lemma 1 is satisfied, we have u ∈ span(A∗). Recall
A∗>A∗ = VΓV> and V = [v1,v2, · · ·vR]. We can denote u as u = ‖u‖

∑R
j=1 tjvj , where

∑R
j=1 t

2
j = 1.

Then we have ∀u ∈ G,

u>A∗>A∗u =

R∑
j=1

〈vj ,u〉2λj =

R∑
j=1

‖u‖2t2jλj ≤ ‖u‖2λ1.

Similarly, we have u>A∗>A∗u ≥ ‖u‖2λR. Noting ∀j 6= k, µj − µk ∈ G, we have

η ≤ cond(A∗A∗>)
maxj 6=k‖µj − µk‖2

minj 6=k‖µj − µk‖2
.

Combining this inequality with cond(A∗A∗>) ≤ g(Ωφ(A∗)), we complete the proof.

4.4 Proof of Lemma 3
Proof. We first prove the result about the VND regularizer. Define scalar function s(x) = x log x− x+ 1 and
denote cond(A∗A∗>) = c. Since s′(x) = log x, and s(1) = 0, we have

Ωvnd(A
∗) =

R∑
j=1

s(λj)

≥ s(λ1) + s(λR)

= λ1 log λ1 − λ1 +
λ1

c
log

λ1

c
− λ1

c
+ 2

Define F (λ1, c) = λ1 log λ1 − λ1 + λ1

c log λ1

c −
λ1

c + 2. We aim to maximize c, so

∂

∂λ1
F (λ1, c) = 0.

This equation has a unique solution: log λ1 = log c
c+1 . Therefore we have

c1/(c+1)(1 +
1

c
) ≥ 2− Ωvnd(A

∗).

Define f(c) = c1/(c+1)(1 + 1
c ). Its derivative is: f ′(c) = − log c

c(c+1)c
1/(c+1). Analyzing f ′(c), we know that f(c)

increases on (0, 1], decreases on [1,∞), and f(1) = 2. Also we have the following limits:

lim
c→0

f(c) = 0, lim
c→∞

f(c) = 1.

We denote the inverse function of f(·) on [1,∞) as f−1(·). Then for any Ωvnd(A
∗) < 1, we have

cond(A∗A∗>) ≤ f−1(2− Ωvnd(A
∗)).

Next we prove the result for the LDD regularizer Ωldd(A
∗). Define scalar function s(x) = x− log x− 1

and denote cond(A∗A∗>) = c. Since s′(x) = 1− 1
x and s(1) = 0, we have

Ωldd(A
∗) =

R∑
j=1

s(λj)

≥ s(λ1) + s(λR)

= λ1 − log λ1 +
λ1

c
− log

λ1

c
− 2

8



Therefore we have

log c ≤ Ωldd(A
∗) + 2 log λ1 − λ1(1 +

1

c
) + 2

≤ Ωldd(A
∗) + 2 log λ1 − λ1 + 2

≤ Ωldd(A
∗) + 2 log 2− 2 + 2

= Ωldd(A
∗) + 2 log 2

The third inequality is obtained from the following fact: the scalar function log x− x gets its maximum when
x = 2. Further, we have

c ≤ 4eΩldd(A∗).

The proof completes.

5 Proof of Theorem 2

5.1 Proof Sketch
Part of the proof is tailored to the CVND regularizer. Extensions to CSFN and CLDD are given later. The
proof is based on Rademacher complexity (RC) [41], which measures the complexity of a hypothesis class. In
MDML, the Rademacher complexity R(M) of the function classM is defined as:

R(M) = ES,D,σ sup
M∈M

1

m

m∑
i=1

σi(xi − yi)
>M(xi − yi)

where m is the number of data pairs in the training data (m = |S|+ |D|), σi ∈ {−1, 1} is the Rademacher
variable and σ = (σ1, σ2, · · ·σm).

We first establish a upper bound of the generalization error based on RC. Intuitively, a less-complicated
hypothesis class generalizes better on unseen data. Then we upper bound the RC based on the CBMD
regularizers. Combining the two steps together, we establish upper bounds of the generalization error based
on CBMD regularizers.

The following lemma presents the RC-based upper bound of the generalization error. Its proof is adapted
from [41].

Lemma 8. With probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2R(M) + max(τ, sup
(x,y) ∈ S
M ∈ M

(x− y)>M(x− y))

√
2 log(1/δ)

m
. (14)

For the second term in the bound, it is easy to verify

sup
(x,y) ∈ S
M ∈ M

(x− y)>M(x− y) ≤ sup
M∈M

tr(M) sup
(x,y)∈S

‖x− y‖22. (15)

Now we focus on the first term. We denote z = x− y, zi = xi − yi.

Lemma 9. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ 2B2

√
m

sup
M∈M

tr(M). (16)

We next show that tr(M) can be bounded by the CVND regularizer Ω̂vnd(M).

Lemma 10. For the convex VND regularizer Ω̂vnd(M), for any positive semidefinite matrix M, we have

tr(M) ≤ Ω̂vnd(M).

9



Combining Lemma 8, 9, 10 and Eq.(15) and noting that E = L(M̂∗)− L̂(M̂∗) ≤ supM∈M(L(M)− L̂(M))

and Ω̂vnd(M) ≤ C (C is the upper bound in the hypothesis class M), we complete the proof of the first
bound in Theorem 2 (Eq.(6) in the main paper).

In the sequel, we present detailed proofs of these lemmas and the extension to CSNF and CLDD.

5.2 Proof of Lemma 9
Proof. For any M ∈M, denote its spectral decomposition as M = VΠV>, where V is standard orthogonal
matrix and Π is diagonal matrix. Denote V = (v1,v2, · · ·vD), Π = diag(π1, π2, · · ·πD), then we have

R(M) = ES,D,σ sup
M∈M

[
1

m

m∑
i=1

σiz
T
i Mzi

]

=
1

m
ES,D,σ sup

M∈M

 m∑
i=1

σi

D∑
j=1

πj(v
>
j zi)

2


=

1

m
ES,D,σ sup

M∈M

 D∑
j=1

πj

m∑
i=1

σi(v
>
j zi)

2


=

1

m
ES,D,σ sup

M∈M

 D∑
j=1

πj sup
‖v‖2≤1

m∑
i=1

σi(v
>zi)

2


=

1

m
ES,D,σ sup

Π

D∑
j=1

πj sup
‖v‖2≤1

m∑
i=1

σi(v
>zi)

2

≤ 1

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

m∑
i=1

σi(v
>zi)

2.

Since (v>z)2 is Lipschitz continuous w.r.t v>z with constant 2 sup‖v‖2≤1,z v>z, according to the composition
property [41] of Rademacher complexity on Lipschitz continuous functions, we have

R(M) ≤ 1

m
2 sup
‖v‖2≤1,z

(v>z) sup
M∈M

tr(M)ES,D,σ sup
‖v‖2≤1

m∑
i=1

σiv
>zi

= 2
B

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

m∑
i=1

σiv
>zi

≤ 2
B

m
sup

M∈M
tr(M)ES,D,σ sup

‖v‖2≤1

‖v‖2‖
m∑
i=1

σizi‖2

= 2
B

m
sup

M∈M
tr(M)ES,D,σ

√√√√(

m∑
i=1

σizi)2.

By Jensen’s inequality, we have

R(M) ≤ 2
B

m
sup

M∈M
tr(M)ES,D

√√√√Eσ(

m∑
i=1

σizi)2

=≤ 2
B

m
sup

M∈M
tr(M)ES,D

√√√√ m∑
i=1

z2
i

≤ 2B2

√
m

sup
M∈M

tr(M).

10



5.3 Proof of lemma 10
Proof. For any positive semidefinite matrix M, we use notations V,Π, πj , 1 ≤ j ≤ D as they are defined in
Section 5.2. By the definition of the convex VND regularizer, we have

Ω̂vnd(M) =Γvnd(M + εID, ID) + tr(M)

=tr[(M + εID) log(M + εID)− (M + εID) log ID − (M + ε) + ID] + tr(M)

=

D∑
j=1

[(πj + ε) log(πj + ε)− (πj + ε) + 1] +

D∑
j=1

πj

=

D∑
j=1

[(λj + ε) log(λj + ε)− ε+ 1]

Denote π̄ = (
∑D
j=1 πj)/D = tr(M)/D, then by Jensen’s inequality, we have

D∑
j=1

(λj + ε) log(λj + ε) ≥ D(π̄ + ε) log(π̄ + ε).

Since ∀x ∈ R+, x− 1 ≤ x log x, so we have

π̄ + ε− 1 ≤ (π̄ + ε) log(π̄ + ε)

≤ 1

D

D∑
j=1

(λj + ε) log(λj + ε)

≤ 1

D
Ω̂vnd(M) + ε− 1.

Therefore we have
tr(M) ≤ Ω̂vnd(M).

5.4 Generalization error bound for the convex SFN regularizer
In this section we prove generalization error bounds for the convex SFN regularizer. The CSFN is composed
of two parts. One is the squared Frobenius norm of M− ID and the other is the trace of M. We have already
established a relationship between tr(M) and R(M). Now we analyze the relationship between ‖M− ID‖F
and R(M), which is given in the following lemma.

Lemma 11. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ B2

√
m

sup
M∈M

‖M− ID‖F (17)

Proof. Denote M(j, k) = ajk, and δjk = I{j=k}, zi = (zi1, zi2, · · · zid), then we have

R(M) =
1

m
ES,D,σ sup

M∈M

∑
j,k

ajk

m∑
i=1

σizijzik


=

1

m
ES,D,σ sup

M∈M

[∑
j,k

(ajk − δjk)
m∑
i=1

σizijzik +
∑
j,k

δjk

m∑
i=1

σizijzik

]

≤ 1

m
ES,D,σ sup

M∈M

‖M− ID‖F

√√√√∑
j,k

(

m∑
i=1

σizijzik)2



11



Here the inequality is attained by Cauchy’s inequality. Applying Jensen’s inequality, we have

R(M) ≤ 1

m
sup

M∈M
‖M− ID‖F ES,D

√√√√Eσ
∑
j,k

(

m∑
i=1

σizijzik)2


=

1√
m

sup
M∈M

‖M− ID‖F ES,D

√∑
j,k

z2
ijz

2
ik


Recalling the definition of B, we have

R(M) ≤ B2

√
m

sup
M∈M

‖M− ID‖F .

We now bound the generalization error with the convex SFN regularizer, which is given in the following
lemma.

Lemma 12. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then with probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)) + max(τ, Ω̂sfn(M))

√
2 log(1/δ)

m
.

Proof. For the convex SFN regularizer Ω̂sfn(M), we have tr(M) ≤ Ω̂sfn(M) and ‖M− ID‖ ≤ Ω̂sfn(M). By
Eq.(15), we have

sup
(x,y) ∈ S
M ∈ M

(x− y)>M(x− y) ≤ sup
M∈M

Ω̂sfn(M)B2. (18)

By Lemma 9 and 11, we have

R(M) ≤ B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)). (19)

Substituting Eq.(19) and Eq.(18) into Lemma 8, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 2B2

√
m

min(2Ω̂sfn(M),

√
Ω̂sfn(M)) + max(τ, Ω̂sfn(M))

√
2 log(1/δ)

m
.

Noting that E = L(M̂∗) − L̂(M̂∗) ≤ supM∈M(L(M) − L̂(M)) and Ω̂sfn(M) ≤ C, we conclude E ≤
2B2
√
m

min(2C,
√
C) + max(τ, C)

√
2 log(1/δ)

m .

5.5 Generalization error bound for the convex LDD regularizer
Starting from Lemma 8, we bound R(M) and supM∈M tr(M) which are given in the following two lemmas.

Lemma 13. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then we have

R(M) ≤ B√
m

Ω̂ldd(M)

log(1/ε)− 1
.

Proof. We first perform some calculation on the convex LDD regularizer.

Ω̂ldd(M) = Γldd(M + εID, ID)− (1 + log ε)tr(M)
= tr((M + εID)I−1

D )− log det((M + εID)I−1
D )−D − (1 + log ε)tr(M)

=
∑D
j=1(πj + ε)−

∑D
j=1 log(πj + ε)−D − (1 + log ε)

∑D
j=1 πj

= log( 1
ε )
∑D
j=1 πj −

∑D
j=1 log(πj + ε)−D(1− ε).

(20)

12



Now we upper bound the Rademacher complexity using the CLDD regularizer.

log(
1

ε
)R(M) =

log( 1
ε )

m
ES,D,σ sup

M∈M

 D∑
j=1

πj

m∑
i=1

σi(v
>
j zi)

2


≤ 1

m
ES,D,σ sup

Π

D∑
j=1

[(log(
1

ε
)πj − log(πj + ε)) + log(πj + ε)] sup

‖v‖2≤1

m∑
i=1

σi(v
>zi)

2

Similar to the proof of Lemma 9, we have

log( 1
ε )R(M) ≤ 2B2

√
m

supΠ

∑D
j=1[(log( 1

ε )πj − log(πj + ε)) + log(πj + ε)]

≤ 2B2
√
m

[supM∈M Ω̂ldd(M) + supM∈M
∑D
j=1 log(πj + ε)].

(21)

Denoting A =
∑D
j=1 log(πj + ε), we bound A with Ω̂ldd(M). Denoting π̄ = (

∑D
j=1 πj)/D = tr(M)/D, by

Jensen’s inequality, we have
A ≤ D log(π̄ + ε), (22)

then π̄ ≥ eA/D − ε. Replacing π̄ with A in Eq.(20), we have

Ω̂ldd(M) ≥D log(1/ε)(eA/D − ε)−A−D(1− ε)

≥D log(1/ε)(
A

D
+ 1− ε)−A−D(1− ε)

=(log(1/ε)− 1)A+ [log(
1

ε
)− 1]D(1− ε).

Further,

A ≤ Ω̂ldd(M)

log( 1
ε )− 1

−D(1− ε). (23)

Substituting this upper bound of A into Eq.(21), we have

R(M) ≤ 2B2

√
m

supM∈M Ω̂ldd(M)

log(1/ε)− 1
.

The next lemma shows the bound of tr(M).

Lemma 14. For any positive semidefinite matrix M, we have

tr(M) ≤ Ω̂ldd(M)−Dε
log( 1

ε )− 1
.

Proof.

Ω̂ldd(M) ≥D log(1/ε)π̄ −D log(π̄ + ε)−D(1− ε)
≥D log(1/ε)π̄ +D(1− π̄)−D(1− ε)
=D[log(1/ε)− 1]π̄ +Dε.

Then

tr(M) = Dπ̄ ≤ Ω̂ldd(M)−Dε
log( 1

ε )− 1
.

Combining Lemma 13, 14, and 8, we get the following generalization error bound w.r.t the convex LDD
regularizer.

Lemma 15. Suppose sup‖v‖2≤1,z |v>z| ≤ B, then with probability at least 1− δ, we have

sup
M∈M

(L(M)− L̂(M)) ≤ 4B2 Ω̂ldd(M)√
m [log(1/ε)− 1]

+ max
(
τ,

Ω̂ldd(M)−Dε
log( 1

ε )− 1

)√2 log(1/δ)

m
.
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6 Experiments

6.1 Details of Datasets and Feature Extraction
MIMIC-III MIMIC-III contains 58K hospital admissions of patients who stayed within the intensive
care units at Beth Israel Deaconess Medical Center between 2001 and 2012. Each admission has a primary
diagnosis (a disease), which acts as the class label of this admission. There are 2833 unique diseases. We
extract 7207-dimensional features: (1) 2 dimensions from demographics, including age and gender; (2)
5300 dimensions from clinical notes, including 5000-dimensional bag-of-words (weighted using tf-idf ) and
300-dimensional Word2Vec [42]; (3) 1905-dimensions from lab tests where the zero-order, first-order and
second-order temporal features are extracted for each of the 635 lab items. In the extraction of bag-of-words
features from clinical notes, we remove stop words, then count the document frequency (DF) of the remaining
words. Then we select the largest 5000 words to form the dictionary. Based on this dictionary, we extract
tfidf features. In the extraction of word2vec features, we train 300-dimensional embedding vector for each
word using an open source word2vec tool1. To represent a clinical note, we average the embeddings of all
words in this note. In lab tests, there are 635 test items in total. An item is tested at different time points
for each admission. For an item, we extract three types of temporal features: (1) zero-order : averaging the
values of this item measured at different time points; (2) first-order : taking the difference of values at every
two consecutive time points t and t− 1, and averaging these differences; (3) second-order : for the sequence of
first-order differences generated in (2), taking the difference (called second-order difference) of values at every
two consecutive time points t and t− 1, and averaging these second-order differences. If an item is missing
in an admission, we set the zero-order, first-order and second-order feature values to 0. The features are
normalized using min-max normalization along each dimension. We use PCA to reduce the feature dimension
to 1000.

EICU The EICU dataset contains hospital admissions of patients who were treated as part of the Philips
eICU program across intensive care units in the United States between 2014 and 2015. Each admission has a
primary diagnosis (a disease), which acts as the class label of this admission. There are 2175 unique diseases.
There are 474 lab test items and 48 vital sign items. Each admission has a past medical history, which is
a collection of diseases. There are 2644 unique past diseases. We extract the following features: (1) age
and gender; (2) zero, first and second order temporal features of lab test and vital signs; (3) past medical
history: we use a binary vector to encode them; if an element in the vector is 1, then the patient had the
corresponding disease in the past. The features are normalized using min-max normalization along each
dimension. We use PCA to reduce the feature dimension to 1000.

Reuters and News The original Reuters-21578 dataset contains 21578 documents in 135 classes. We
remove documents that have more than one labels, and remove classes that have less than 3 documents,
which leaves us 5931 documents and 48 classes. Documents in Reuters and News are represented with tfidf
vectors where the vocabulary size is 5000. The features are normalized using min-max normalization along
each dimension. We use PCA to reduce the feature dimension to 1000.

Birds and Cars For the two image datasets, we use the VGG16 [43] convolutional neural network trained
on the ImageNet [44] dataset to extract features, which are the 4096-dimensional outputs of the second
fully-connected layer. The features are normalized using min-max normalization along each dimension. We
use PCA to reduce the feature dimension to 1000.

6-Activities The 6-Activities dataset contains sensory recordings of 30 subjects performing 6 activities
(which are the class labels). The features are 561-dimensional sensory signals.

6.2 Additional Experimental Settings
Two examples are considered as similar if they belong to the same class and dissimilar if otherwise. The learned
distance metrics are applied for retrieval (using each test example to query the rest of the test examples)

1https://code.google.com/archive/p/word2vec/
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MIMIC EICU Reuters News Cars Birds Act
MDML-`2 0.01 0.01 0.001 0.1 0.01 0.001 0.1
MDML-`1 [10] 0.01 0.01 0.1 0.01 0.01 0.01 0.001
MDML-`2,1 [11] 0.001 0.01 0.001 0.001 0.1 0.1 0.1
MDML-Tr [13] 0.01 0.01 0.01 0.001 0.1 0.01 0.1
MDML-IT [3] 0.001 0.1 0.1 0.01 0.1 0.001 0.01
MDML-Drop [14] 0.01 0.01 0.1 0.001 0.1 0.1 0.01
PDML-DC [39] 0.01 0.1 0.01 0.01 0.1 0.1 0.01
PDML-CS [33] 0.01 0.1 0.01 1 0.001 0.001 0.1
PDML-DPP [34] 0.1 0.01 0.001 0.1 0.1 0.01 0.1
PDML-IC [35] 0.01 0.001 0.01 0.1 0.01 0.1 0.01
PDML-DeC [36] 0.1 0.001 0.01 0.1 0.01 0.1 1
PDML-VGF [40] 0.01 0.01 0.1 0.1 0.1 0.001 0.01
PDML-MA [17] 0.001 1 0.01 0.01 0.1 0.01 0.01
PDML-SFN [15, 20] 0.01 0.01 0.01 0.1 0.1 0.01 0.1
PDML-VND [47] 0.01 0.1 0.01 0.001 0.001 0.1 0.01
PDML-LDD [47] 0.001 0.01 0.1 0.001 0.01 0.01 0.01
MDML-CSFN 0.01 0.001 0.01 0.001 0.1 0.01 0.1
MDML-CVND 0.01 0.01 0.1 0.1 0.1 0.01 0.01
MDML-CLDD 0.01 0.1 0.01 0.001 0.01 0.001 0.1

Table 1: Best tuned regularization parameters via cross validation.

whose performance is evaluated using the Area Under precision-recall Curve (AUC) [45] which is the higher,
the better. Note that the learned distance metrics can also be applied to other tasks such as clustering and
classification. Due to the space limit, we focus on retrieval. We apply the proposed convex regularizers CSFN,
CVND, CLDD to MDML. We compare them with two sets of baseline regularizers. The first set aims at
promoting orthogonality, which are based on determinant of covariance (DC) [39], cosine similarity (CS) [33],
determinantal point process (DPP) [38, 34], InCoherence (IC) [35], variational Gram function (VGF) [46, 40],
decorrelation (DeC) [36], mutual angles (MA) [37], squared Frobenius norm (SFN) [15, 21, 16, 20], von
Neumann divergence (VND) [47], log-determinant divergence (LDD) [47], and orthogonal constraint (OC)
AA> = I [22, 26]. All these regularizers are applied to PDML. The other set of regularizers are not designed
particularly for promoting orthogonality but are commonly used, including `2 norm, `1 norm [10], `2,1
norm [11], trace norm (Tr) [13], information theoretic (IT) regularizer −logdet(M) + tr(M) [3], and Dropout
(Drop) [48]. All these regularizers are applied to MDML. One common way of dealing with class-imbalance is
over-sampling (OS) [49], which repetitively draws samples from the empirical distributions of infrequent classes
until all classes have the same number of samples. We apply this technique to PDML and MDML. In addition,
we compare with vanilla Euclidean distance (EUC) and other distance learning methods including large
margin nearest neighbor (LMNN) metric learning, information theoretic metric learning (ITML) [3], logistic
discriminant metric learning (LDML) [4], metric learning from equivalence constraints (MLEC) [6], geometric
mean metric learning (GMML) [7], and independent Laplacian hashing with diversity (ILHD) [29]. The
PDML-based methods except PDML-OC are solved with stochastic subgradient descent (SSD). PDML-OC is
solved using the algorithm proposed in [50]. The MDML-based methods are solved with proximal SSD. The
learning rate is set to 0.001. The mini-batch size is set to 100 (50 similar pairs and 50 dissimilar pairs). We
use 5-fold cross validation to tune the regularization parameter among {10−3, · · · , 100} and the number of
projection vectors (of the PDML methods) among {50, 100, 200, · · · , 500}. In CVND and CLDD, ε is set
to be 1e − 5. The margin t is set to be 1. In the MDML-based methods, after the Mahalanobis matrix
M (rank R) is learned, we factorize it into M = L>L where L ∈ RR×D (see supplements), then perform
retrieval based on ‖Lx− Ly‖22, which is more efficient than that based on (x− y)>M(x− y). Each method
is implemented on top of GPU using the MAGMA library. The experiments are conducted on a GPU-cluster
with 40 machines.

Retrieval settings For each test example, we use it to query the rest of test examples based on the learned
distance metric. If the distance between x and y is smaller than a threshold s and they have the same
class label, then this is a true positive. By choosing different values of s, we obtain a receiver operating
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MIMIC EICU Reuters
PDML 0.654± 0.015 0.690± 0.009 0.963± 0.012
MDML 0.659± 0.014 0.691± 0.005 0.962± 0.008
EUC 0.558± 0.007 0.584± 0.008 0.887± 0.009
LMNN [3] 0.643± 0.011 0.678± 0.007 0.951± 0.020
LDML [4] 0.638± 0.017 0.678± 0.020 0.946± 0.009
MLEC [6] 0.633± 0.018 0.692± 0.008 0.936± 0.007
GMML [7] 0.621± 0.017 0.679± 0.006 0.938± 0.011
ILHD [29] 0.590± 0.006 0.652± 0.018 0.919± 0.014
MDML-`2 0.664± 0.019 0.706± 0.006 0.966± 0.012
MDML-`1 [10] 0.664± 0.017 0.715± 0.015 0.967± 0.005
MDML-`2,1 [11] 0.658± 0.008 0.727± 0.016 0.970± 0.008
MDML-Tr [13] 0.672± 0.011 0.709± 0.004 0.969± 0.015
MDML-IT [3] 0.673± 0.009 0.705± 0.007 0.964± 0.007
MDML-Drop [14] 0.660± 0.016 0.718± 0.006 0.968± 0.010
MDML-OS 0.665± 0.009 0.711± 0.007 0.968± 0.012
PDML-DC [39] 0.662± 0.005 0.717± 0.012 0.976± 0.007
PDML-CS [33] 0.676± 0.019 0.736± 0.007 0.973± 0.011
PDML-DPP [34] 0.679± 0.008 0.725± 0.010 0.972± 0.015
PDML-IC [35] 0.674± 0.010 0.726± 0.005 0.984± 0.019
PDML-DeC [36] 0.666± 0.007 0.711± 0.015 0.977± 0.011
PDML-VGF [40] 0.674± 0.007 0.730± 0.011 0.988± 0.008
PDML-MA [17] 0.670± 0.009 0.731± 0.006 0.983± 0.007
PDML-SFN [15, 21, 16, 20] 0.677± 0.011 0.736± 0.013 0.984± 0.009
PDML-OC [22, 26] 0.663± 0.005 0.716± 0.010 0.966± 0.017
PDML-OS 0.658± 0.006 0.691± 0.004 0.965± 0.009
PDML-VND [47] 0.676± 0.013 0.748± 0.020 0.983± 0.007
PDML-LDD [47] 0.674± 0.012 0.743± 0.006 0.981± 0.009
MDML-CSFN 0.679± 0.009 0.741± 0.011 0.991± 0.010
MDML-CVND 0.678± 0.007 0.744± 0.005 0.994± 0.008
MDML-CLDD 0.678± 0.012 0.750± 0.006 0.991± 0.006

Table 2: Mean AUC and standard errors on frequent classes.
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A-All A-IF BS A-All A-IF BS A-All A-IF BS A-All A-All A-All A-All

PDML 0.008 0.019 0.014 0.007 0.009 0.010 0.005 0.022 0.017 0.005 0.021 0.006 0.016
MDML 0.020 0.006 0.024 0.009 0.016 0.009 0.011 0.015 0.012 0.008 0.017 0.013 0.021
EUC 0.008 0.005 0.012 0.010 0.006 0.015 0.017 0.006 0.008 0.024 0.016 0.021 0.010
LMNN [3] 0.013 0.022 0.009 0.011 0.016 0.009 0.014 0.018 0.022 0.020 0.011 0.017 0.008
LDML [4] 0.025 0.014 0.023 0.008 0.005 0.012 0.024 0.007 0.011 0.010 0.008 0.011 0.005
MLEC [6] 0.012 0.018 0.016 0.011 0.017 0.020 0.005 0.021 0.007 0.019 0.007 0.023 0.013
GMML [7] 0.008 0.011 0.020 0.021 0.024 0.013 0.016 0.011 0.009 0.008 0.013 0.007 0.010
ILHD [29] 0.013 0.017 0.007 0.010 0.022 0.004 0.013 0.020 0.006 0.018 0.011 0.015 0.012
MDML-`2 0.016 0.011 0.013 0.021 0.005 0.013 0.007 0.023 0.016 0.022 0.007 0.021 0.025
MDML-`1 [10] 0.018 0.020 0.006 0.013 0.018 0.014 0.023 0.006 0.013 0.017 0.022 0.018 0.009
MDML-`2,1 [11] 0.012 0.008 0.017 0.016 0.012 0.022 0.015 0.014 0.020 0.012 0.024 0.019 0.015
MDML-Tr [13] 0.011 0.024 0.009 0.022 0.007 0.011 0.012 0.007 0.015 0.013 0.009 0.018 0.010
MDML-IT [3] 0.013 0.009 0.017 0.020 0.016 0.021 0.015 0.017 0.013 0.019 0.011 0.008 0.016
MDML-Drop [14] 0.005 0.014 0.008 0.027 0.013 0.016 0.005 0.023 0.009 0.008 0.006 0.024 0.025
PDML-DC [39] 0.008 0.017 0.019 0.006 0.015 0.009 0.011 0.012 0.018 0.014 0.017 0.023 0.008
PDML-CS [33] 0.019 0.022 0.017 0.021 0.023 0.010 0.007 0.020 0.016 0.012 0.013 0.014 0.022
PDML-DPP [34] 0.014 0.006 0.011 0.009 0.008 0.017 0.018 0.007 0.013 0.011 0.006 0.022 0.005
PDML-IC [35] 0.007 0.009 0.011 0.006 0.014 0.015 0.006 0.017 0.023 0.007 0.005 0.019 0.008
PDML-DeC [36] 0.019 0.024 0.021 0.008 0.006 0.009 0.015 0.018 0.006 0.014 0.008 0.012 0.018
PDML-VGF [40] 0.009 0.008 0.017 0.013 0.019 0.010 0.015 0.009 0.014 0.008 0.022 0.021 0.008
PDML-MA [17] 0.021 0.014 0.009 0.005 0.019 0.021 0.011 0.014 0.016 0.013 0.011 0.007 0.009
PDML-SFN [15, 21, 16, 20] 0.015 0.021 0.006 0.022 0.007 0.017 0.013 0.010 0.008 0.023 0.016 0.024 0.012
PDML-OC [22, 26] 0.016 0.010 0.011 0.007 0.018 0.008 0.019 0.023 0.016 0.015 0.011 0.005 0.009
PDML-VND [47] 0.009 0.018 0.007 0.024 0.011 0.019 0.021 0.017 0.022 0.014 0.006 0.012 0.025
PDML-LDD [47] 0.021 0.012 0.008 0.018 0.017 0.013 0.011 0.007 0.009 0.007 0.012 0.006 0.016
MDML-CSFN 0.011 0.009 0.013 0.007 0.008 0.014 0.009 0.012 0.008 0.025 0.007 0.004 0.011
MDML-CVND 0.006 0.007 0.011 0.012 0.014 0.009 0.012 0.013 0.006 0.009 0.011 0.014 0.013
MDML-CLDD 0.009 0.012 0.011 0.010 0.005 0.013 0.018 0.005 0.012 0.011 0.015 0.008 0.010

Table 3: Standard errors.

characteristic (ROC) curve. For AUC on infrequent classes, we use examples belonging to infrequent classes
to query the entire test set (excluding the query). AUC on frequent classes is measured in a similar way.

For computational efficiency, in MDML-based methods, we do not use (x− y)>M(x− y) to compute
distance directly. Given the learned matrix M (which is of rank k), we can decompose it into L>L where
L ∈ Rk×d. Let UΛU> be the eigen-decomposition of M. Let λ1, · · · , λk denote the k nonzero eigenvalues and
ui, · · · ,uk denote the corresponding eigenvectors. Then L is the transpose of [

√
σ1u1, · · · ,

√
σkuk]. Given L,

we can use it to transform each input d-dimensional feature vector x into a new k-dimensional vector Lx,
then perform retrieval on the new vectors based on Euclidean distance. Note that only when computing
Euclidean distance between Lx and Ly, we have that ‖Lx− Ly‖22 is equivalent to (x− y)>M(x− y). For
other distances or similarity measures between Lx and Ly, such as L1 distance and cosine similarity, this does
not hold. Performing retrieval based on ‖Lx− Ly‖22 is more efficient than that based on (x− y)>M(x− y)
when k is smaller than d. Given m test examples, the computation complexity of ‖Lx−Ly‖22 based retrieval
is O(mkd+m2k), while that of (x− y)>M(x− y) based retrieval is O(m2d2).

Additional details of baselines In the Large Margin Nearest Neighbor (LMNN) DML method [2], there
is a nonconvex formulation and a convex formulation. We used the convex one. Though the variational Gram
function (VGF) [40] is convex, when it is used to regularize PDML, the overall problem is non-convex and
it is unclear how to seek a convex relaxation. In Geometric Mean Metric Learning (GMML) [7], the prior
matrix was set to an identity matrix. In Independent Laplacian Hashing with Diversity (ILHD) [29], we use
the ILTitf variant. The hash function is kernel SVM with a radial basis function (RB) kernel. We did not
compare with unsupervised hashing methods [23, 27, 24, 28, 25].

Hyperparameters Table 1 shows the best tuned regularization parameters on different datasets. In
Orthogonal Constraints (OR) [22, 26], there is no regularization parameter. In dropout [14], the regularization
parameter designates the probability of dropping elements in the Mahalanobis matrix. In LMNN, the
weighting parameter µ was set to 0.5. In GMML [7], the regularization parameter λ was set to 0.1. The step
length t of geodesic was set to 0.3. In ILHD [29], the scale parameter of the RBF kernel was set to 0.1.

17



MIMIC EICU Reuters News Cars Birds Act
PDML 0.175 0.145 0.043 0.095 0.149 0.075 0.045
MDML 0.187 0.142 0.045 0.087 0.124 0.066 0.042
LMNN 0.183 0.153 0.031 0.093 0.153 0.073 0.013
LDML 0.159 0.139 0.034 0.079 0.131 0.072 0.068
MLEC 0.162 0.131 0.042 0.088 0.151 0.039 0.043
GMML 0.197 0.157 0.051 0.063 0.118 0.067 0.036
ILHD 0.164 0.162 0.048 0.077 0.117 0.045 0.059
MDML-`2 0.184 0.136 0.037 0.072 0.105 0.053 0.041
MDML-`1 0.173 0.131 0.042 0.064 0.113 0.061 0.026
MDML-`2,1 0.181 0.129 0.034 0.073 0.121 0.044 0.024
MDML-Tr 0.166 0.138 0.024 0.076 0.111 0.058 0.037
MDML-IT 0.174 0.134 0.033 0.061 0.109 0.036 0.013
MDML-Drop 0.182 0.140 0.021 0.076 0.114 0.063 0.024
MDML-OS 0.166 0.133 0.032 0.063 0.108 0.057 0.031
PDML-DC 0.159 0.131 0.035 0.069 0.127 0.064 0.035
PDML-CS 0.163 0.135 0.031 0.083 0.103 0.045 0.033
PDML-DPP 0.147 0.140 0.038 0.067 0.117 0.072 0.041
PDML-IC 0.155 0.127 0.018 0.075 0.116 0.074 0.029
PDML-DeC 0.164 0.123 0.023 0.082 0.125 0.051 0.033
PDML-VGF 0.158 0.136 0.014 0.064 0.136 0.035 0.028
PDML-MA 0.143 0.128 0.023 0.078 0.102 0.031 0.042
PDML-OC 0.161 0.142 0.032 0.061 0.111 0.063 0.034
PDML-OS 0.169 0.137 0.015 0.083 0.119 0.058 0.042
PDML-SFN 0.153 0.126 0.022 0.069 0.127 0.043 0.028
PDML-VND 0.148 0.135 0.019 0.078 0.116 0.067 0.035
PDML-LDD 0.146 0.121 0.017 0.054 0.111 0.036 0.021
MDML-CSFN 0.142 0.124 0.019 0.062 0.092 0.043 0.019
MDML-CVND 0.137 0.115 0.008 0.055 0.094 0.038 0.013
MDML-CLDD 0.131 0.118 0.012 0.058 0.089 0.026 0.016

Table 4: The gap of training AUC and testing AUC (training-AUC minus testing-AUC)

MIMIC EICU Reuters News Cars Birds Act
LMNN 3.8 4.0 0.4 0.7 0.6 0.7 0.3
ITML 12.6 11.4 1.2 3.2 3.0 2.7 0.8
LDML 3.7 3.4 0.3 0.6 0.5 0.6 0.2
MLEC 0.4 0.4 0.026 0.049 0.043 0.044 0.018
GMML 0.5 0.4 0.035 0.056 0.052 0.049 0.022
MDML-`2 3.4 3.5 0.3 0.6 0.5 0.6 0.2
MDML-`1 3.4 3.6 0.5 0.6 0.5 0.6 0.2
MDML-`2,1 3.5 3.7 0.3 0.5 0.5 0.6 0.1
MDML-Tr 3.4 3.7 0.3 0.6 0.6 0.4 0.3
MDML-IT 5.2 5.5 0.5 0.9 0.8 1.0 0.4
MDML-Drop 9.5 10.4 1.2 1.7 1.9 1.7 0.6

Table 5: Training time (hours) of additional baselines.
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Reduced dimension 1000 2000 3000
PDML 0.634 0.637 0.629
MDML 0.641 0.638 0.646
PDML-VND 0.667 0.669 0.671
PDML-CVND 0.672 0.675 0.673

Table 6: Mean AUC under different reduced dimensions.

6.3 Additional Experimental Results
Training time of other baselines Table 5 shows the training time of additional baselines.

AUC on frequent classes Table 2 shows the mean AUC and standard errors on frequent classes. MDML-
(CSFN,CVND,CLDD) achieve better mean AUC than the baselines.

Standard errors Table 3 shows the standard errors of AUC on all classes and infrequent classes and
standard errors of balance scores.

Gap between training AUC and testing AUC Table 4 shows the gap between training AUC and
testing AUC (training-AUC minus testing-AUC).

Additional experimental analysis

• Training time Unregularized PDML runs faster that regularized PDML methods because it has
no need to tune the regularization parameter, which reduces the number of experimental runs by 4
times. Unregularized MDML runs faster than regularized MDML methods because it has no need to
tune the regularization parameter or the number of projection vectors, which reduces the number of
experimental runs by 12 times. PDML-(DC,DPP,VND,LDD) takes longer time than other regularized
PDML methods since they need eigendecomposition to compute the gradients. PDML-OC has no
regularization parameter to tune, hence its number of experimental runs is 4 times fewer than other
regularized PDML methods.

• Balance In most DML methods, the AUC on infrequent classes is worse than that on frequent classes,
showing that DML is sensitive to the imbalance of pattern-frequency, tends to be biased towards
frequent patterns and is less capable to capture infrequent patterns. This is in accordance with previous
study [37].

Dimension reduction We study whether using PCA to reduce dimensionality of features would hurt
performance. We set the reduced dimension to 1000, 2000, 3000 and measure the performance of four methods:
PDML, MDML, PDML-VND, PDML-CVND. Table 6 shows the mean AUC on all classes of the MIMIC
dataset. As can be seen, the AUCs under different dimensions have no significant difference, suggesting that
1000 dimensions are enough to retain the information of data.
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