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Abstract

Distance metric learning (DML), which learns
a distance metric from labeled “similar” and
“dissimilar” data pairs, is widely utilized. Re-
cently, several works investigate orthogonality-
promoting regularization (OPR), which encour-
ages the projection vectors in DML to be close
to being orthogonal, to achieve three effects:
(1) high balancedness — achieving compara-
ble performance on both frequent and infre-
quent classes; (2) high compactness — using a
small number of projection vectors to achieve a
“good” metric; (3) good generalizability — allevi-
ating overfitting to training data. While show-
ing promising results, these approaches suffer
three problems. First, they involve solving non-
convex optimization problems where achieving
the global optimal is NP-hard. Second, it lacks
a theoretical understanding why OPR can lead
to balancedness. Third, the current generaliza-
tion error analysis of OPR is not directly on the
regularizer. In this paper, we address these three
issues by (1) seeking convex relaxations of the
original nonconvex problems so that the global
optimal is guaranteed to be achievable; (2) pro-
viding a formal analysis on OPR’s capability of
promoting balancedness; (3) providing a theoret-
ical analysis that directly reveals the relationship
between OPR and generalization performance.
Experiments on various datasets demonstrate that
our convex methods are more effective in pro-
moting balancedness, compactness, and general-
ization, and are computationally more efficient,
compared with the nonconvex methods.
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1. Introduction

Given data pairs labeled as either “similar” or “dissimilar”,
distance metric learning (Xing et al., 2002; Weinberger
et al., 2005; Davis et al., 2007) learns a distance mea-
sure in such a way that similar examples are placed close
to each other while dissimilar ones are separated apart.
The learned distance metrics are important to many down-
stream tasks, such as retrieval (Chen et al., 2017), classifi-
cation (Weinberger et al., 2005) and clustering (Xing et al.,
2002). One commonly used distance metric between two
examples x,y € RP is: ||Ax — Ay||2 (Weinberger et al.,
2005; Xie, 2015; Chen et al., 2017), which is parameterized
by R projection vectors (in A € RF* D),

Many works (Wang et al., 2012; Xie, 2015; Wang et al.,
2015; Raziperchikolaei & Carreira-Perpindn, 2016; Chen
et al., 2017) have proposed orthogonality-promoting DML
to learn distance metrics that are (1) balanced: performing
equally well on data instances belonging to frequent and in-
frequent classes; (2) compact: using a small number of pro-
jection vectors to achieve a “good” metric, (i.e., capturing
well the relative distances of the data pairs); (3) generaliz-
able: reducing the overfitting to training data. Regarding
balancedness, under many circumstances, the frequency
of classes, defined as the number of examples belonging
to each class, can be highly imbalanced. Classic DML
methods are sensitive to the skewness of the frequency
of the classes: they perform favorably on frequent classes
whereas less well on infrequent classes — a phenomenon
also confirmed in our experiments in Section 7. However,
infrequent classes are of crucial importance in many ap-
plications, and should not be ignored. For example, in a
clinical setting, many diseases occur infrequently, but are
life-threatening. Regarding compactness, the number of
the projection vectors R entails a tradeoff between per-
formance and computational complexity (Ge et al., 2014b;
Xie, 2015; Raziperchikolaei & Carreira-Perpindn, 2016).
On one hand, more projection vectors bring in more ex-
pressiveness in measuring distance. On the other hand, a
larger R incurs a higher computational overhead since the
number of weight parameters in A grows linearly with R.
It is therefore desirable to keep R small without hurting
much ML performance. Regarding generalization perfor-
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mance, in the case where the sample size is small but the
size of A is large, overfitting can easily happen.

To address these three issues, many studies (Wang et al.,
2012; 2015; Xie, 2015; Carreira-Perpindn & Raziper-
chikolaei, 2016; Chen et al., 2017) propose to regular-
ize the projection vectors to be close to being orthogonal.
For balancedness, they argue that, without orthogonality-
promoting regularization (OPR), the majority of projec-
tion vectors learn latent features for frequent classes since
these classes have dominant signals in the dataset; through
OPR, the projection vectors uniformly “spread out”, giv-
ing both infrequent and frequent classes a fair treatment
and thus leading to a more balanced distance metric (see
(Xie et al., 2017) for details). For compactness, they claim
that: “diversified” projection vectors bear less redundancy
and are mutually complementary; as a result, a small num-
ber of such vectors are sufficient to achieve a “good” dis-
tance metric. For generalization performance, they posit
that OPR imposes a structured constraint on the function
class of DML, hence reduces model complexity.

While these orthogonality-promoting DML methods have
shown promising results, they have three problems. First,
they involve solving non-convex optimization problems
where the global solution is extremely difficult, if not im-
possible, to obtain. Second, no formal analysis is con-
ducted regarding why OPR can promote balancedness.
Third, while the generalization error (GE) analysis of OPR
has been studied in (Xie et al., 2017), it is incomplete. In
this analysis, they first show that the upper bound of GE is
a function of cosine similarity (CS), then show that CS and
the regularizer are somewhat aligned in shape. They did
not establish a direct relationship between the GE bound
and the regularizer.

In this paper, we aim at addressing these problems by mak-
ing the following contributions:

e We relax the nonconvex, orthogonality-promoting DML
problems into convex problems and develop efficient
proximal gradient descent algorithms. The algorithms
only run once with a single initialization, and hence are
much more efficient than existing non-convex methods.

e We perform theoretical analysis which formally re-
veals the relationship between OPR and balancedness:
stronger OPR leads to more balancedness.

e We perform generalization error (GE) analysis which
shows that reducing the convex orthogonality-promoting
regularizers can reduce the upper bound of GE.

e We apply the learned distance metrics for information
retrieval to healthcare, texts, images, and sensory data.
Compared with non-convex baseline methods, our ap-
proaches achieve higher computational efficiency and
are more capable of improving balancedness, compact-
ness and generalizability.

2. Related Works

Many studies (Xing et al., 2002; Weinberger et al., 2005;
Davis et al., 2007; Guillaumin et al., 2009; Ying & Li,
2012; Kostinger et al., 2012; Zadeh et al., 2016) have
investigated DML (for a detailed review, please refer to
the supplements and (Kulis et al., 2013; Wang & Sun,
2015)). To avoid overfitting in DML, various regulariza-
tion approaches have been explored, which include KL-
divergence (Davis et al., 2007), £1; norm, trace norm (Niu
et al., 2012; Liu et al., 2015), and dropout (Qian et al.,
2014). Many works (Liu et al., 2008; Weiss et al., 2009;
Kong & Li, 2012; Wang et al., 2012; Gong et al., 2013;
Fu et al,, 2014; Ge et al., 2014bsa; Ji et al., 2014; Wang
et al., 2015; Xie, 2015; Carreira-Perpinan & Raziperchiko-
laei, 2016; Raziperchikolaei & Carreira-Perpindn, 2016;
Yao et al., 2016; Chen et al., 2017) study orthogonality-
promoting regularization in the context of DML or hash-
ing. They define regularizers based on squared Frobenius
norm (Wang et al., 2012; Fu et al., 2014; Ge et al., 2014b;
Chen et al., 2017) or angles (Xie, 2015; Yao et al., 2016) to
encourage the projection vectors to approach orthogonal.

3. Preliminaries

We review a DML method (Xie et al., 2017) that uses
BMD (Kulis et al., 2009) to promote orthogonality.
Distance Metric Learning Given data pairs labeled ei-
ther as “similar” & = {(xi,yi)}i‘i‘l or “dissimilar” D =
{(xi, yi)}gll, DML (Xing et al., 2002; Weinberger et al.,
2005; Davis et al., 2007) aims to learn a distance metric un-
der which similar examples are close to each other and dis-
similar ones are separated far apart. There are many ways
to define a distance metric. Here, we present two popu-
lar choices. One is based on linear projection (Weinberger
et al., 2005; Xie, 2015; Chen et al., 2017). Given two ex-
amples x,y € RP, a linear projection matrix A € R**P
can be utilized to map them into a R-dimensional latent
space. The distance metric is then defined as their squared
Euclidean distance in the latent space: |Ax — Ayl|3.
A can be learned by minimizing (Xing et al., 2002):
ﬁ Z(x7y)€S |Ax — Ay]|3 + \%I Z(x,y)ED max (0,7 —
|[Ax — Ay]||3), which aims at making the distances be-
tween similar examples as small as possible while sepa-
rating dissimilar examples with a margin 7 using a hinge
loss. We call this formulation as projection matrix-based
DML (PDML). PDML is a non-convex problem where the
global optimal is difficult to achieve. Moreover, one needs
to manually tune the number of projection vectors, typi-
cally via cross-validation, which incurs substantial compu-
tational overhead.

The other popular choice of distance metric is (x —
y) TM(x — y), which is cast from ||Ax — Ay]||2 by re-
placing AT A with a positive semidefinite (PSD) matrix
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M. This is known as the Mahalanobis distance (Xing
et al., 2002). Correspondingly, the PDML formulation can
be transformed into a Mahalanobis distance-based DML
(MDML) problem: minnso Fll Z(x,y)es(X_Y)TM(X_

y)+ \%I Z(x,y)GD max (0,7 — (x—y) "M(x—y)). which
is a convex problem where the global solution is guaranteed
to be achievable. It also avoids tuning the number of pro-
jection vectors. However, the drawback of this approach is
that, in order to satisfy the PSD constraint, one needs to per-
form eigen-decomposition of M in each iteration, which
incurs O(D?) complexity.

Orthogonality-Promoting Regularization Among the
various orthogonality-promoting regularizers, we choose
the BMD (Kulis et al., 2009) regularizer (Xie et al., 2017)
in this study since it is amenable for convex relaxation and
facilitates theoretical analysis.

To encourage orthogonality between two vectors a; and a,
one can make their inner product a; a; close to zero and
their ¢, norm |[|a;||2, ||a;||2 close to one. For a set of vec-
tors {a;}f2 |, their near-orthogonality can be achieved by
computing the Gram matrix G where G;; = a, a;, then
encouraging G to be close to an identity matrix. Off the di-
agonal of G and I are a; a; and zero, respectively. On the
diagonal of G and I are ||a;||3 and one, respectively. Mak-
ing G close to I effectively encourages a; a; to be close to
zero and ||a;||2 close to one, which therefore encourages a;
and a; to be close to orthogonal.

BMDs can be used to measure the “closeness” between
two matrices. Let S™ denote real symmetric n X n ma-
trices. Given a strictly convex, differentiable function

S" — R, a BMD is defined as I'y(X,Y) =
$(X) — $(Y) —tr((V6(Y)) T (X — Y)), where tr(A) de-
notes the trace of matrix A. Different choices of ¢(X)
lead to different divergences. When ¢(X) = ||X||%, the
BMD is specialized to the squared Frobenius norm (SFN)
X —Y|%. If p(X) = tr(X log X — X), where log X de-
notes the matrix logarithm of X, the divergence becomes
Tpna(X,Y) = tr(XlogX — XlogY — X +Y), which
is referred to as von Neumann divergence (VND) (Tsuda
et al., 2005). If ¢(X) = —logdet X where det(X) de-
notes the determinant of X, we get the log-determinant
divergence (LDD) (Kulis et al., 2009): T44(X,Y) =
tr(XY 1) — logdet(XY ') — n.

In PDML, to encourage orthogonality among the projection
vectors (row vectors in A), Xie et al. (2017) define a family
of regularizers Q4(A) = I'y(AA",T) which encourage
the BMD between the Gram matrix AA " and an identity
matrix I to be small. Q4(A) can be specialized to differ-
ent instances, based on the choices of I'y(-, -). Under SFEN,
Q4(A) becomes Qg (A) = [|AAT —T||%, which is used
in (Wang et al., 2012; Fu et al., 2014; Ge et al., 2014b; Chen
etal., 2017) to promote orthogonality. Under VND, Q4 (A)

becomes Qynq(A) = tr(AA log(AAT) — AAT) + R.
Under LDD, Q4(A) becomes Q4q(A) = tr(AAT) —
logdet(AAT) — R.

4. Convex Relaxation

The PDML-BMD problem is non-convex, where the global
optimal solution of A is very difficult to achieve. We seek
a convex relaxation and solve the relaxed problem instead.
The basic idea is to transform PDML into MDML and ap-
proximate the BMD regularizers with convex functions.

4.1. Convex Approximations of the BMD Regularizers

The approximations are based on the properties of eigen-
values. Given a full-rank matrix A € RE*P (R < D), we
know that AA T € R™*% i a full-rank matrix with R posi-
tive eigenvalues Ay, --- , Az and AT A € RP*P is a rank-
deficient matrix with D — R zero eigenvalues and R pos-
itive eigenvalues that equal to Ay, --- ,Ag. For a general
positive definite matrix Z € RE®*® whose eigenvalues are
Mo we have | ZF = Y o7, (Z) = 5L
and logdetZ = Zf‘:l log ;. Next, we leverage these
facts to seek convex relaxations of the BMD regularizers.
A convex SFN regularizer The eigenvalues of AAT —
Ipare Ay —1,--- ,Ar — 1 and those of ATA — I are
A—1,--- Ag—1,—-1,--- ,—1.Then |[ATA ~Ip|J% =
S =)+ Eilg (1) = [AAT — Tl +
D — R. Therefore, the SFN regularizer |AAT — Ix|%
equalsto [ATA —Ip||2 —D+R=|M-1Ip|%2-D+
R, where M = AT A is a Mahalanobis matrix and R =
rank(AT A) = rank(M). It is well-known that the trace
norm of a matrix is a convex envelope of its rank (Srebro &
Shraibman, 2005). We use tr(IM) to approximate rank (M)
and get [AAT — Iz||% ~ |M — Ip|% + (M) — D,
where the right hand side is a convex function. Dropping
the constant, we get the convex SFN (CSFN) regularizer
defined over M:

Qo (M) = [M — Ip|% + tr(M) (1)

A convex VND regularizer Given the -eigen-
decomposition AAT = UAUT where the eigenvalue A ;;
equals to \;, based on the property of the matrix logarithm,
we have log(AAT) = UAUT where A;; = logA;;.
Then (AAT)log(AAT) — (AAT) = UAA — A)UT,
where the eigenvalues are {\;logA; — X;}/,. Then
Quna(A) = Zf:1(/\j logA\; — )\j) + R. Now we
consider a matrix ATA + eIp, where ¢ > 0 is
a small scalar. Using similar calculation, we have
Tona(ATA + €lp,Ip) = Zf:l((/\j + €)log(A; +
€) — (A\j +¢€) + (D — R)(eloge — €) + D. Per-
forming certain algebra (see supplements), we get
Qunda(A) = Tyna(ATA + €lp,Ip) + R — D. Replacing
AT A with M, approximating R with tr(M) and dropping



Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis

constant D, we get the convex VND (CVND) regularizer:

ﬁvnd(M) = Fvnd(M + €IDa ID) + tI'(M) (2)
x  tr(M+€elp)log(M + €eIp))

whose convexity is shown in (Nielsen & Chuang, 2000).

A convex LDD regularizer We have Q44(A) =
S A=Y logAj— Rand Tyqa (AT A+elp,Ip) =
Zf‘:l Aj+De—(D—R)log E—Zf’:l log(\;+e€). Certain
algebra shows that Q144(A) ~ T194(ATA + elp,Ip) —
(1 + loge)R + Dloge. After replacing AT A with M,
approximating R with tr(IM) and discarding constants, we
obtain the convex LDD (CLDD) regularizer:

Qldd(M) = Fldd(M + elp, ID) - (1 + log e)tr(M)
o< —logdet(M + €Ip) + (log 1)tr(M)

3)
where the convexity of logdet(M+€Ip) is proved in (Boyd
& Vandenberghe, 2004). Note that in (Davis et al., 2007; Qi
et al., 2009), an information theoretic regularizer based on
log-determinant divergence I';434(M, I) = —logdet(M) +
tr(M) is applied to encourage the Mahalanobis matrix to be
close to the identity matrix. This regularizer requires M to
be full rank; in contrast, by associating a large weight log %
to the trace norm tr(M), our CLDD regularizer encourages
M to be low-rank. Since M = ATA, reducing the rank of
M reduces the number of projection vectors in A.

We discuss the errors in convex approximation, which are
from two sources: one is the approximation of 4(A) us-
ing Ty (AT A +€lp,Ip) where the error is controlled by €
and can be arbitrarily small (by setting € to be very small);
the other is the approximation of the matrix rank using the
trace norm. Though the error of the second approxima-
tion can be large, it has been both empirically and theoreti-
cally (Candes & Recht, 2012) demonstrated that decreasing
the trace norm can effectively reduce rank. We empirically
verify that decreasing the convexified CSFN, CVND and
CLDD regularizers can decrease the original non-convex
counterparts SFN, VND and LDD (see supplements). A
rigorous analysis is left for future study.

4.2. DML with a Convex BMD Regularization

Givgn these convex BMD (CBMD) regularizers (denoted
by Q4(M)), we relax the non-convex PDML-BMD prob-
lems into convex MDML-CBMD formulations by replac-
ing ||[Ax — Ayl with (x — y) "M(x — y) and replacing
the non-convex BMD regularizers 24 (A) with SAZ¢(M):

(x—y) TM(x — y) + 7(M)

)eS
> max(0,7 — (x —y) 'M(x ~y))
(x,y)€D

“4)

. 1
minng>o @
1(x,y
101

5. Optimization

We use stochastic proximal subgradient descent algo-
rithm (Parikh & Boyd, 2014) to solve the MDML-CBMD
problems. The algorithm iteratively performs the follow-
ing steps until convergence: (1) randomly sampling a mini-
batch of data pairs, computing the subgradient AM of the
data-dependent loss (the first and second term in the objec-
tive function) defined on the mini-batch, then performing
a subgradient descent update: M=M-— n A M, where
7 is a small stepsize; and (2) applying proximal operators
associated with the regularizers €2,(M) to M. The gra-
dient of the CVND regularizer is log(M + elIp) + Ip.
To compute log(M + €Ip), we first perform an eigen-
decomposition: M + eI, = UAUT, then take the log
of every eigenvalue in A which gets us a new diagonal ma-
trix A, and finally compute log(M + eIp) as UAU . In
the CLDD regularizer, the gradient of logdet(M + €Ip)
is (M + eIp)~?, which can also be computed by eigen-
decomposition. Next, we present the proximal operators.

5.1. Proximal Operators

Given the regularizer ﬁd,(M), the associated proxi-
mal operator prox(M) is defined as: prox(M) =
argminyy 5> [[M — M| + 74(M), subject to M = 0.

Let {\;}2, be the eigenvalues of M and {z, }12 1 be the
eigenvalues of M, then the above problem can be equiva-
lently written as:

ming, 3o gy S (5 = A+ 0 ()
s.t. Vi =
(&)
where h(z;) is a regularizer-specific scalar function. This
problem can be decomposed into D independent ones: (P)
min,; f(x;) = %(ﬁj—j\j)z‘f"yh(b(l'j), subjectto z; > 0,
for j =1,---, D, which can be solved individually.

SFN  For SFN where Q4(M) = |[M — Ip||% + tr(M)
and hsf () = (z; — 1)? + x;, the problem (P) is simply
a quadratic programming problem. The optimal solution is

* gy
z; =max(0, 5)

VND For VND where §¢(M) =tr(M-+elp)log(M+
elp)) and hy(z;) = (x; + €)log(xz; + €), by taking
the derivative of the objective function f(z;) in prob-
lem (P) w.r.t z; and setting the derivative to zero, we get
nylog(z; + €) 4+ x; + 1y — A; = 0. The root of this

equation is: nyw(%jk’ — log(ny)) — €, where w(-) is

the Wright omega function (Gorenflo et al., 2007). If this
root is negative, then the optimal z; is O; if this root is
positive, then the optimal z; could be either this root or 0.
We pick the one that yields the lowest f(z;). Formally,

(e—n’y+>\] _
ny

zj = argmin,  f(z;), where z € {max(nyw

1Og<77'7)) -6 0)’ 0}'
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LDD For LDD where €,(M) = —logdet(M + €l ) +
(log 1)tr(M) and hy(z;) = —log(z; + €) + zjlog i,
by taking the derivative of f(x;) w.r.t 2; and setting the
derivative to zero, we get a quadratic equation: x? +ax;+
b =0, wherea = ¢ — :\j — nyloge and ny(1 — eloge).
The optimal solution is achieved either at the positive roots
(if any) of this equation or 0. We pick the one that yields
the lowest f(x;). Formally, z7 = argmin, f(x;), where
x € {max(i_HW,O),max(i_b_W, 0),0}.

Computational Complexity In this algorithm, the major
computation workload is eigen-decomposion of D-by-D
matrices, with a complexity of O(D?). In our experiments,
since D is no more than 1000, O(D?) is not a big bot-
tleneck. Besides, these matrices are symmetric, the struc-
tures of which can thus be leveraged to speed up eigen-
decomposition. In implementation, we use the MAGMA'
library that supports the efficient eigen-decomposition of
symmetric matrices on GPU. Note that the unregularized
MDML also requires the eigen-decomposition (of M),
hence adding these CBMD regularizes does not substan-
tially increase additional computation cost.

6. Theoretical Analysis

In this section, we present theoretical analysis of balanced-
ness and generalization error.

6.1. Analysis of Balancedness

In this section, we analyze how the nonconvex BMD regu-
larizers that promote orthogonality affect the balancedness
of the distance metrics learned by PDML-BMD?. Specifi-
cally, the analysis focuses on the following projection ma-
trix: A* = argminp E&D[Fll > (xy)es |[Ax—Ay|3+
B Y eyyep max(0,7 — [Ax — Ay|3) + 10 (A)]. We
assume there are K classes, where class k has a distribu-
tion py, and the corresponding expectation is p,. Each data
sample in S and D is drawn from the distribution of one
specific class. We define £, = Ex~p, [SUD|jy(,=1 vT(x—
)| and & = maxy &. Further, we assume A* has full
rank R (which is the number of the projection vectors), and
let UAUT denote the eigen-decomposition of A*A* T,
where A = diag(A1, Ag, - Ag) with Ay > Ao > -+ >
AR.

We define an imbalance factor (IF) to measure the
(im)balancedness. For each class k, we use the correspond-
ing expectation g, to characterize this class. We define
the Mahalanobis distance between two classes j and & as:
djx = (pj; — py) T A*TA*(p; — py). We define the IF

'http://icl.cs.utk.edu/magma/
2The analysis of convex BMD regularizers in MDML-CBMD
will be left for future work.

among all classes as:

p = Dk ik (©6)
N £k dj k

The motivation of such a definition is: for two frequent
classes, since they have more training examples and hence
contributing more in learning A*, DML intends to make
their distance d;;, large; whereas for two infrequent classes,
since they contribute less in learning (and DML is con-
strained by similar pairs which need to have small dis-
tances), their distance may end up being small. Conse-
quently, if classes are imbalanced, some between-class dis-
tances can be large while others small, resulting in a large
IF. The following theorem shows the upper bounds of IF.

Theorem 1 Let C denote the ratio between max ;|| pt; —
|3 and ming || p; — pl|3 and assume max; . ||p; —
pillz < Bo. Suppose the regularization parameter vy
and distance margin T are sufficiently large: v > 7y
and T > 719, where o and 1o depend on {py}E_,
and {p . If R > K —1and &€ < (=B +
/B2 + Ak —1Bx—1/(2tr(A)) /4, then we have the follow-
ing bounds for the IF>.

o For the VND regularizer Qypna(A*), if Quna(A*) < 1,

the following bound of the IF n holds:

1< Cyg(Qyna(A7))

where g(-) is an increasing function defined in the fol-
lowing way. Let f(c) = c'/(¢tO(1 + 1/c), which is
strictly increasing on (0,1] and strictly decreasing on
[1,00) and let f~1(c) be the inverse function of f(c) on
[1,00), then g(c) = f~1(2 —¢) forc < 1.

e For the LDD regularizer Qqq4(A*), we have

n < 4C ftaa(AT)

As can be seen, the bounds are increasing functions of the
BMD regularizers ,,4(A*) and ;44(A*). Decreasing
these regularizers would reduce the upper bounds of the
imbalance factor, hence leading to more balancedness. For
SFN, such a bound cannot be derived.

6.2. Analysis of Generalization Error

In this section, we analyze how the convex BMD regu-
larizers affect the generalization error in MDML-CBMD
problems. Following (Verma & Branson, 2015), we use
distance-based error to measure the quality of a Maha-
lanobis distance matrix M. Given the sample S and D
where the total number of data pairs is m = |S| + | D|, the
empirical error is defined as L(M) = IS% D eyres (X —

3Please refer to the supplements for the definition of Sx _1
and the detailed proof.
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y)TM(xfy)Jrﬁ > (x.y)eD max(0,7—(x—y)  M(x—
y)) and the expected error is L(M) = ES,D[E(M)]. Let
M* be optimal matrix learned by minimizing the empir-
ical error: M* = argminMZ(M). We are interested in
how well M* performs on unseen data. The performance
is measured using generalization error: £ = L(ﬁ*) -
E(ﬁ*) To incorporate the impact of the CBMD regular-
izers 24(M), we define the hypothesis class of M to be
M={M = 0: QM) < C}. The upper bound C
controls the strength of regularization. A smaller C entails
stronger promotion of orthogonality. C'is controlled by the
regularization parameter v in Eq.(4). Increasing v reduces
C. For different CBMD regularizers, we have the follow-
ing generalization error bound.

Theorem 2 Suppose sup|y |, <1 (xy)es |V (x—=¥)| < B,
then with probability at least 1 — 6, we have:

e For the CVND regularizer,
€ < (4B%C + max(t, B2C)+/2 log(l/é))\/%.

e For the CLDD regularizer,

2 —De
£< (% + max(, %)\/QIOg(l/é))\;ﬁ.

e For the CSFN regularizer,

£ < (2B?min(20C, V) + max(r, C)\/Qlog(l/d))ﬁ.

From these generalization error bounds (GEBs), we can
see two major implications. First, CBMD regularizers can
effectively control the GEBs. Increasing the strength of
CBMD regularization (by enlarging ) reduces C, which
decreases the GEBs since they are all increasing functions
of C. Second, the GEBs converge with rate O(1/y/m),
where m is the number of training data pairs. This rate
matches with that in (Bellet & Habrard, 2015; Verma &
Branson, 2015).

7. Experiments

Datasets We used 7 datasets in the experiments:
two electronic health record datasets MIMIC (version
IIT) (Johnson et al., 2016) and EICU (version 1.1) (Gold-
berger et al., 2000); two text datasets Reuters* and 20-
Newsgroups (News)’; two image datasets Stanford-Cars
(Cars) (Krause et al., 2013) and Caltech-UCSD-Birds
(Birds) (Welinder et al., 2010); and one sensory dataset 6-
Activities (Act) (Anguita et al., 2012). The class labels in
MIMIC and EICU are the primary diagnoses of patients. In

‘nttp://www.daviddlewis.com/resources/
testcollections/reuters21578/
*http://qwone.com/~jason/20Newsgroups/

Reuters, documents belong to more than one classes are re-
moved. Since there is no standard split of the training/test
set, we perform five random splits and average the results
of the five runs. The details of the datasets and feature ex-
traction are deferred to the supplements.

Experimental Settings Two examples are considered as
similar if they belong to the same class and dissimilar if
otherwise. The learned distance metrics are applied for
retrieval (using each test example to query the rest of the
test examples) whose performance is evaluated using the
Area Under precision-recall Curve (AUC) (Manning et al.,
2008). We apply the proposed convex regularizers CSEN,
CVND, CLDD to MDML. We compare them with two sets
of baseline regularizers. The first set aims at promoting or-
thogonality, which are based on determinant of covariance
(DC) (Malkin & Bilmes, 2008), cosine similarity (CS) (Yu
et al., 2011), determinantal point process (DPP) (Kulesza
et al., 2012; Zou & Adams, 2012), InCoherence (IC) (Bao
et al., 2013), variational Gram function (VGF) (Zhou et al.,
2011; Jalali et al., 2015), decorrelation (DeC) (Cogswell
etal., 2015), mutual angles (MA) (Xie et al., 2015), squared
Frobenius norm (SFN) (Wang et al., 2012; Fu et al., 2014;
Ge et al., 2014b; Chen et al., 2017), von Neumann di-
vergence (VND) (Xie et al., 2017), log-determinant diver-
gence (LDD) (Xie et al., 2017), and orthogonal constraint
(OC) AA" = I (Liu et al., 2008; Wang et al., 2015).
All these regularizers are applied to PDML. The other set
of regularizers are not designed particularly for promoting
orthogonality but are commonly used, including ¢ norm,
¢; norm (Qi et al., 2009), £2 1 norm (Ying et al., 2009),
trace norm (Tr) (Liu et al., 2015), information theoretic
(IT) regularizer —logdet(M) + tr(M) (Davis et al., 2007),
and Dropout (Drop) (Srivastava et al., 2014). All these
regularizers are applied to MDML. We compare with a
common approach for dealing with class-imbalance: over-
sampling (OS) (Galar et al., 2012). In addition, we compare
with other DML methods including LMNN (Weinberger
et al., 2005), ITML (Davis et al., 2007), LDML (Guil-
laumin et al., 2009), MLEC (Kostinger et al., 2012),
GMML (Zadeh et al., 2016), and ILHD (Carreira-Perpindn
& Raziperchikolaei, 2016).

Results The training time taken by different methods to
reach convergence is shown in Table 2. For the non-convex,
PDML-based methods, we report the total time taken by the
following computation: tuning the regularization parame-
ter (4 choices) and the number of projection vectors (NPVs,
6 choices) on a two-dimensional grid via 3-fold cross val-
idation (4 x 6 x 3 = 72 experiments in total); for each of
the 72 experiments, the algorithm restarts 5 times®, each

®Our experiments show that for non-convex methods, multiple
re-starts are of great necessity to improve performance. For ex-
ample, for PDML-VND on MIMIC with 100 projection vectors,
the AUC is non-decreasing with the number of re-starts: the AUC
after 1, 2, ..., 5 re-starts are 0.651, 0.651, 0.658, 0.667, 0.667.
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Table 1. On the three imbalanced datasets — MIMIC, EICU, Reuters, we show the mean AUC (averaged on 5 random train/test splits) on
all classes (A-All) and infrequent classes (A-IF) and the balance score. On the rest 4 balanced datasets, A-All is shown. The AUC on

frequent classes and the standard errors are in the supplements.

MIMIC EICU Reuters News Cars Birds Act

A-All A-IF BS A-All A-IF A-All A-IF BS A-All | A-All | A-All | A-All
PDML 0.634  0.608 0.070 | 0.671 0.637 0.077 | 0949 0916 0.049 0.757 0.714 | 0.851 0.949
MDML 0.641 0.617  0.064 | 0.677 0.652  0.055 0952 0929 0.034 0.769 0.722 | 0.855 0.952
LMNN 0.628  0.609 0.054 | 0.662 0.633 0.066 | 0943 0913 0.040 0.731 0.728 0.832 0.912
LDML 0.619  0.594 0.068 | 0.667 0.647 0.046 | 0934 0906 0.042 0.748 0.706 | 0.847 0.937
MLEC 0.621 0.605  0.045 0.679  0.656  0.053 0927 0916  0.021 0.761 0.725 0.814 0.917
GMML 0.607  0.588  0.053 0.668  0.648  0.045 0.931 0.905  0.035 0.738 0.707 0.817 0.925
ILHD 0.577  0.560  0.051 0.637 0.610 0.064 | 0.905 0.893  0.028 0.711 0.686 | 0.793 0.898
MDML-¢o 0.648  0.627  0.055 0.695 0.676  0.042 | 0.955 0930 0.037 0.774 0.728 0.872 0.958
MDML-¢; 0.643  0.615 0.074 | 0.701 0.677  0.053 0953 0948 0.020 0.791 0.725 0.868 0.961
MDML-£3 1 0.646  0.630  0.043 0.703  0.661 0.091 0963 0936  0.035 0.783 0.728 0.861 0.964
MDML-Tr 0.659 0.642  0.044 | 0.696 0.673  0.051 0.961 0.934  0.036 0.785 0.731 0.875 0.955
MDML-IT 0.653 0.626  0.070 | 0.692  0.668  0.053 0954 0920 0.046 0.771 0.724 | 0.858 0.967
MDML-Drop 0.647  0.630  0.045 0.701 0.670  0.067 | 0959 0937 0.032 0.787 0.729 0.864 0.962
MDML-0S 0.649  0.626 0.059 | 0.689  0.679  0.045 0.957 0938 0.031 0.779 0.732 | 0.869 0.963
PDML-DC 0.652  0.639  0.035 0.706  0.686  0.044 | 0.962 0.943  0.034 0.773 0.736 | 0.882 0.964
PDML-CS 0.661 0.641 0.053 0.712  0.670 0.089 | 0.967 0.954  0.020 0.803 0.742 | 0.895 0.971
PDML-DPP 0.659 0.632 0.069 | 0.714  0.695  0.041 0958 0937 0.036 0.797 0.751 0.891 0.969
PDML-IC 0.660 0.642  0.047 | 0.711 0.685  0.057 | 0972 0954  0.030 0.801 0.740 | 0.887 0.967
PDML-DeC 0.648  0.625 0.063 0.698 0.675 0.050 | 0.965 0.960 0.017 0.786 0.728 0.860 0.958
PDML-VGF 0.657 0.634 0.059 | 0.718 0.697 0.045 0974 0952  0.036 0.806 0.747 0.894 0.974
PDML-MA 0.659  0.644  0.040 | 0.721 0.703  0.038 | 0975 0959 0.024 0.815 0.743 0.898 0.968
PDML-OC 0.651 0.636  0.041 0.705  0.685  0.043 0.955  0.931 0.036 0.779 0.727 0.875 0.956
PDML-0OS 0.639  0.614  0.067 | 0.675  0.641 0.072 | 0.951 0.928  0.038 0.764 0.716 | 0.855 0.950
PDML-SFN 0.662  0.642  0.051 0.724  0.701 0.045 0973 0947  0.038 0.808 0.749 0.896 0.970
PDML-VND 0.667 0.655 0.032 | 0.733 0.706 0.057 | 0976 0.971 0.012 0.814 0.754 | 0.902 0.972
PDML-LDD 0.664  0.651 0.035 0.731 0.711 0.043 0973 0964  0.017 0.816 0.751 0.904 0.971
MDML-CSFN 0.668  0.653 0.039 | 0.728 0.705 0.049 | 0978 0968  0.023 0.813 0.753 0.905 0.972
MDML-CVND 0.672  0.664 0.022 | 0.735 0.718 0.035 | 0984 0982 0.012 0.822 0.755 0.908 0.973
MDML-CLDD 0.669  0.658 0.029 | 0.739 0.719 0.042 | 0.981 0.980  0.011 0.819 0.759 | 0.913 0.971

Table 2. Training time (hours) on seven datasets. The training

time of other baseline methods are deferred to the supplements.
MIMIC EICU Reuters News Cars Birds Act

PDML 62.1 66.6 52 11.0 8.4 10.1 34
MDML 3.4 3.7 0.3 0.6 0.5 0.6 0.2
PDML-DC 424.7 499.2 35.2 65.6 61.8 66.2 17.2
PDML-CS 263.2 284.8 22.6 472 34.5 42.8 14.4
PDML-DPP 411.8 479.1 36.9 61.9 64.2 70.5 16.5
PDML-IC 265.9 281.2 23.4 46.1 37.5 452 15.3
PDML-DeC 458.5 497.5 41.8 78.2 78.9 80.7 19.9
PDML-VGF 267.3 284.1 223 489 35.8 38.7 15.4
PDML-MA 2714 282.9 23.6 50.2 30.9 39.6 17.5
PDML-OC 104.9 1182 9.6 143 14.8 17.0 39
PDML-SEN 261.7 271.6 229 46.3 36.2 382 159
PDML-VND 401.8 488.3 33.8 62.5 67.5 73.4 17.1
PDML-LDD 407.5 483.5 343 60.1 61.8 72.6 17.9
MDML-CSEN 41.1 439 33 73 6.5 6.9 1.8
MDML-CVND 438 46.2 3.6 8.1 6.9 7.8 2.0
MDML-CLDD 41.7 44.5 34 7.5 6.6 72 1.8

with a different initialization, and picks the one yielding
the lowest objective value. In total, the number of runs is
72 x 5 = 360. For the MDML-based methods, there is no
need to restart multiple times or tune the NPVs. The total
number of runs is 4 X 3 = 12. As can be seen from the
table, the proposed convex methods are much faster than
the non-convex ones, due to the greatly reduced number
of experimental runs, although for each single run the con-
vex methods are less efficient than the non-convex methods
due to the overhead of eigen-decomposition. The unregu-
larized MDML takes the least time to train since it has no
parameters to tune and runs only once. On average, the
time of each single run in MDML-(CSFN,CVND,CLDD)
is close to that in the unregularized MDML, since an eigen-
decomposition is required anyway regardless of the pres-

ence of the regularizers.

Next, we verify whether CSFN, CVND and CLDD are
able to learn more balanced distance metrics. On three
datasets MIMIC, EICU and Reuters where the classes are
imbalanced, we consider a class as “frequent” if it con-
tains more than 1000 examples, and “infrequent” if oth-
erwise. We measure AUCs on all classes (A-All), infre-
quent classes (A-IF) and frequent classes (A-F), then de-
fine a balance score (BS) as % — 1]. A smaller BS indi-
cates more balancedness. As shown in Table 1, MDML-
(CSFN,CVND,CLDD) achieve the highest A-All on 6
datasets and the highest A-IF on all 3 imbalanced datasets.
In terms of BS, our convex methods outperform all baseline
DML methods. These results demonstrate our methods can
learn more balanced metrics. By encouraging the projec-
tion vectors to be close to being orthogonal, our methods
can reduce the redundancy among vectors. Mutually com-
plementary vectors can achieve a broader coverage of latent
features, including those associated with infrequent classes.
As a result, these vectors improve the performance on in-
frequent classes and lead to better balancedness. Thanks to
their convexity nature, our methods can achieve the global
optimal solution and outperform the non-convex ones that
can only achieve a local optimal and hence a sub-optimal
solution. Comparing (PDML,MDML)-OS with the unreg-
ularized PDLM/MDML, we can see that over-sampling
indeed improves balancedness. However, this improve-
ment is less significant than that achieved by our meth-
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Table 3. Number of projection vectors (NPV) and compactness score (CS,x1073).

MIMIC EICU Reuters News Cars Birds Act
NPV CS NPV CS NPV CS NPV CS NPV CS NPV CS NPV CS
PDML 300 2.1 400 1.7 300 32 300 2.5 300 24 500 1.7 200 4.7
MDML 247 2.6 318 2.1 406 2.3 336 2.3 376 1.9 411 2.1 168 5.7
LMNN 200 3.1 400 1.7 400 2.4 300 2.4 400 1.8 500 1.7 300 3.0
LDML 300 2.1 400 1.7 400 2.3 200 3.7 300 24 400 2.1 300 3.1
MLEC 487 1.3 493 14 276 34 549 14 624 1.2 438 1.9 327 2.8
GMML 1000 0.6 1000 0.7 1000 0.9 1000 0.7 1000 0.7 1000 0.8 1000 0.9
ILHD 100 5.8 100 6.4 50 18.1 100 7.1 100 6.9 100 7.9 50 18.0
MDML-£o 269 2.4 369 1.9 374 2.6 325 2.4 332 22 459 1.9 179 54
MDML-£; 341 1.9 353 2.0 417 2.3 317 2.5 278 2.6 535 1.6 161 6.0
MDML-¢5 1 196 33 251 2.8 288 33 316 2.5 293 2.5 326 2.6 135 7.1
MDML-Tr 148 4.5 233 3.0 217 4.4 254 3.1 114 6.4 286 3.1 129 7.4
MDML-IT 1000 0.7 1000 0.7 1000 1.0 1000 0.8 1000 0.7 1000 0.9 1000 1.0
MDML-Drop 183 35 284 2.5 315 3.0 251 3.1 238 3.1 304 2.8 147 6.5
PDML-DC 100 6.5 300 2.4 100 9.6 200 39 200 3.7 300 2.9 100 9.6
PDML-CS 200 33 200 3.6 200 4.8 100 8.0 100 7.4 200 4.5 50 19.4
PDML-DPP 100 6.6 200 3.6 100 9.6 100 8.0 200 3.8 200 4.5 100 9.7
PDML-IC 200 33 200 3.6 200 4.9 100 8.0 200 3.7 100 8.9 100 9.7
PDML-DeC 200 32 300 2.3 200 4.8 200 39 200 3.6 200 43 100 9.6
PDML-VGF 200 33 200 3.6 200 4.9 100 8.1 200 3.7 200 4.5 100 9.7
PDML-MA 200 33 200 3.6 100 9.8 100 8.2 100 7.4 200 4.5 50 194
PDML-SFN 100 6.6 200 3.6 100 9.7 100 8.1 100 75 200 4.5 50 194
PDML-OC 100 6.5 100 7.1 50 19.1 50 15.6 100 7.3 100 8.8 50 19.1
PDML-VND 100 6.7 100 73 50 19.5 100 8.1 100 7.5 100 9.0 50 19.4
PDML-LDD 100 6.6 200 3.7 100 9.7 100 8.2 100 7.5 100 9.0 50 19.4
MDML-CSFN 143 4.7 209 35 174 5.6 87 9.3 62 12.1 139 6.5 64 15.2
MDML-CVND 53 12.7 65 11.3 61 16.0 63 13.0 127 5.9 92 9.9 68 14.3
MDML-CLDD 76 8.8 128 5.8 85 11.5 48 17.1 91 8.3 71 12.9 55 17.7

ods. In general, the orthogonality-promoting (OP) regular-
izers outperform the non-OP regularizers, suggesting the
effectiveness of promoting orthogonality. The orthogonal
constraint (OC) (Liu et al., 2008; Wang et al., 2015) im-
poses strict orthogonality, which may be too restrictive that
hurts performance. ILHD (Carreira-Perpindn & Raziper-
chikolaei, 2016) learns binary hash codes, which makes re-
trieval more efficient, however, it achieves lower AUCs due
to the quantization errors. MDML-(CSFN,CVND,CLDD)
outperform popular DML approaches including LMNN,
LDML, MLEC and GMML, demonstrating their compet-
itive standing in the DML literature.

Next we verify whether the learned distance metrics by
MDML-(CSEN,CVND,CLDD) are compact. Table 3
shows the numbers of the projection vectors (NPVs) that
achieve the AUCs in Table 1. For MDML-based meth-
ods, the NPV equals to the rank of the Mahalanobis ma-
trix since M = ATA. We define a compactness score
(CS) which is the ratio between A-All (given in Table 1)
and NPV. A higher CS indicates achieving higher AUC
by using fewer projection vectors. From Table 3, we
can see that on 5 datasets, MDML-(CSFN,CVND,CLDD)
achieve larger CSs than the baseline methods, demonstrat-
ing their better capability in learning compact distance met-
rics. Similar to the observations in Table 1, CSFN, CVND
and CLDD perform better than non-convex regularizers,
and CVND, CLDD perform better than CSFN. The reduc-
tion of NPV improves the efficiency of retrieval since the
computational complexity grows linearly with this num-
ber. Together, these results demonstrate that MDML-

(CSFN,CVND,CLDD) outperform other methods in terms
of learning both compact and balanced distance metrics.

As can be seen from Table 1, our methods MDML-
(CVND,CLDD) achieve the best AUC-AIL In Table 5 in
the supplements, it is shown that MDML-(CVND,CLDD)
have the smallest gap between training and testing AUC.
This indicates that our methods are better capable of reduc-
ing overfitting and improving generalization performance.

8. Conclusions

In this paper, we have attempted to address three issues
of existing orthogonality-promoting DML methods, which
include computational inefficiency and lacking theoretical
analysis in balancedness and generalization. To address the
computation issue, we perform a convex relaxation of these
regularizers and develop a proximal gradient descent algo-
rithm to solve the convex problems. To address the anal-
ysis issue, we define an imbalance factor (IF) to measure
(im)balancedness and prove that decreasing the Bregman
matrix divergence regularizers (which promote orthogonal-
ity) can reduce the upper bound of the IF, hence leading
to more balancedness. We provide a generalization error
(GE) analysis showing that decreasing the convex regu-
larizers can reduce the GE upper bound. Experiments on
datasets from different domains demonstrate that our meth-
ods are computationally more efficient and are more capa-
ble of learning balanced, compact and generalizable dis-
tance metrics than other approaches.
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