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Abstract

Variable selection is a classic problem in ma-
chine learning (ML), widely used to find impor-
tant explanatory factors, and improve general-
ization performance and interpretability of ML
models. In this paper, we consider variable se-
lection for models where multiple responses are
to be predicted based on the same set of covari-
ates. Since each response is relevant to a unique
subset of covariates, we desire the selected vari-
ables for different responses have small overlap.
We propose a regularizer that simultaneously en-
courage orthogonality and sparsity, which jointly
brings in an effect of reducing overlap. We ap-
ply this regularizer to four model instances and
develop efficient algorithms to solve the regular-
ized problems. We provide a formal analysis on
why the proposed regularizer can reduce gener-
alization error. Experiments on both simulation
studies and real-world datasets demonstrate the
effectiveness of the proposed regularizer in se-
lecting less-overlapped variables and improving
generalization performance.

1. Introduction

Among the many criteria of evaluating model quality, two
are typically considered: (1) accuracy of prediction on un-
seen data; (2) interpretation of the model. For (2), scientists
prefer a simpler model because it puts more light on the re-
lationship between the response and covariates. Parsimony
is especially an important issue when the number of predic-
tors is large. With a large number of predictors, we often
would like to determine a smaller subset that exhibits the
strongest effects.

To produce accurate prediction while selecting a subset of
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important factors, regularization-based variable-selection
methods have been widely studied. The most notable one
is ¢1-regularization (Tibshirani, 1996), which encourages
the model coefficients to be sparse. Its variants including
{1 /€3-norm (Yuan & Lin, 2006) that brings in a group spar-
sity effect and elastic net (Zou & Hastie, 2005) which en-
courages strongly correlated predictors to be in or out of
the model together, among many others.

In many ML problems, multiple responses are to be pre-
dicted based on the same set of covariates. For example,
in multi-task classification, the classifiers of m classes are
built on top of a shared feature set and each classifier has
a class-specific coefficient vector. In topic modeling (Blei
et al., 2003), multiple topics are learned over the same vo-
cabulary and each topic has a unique multinomial distribu-
tion on the words. Different responses are relevant to differ-
ent subsets of covariates. For example, an education topic
is relevant to words like student, university, professor while
a political topic is relevant to words like government, pres-
ident, election, etc. To account for the difference between
different responses when performing variable selection, we
desire the selected variables for different responses to be
less-overlapped.

The problem is formally formulated as follows. Consider
m responses sharing d covariates. Each response has a spe-
cific d-dimensional weight vector w where each dimension
corresponds to a covariate. Let s(w) = {k|wy # 0} — the
support of w — index the selected variables for a response.
For any two responses ¢ and j, we desire their selected vari-
ables s(w;) and s(w) are less overlapped, where the over-
lapness is measured by %ﬁm To achieve this ef-
fect, we propose a regularizer that simultaneously encour-
ages different weight vectors to be close to being orthog-
onal and each vector to be sparse, which jointly encour-
age vectors’ supports to have small overlap. Empirically,
we verify that minimizing this regularizer reduces overlap
among selected variables.

The major contributions of this work include:

e We propose a new type of regularization approach which
encourages a nonoverlap effect in variable selection.

o We apply the proposed regularizer to four models: multi-
class logistic regression, distance metric learning, sparse
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coding, and deep neural networks.

e We derive efficient algorithms to solve these regularized
problems. In particular, we develop an algorithm based
on ADMM and coordinate descent for regularized sparse
coding.

e We analyze why the proposed regularizer improves gen-
eralization performance.

e In experiments, we demonstrate the empirical effective-
ness of this regularizer.

The rest of the paper is organized as follows. Section 2 re-
views related works. Section 3 presents the methods. Sec-
tion 4 provides generalization error analysis and Section 5
gives experimental results. Section 6 concludes the paper.

2. Related Works

Variable selection based on regularization has been widely
studied. Lasso (Tibshirani, 1996) uses ¢1-norm to encour-
age the coefficient vector of the linear regression model to
be sparse. The lasso is able to recover the exact support of
a sparse model from data generated by this model if the co-
variates are not too correlated (Zhao & Yu, 2006). Elastic
net (Zou & Hastie, 2005) uses the weighted sum of the ¢;
and /5 norm to encourage strongly-correlated variables to
be co-selected. Group lasso (Yuan & Lin, 2006) uses the
{1 /€5 penalty, which is defined as the sum of the ¢5 norms
of sub-weight-vectors corresponding to predefined groups,
to select groups of variables. It recovers the support of a
model if the support is a union of groups and if covari-
ates of different groups are not too correlated. Zhao et al.
(2009) proposed composite absolute penalties for hierar-
chical selection of covariates, e.g., when one has a hierar-
chy over the covariates and wants to select covariates only
if their ancestors in the hierarchy are also selected. Graph-
ical lasso (Friedman et al., 2008) uses matrix /1 norm for
covariance (or neighborhood) selection.

In the context of group variable selection, several
works (Bach, 2009; Jacob et al., 2009; Zhao et al., 2009)
consider the cases where variables from different groups
are overlapping or nonoverlapping. Their problem set-
tings are different from ours. In their problems, the
(non)overlapping structure is with respect to groups and is
known as a prior while in our problem it is with respect to
different responses and is unknown.

3. Methods

In this section, we propose a nonoverlap-promoting regu-
larizer and apply it to four ML models.

3.1. Nonoverlap-Promoting Regularization

We assume the model has m responses and each is param-
eterized by a weight vector. For a vector w, its support
s(w) is defined as {i|w; # 0} — the indices of nonzero en-
tries in w. And the support contains indexes of the selected
variables. We first define a score 6(w;, w;) to measure the
overlap between selected variables of two responses:
s5(Wi)
)]
s(wi)
which is the Jaccard index of the supports. The smaller
o(w;, w;) is, the less overlapped the two sets of selected
variables are. For m variable sets, the overlap score is de-
fined as the sum of pairwise scores

. | Ns
o(wi,wj) = | s

m.)= 71 v o(W;, W
o({wi}i_l)m(m_l); (wiw;). @

This score function is not smooth, which will result in
great difficulty for optimization if used as a regularizer. In-
stead, we propose a smooth function that is motivated from
o(w;,w;) and can achieve a similar effect as o()V). The
basic idea is: to encourage small overlap, we can encourage
(1) each vector has a small number of non-zero entries and
(2) the intersection of supports among vectors is small. To
realize (1), we use an L1 regularizer to encourage the vec-
tors to be sparse. To realize (2), we encourage the vectors
to be close to being orthogonal. For two sparse vectors, if
they are close to orthogonal, then their supports are landed
on different positions. As a result, the intersection of sup-
ports is small.

We follow the method proposed by (Xie et al., 2017b) to
promote orthogonality. To encourage two vectors w; and
w; to be close to being orthogonal, one can make their
{5 norm ||w;||2, ||[w;||2 close to one and their inner prod-
uct w; w; close to zero. Based on this, one can pro-
mote orthogonality among a set of vectors by encourag-
ing the Gram matrix G (G;; = wiT w ;) of these vectors

to be close to an identity matrix I. Since w; w; and zero

are off the diagonal of G and I respectively, and |w;]||3
and one are on the diagonal of G and I respectively, en-
couraging G close to I essentially makes w, w; close to
zero and ||w;||2 close to one. As a result, w; and w;
are encouraged to be close to being orthogonal. In (Xie
et al., 2017b), one way proposed to measure the “close-
ness” between two matrices is to use the log-determinant
divergence (LDD) (Kulis et al., 2009). The LDD between
two m X m positive definite matrices X and Y is defined
as D(X,Y) = tr(XY™!) — logdet(XY ') — m where
tr(-) denotes matrix trace. The closeness between G and
I can be achieved by encouraging their LDD D(G,I) =
tr(G) — log det(G) — m to be small.



Nonoverlap-Promoting Variable Selection
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Figure 1. (a) Under L1 regularization, the vectors are sparse, but
their supports are overlapped; (b) Under LDD regularization, the
vectors are orthogonal, but their supports are overlapped; (¢) Un-
der LDD-L1 regularization, the vectors are sparse and mutually
orthogonal and their supports are not overlapped.

Combining the orthogonality-promoting LDD regularizer
with the sparsity-promoting L1 regularizer together, we ob-
tain the following LDD-L1 regularizer

m

QW) = u(G) ~logdet(G) +7)_|wili,  (3)
i=1

where v is a tradeoff parameter between these two regu-
larizers. As verified in experiments, this regularizer can
effectively promote nonoverlap. The formal analysis of the
relationship between Eq.(3) and Eq.(2) will be left for fu-
ture study. It is worth noting that either L1 or LDD alone
is not sufficient to reduce overlap. As illustrated in Figure
1(a) where only L1 is applied, though the two vectors are
sparse, their supports are completely overlapped. In Fig-
ure 1(b) where the LDD regularizer is applied, though the
two vectors are very close to orthogonal, their supports are
completely overlapped since they are dense. In Figure 1(c)
where the LDD-L1 regularizer is used, the two vectors are
sparse and are close to being orthogonal. As a result, their
supports are not overlapped.

3.2. Case Studies
We apply the LDD-L1 regularizer to four ML models.

Multiclass Logistic Regression (MLR) aims at classify-
ing a data example x € R? (whose features are treated as
covariates) into one of m classes (treated as responses). It is
parameterized by an coefficient matrix W € R%*™ where
the i-th column is the coefficient vector of class ¢ and d is
the feature dimension of x. In inference, MLR calculates
p = softmax(W "x+b) € R™ where p; denotes the prob-
ability that x belongs to class 7 and b € R™ is a bias vector.
x is assigned to the class yielding the largest probability.
Given N training examples {x,,, 7, }_;, MLR learns W
by minimizing the cross-entropy loss between p,, and the
ground-truth class label y,,. The LDD-L1 regularizer can
be applied to encourage the coefficient vectors of different
classes to have less-overlapped supports.

Distance Metric Learning (DML) has wide applica-
tions in classification, clustering and information retrieval
(Xing et al., 2002; Davis et al., 2007; Guillaumin et al.,
2009). Given data pairs labeled as similar or dissimilar,
DML aims at learning a distance metric such that simi-
lar pairs would be placed close to each other and dissim-
ilar pairs are separated apart. Following (Weinberger et al.,
2005), we define the distance metric between x,y € R as
[WTx — WTy|]3 where W € R¥*™ contain m projec-
tion vectors which are treated as responses. The features in
a data example are treated as covariates. Given N training
examples, {X,,yYn,tn}N_,, where x,, and y,, are similar
if the label ¢,, equals to 1 and dissimilar if ¢,, = 0, follow-
ing (Guillaumin et al., 2009), we learn the distance met-
ric by minimizing 27]:[:1 log(1 + exp((2t, — 1)[|W 'x —
W Ty||2)). Using LDD-LI to promote nonoverlap among
the projection vectors in W, we obtain the LDD-L1 regu-
larized DML problem:

min 5 log(1+ exp((2t, — 1 [WT (x~ ) 3)

AW, “

Sparse Coding (SC) Given n data samples X € R*"
where d is the number of features (treated as covariates),
SC (Olshausen & Field, 1997) aims at using a dictionary
of basis vectors (treated as responses) W € R¥*™ to
reconstruct X, where m is the number of basis vectors.
Each data sample x is reconstructed by taking a sparse
linear combination of the basis vectors x ~ Y7, a;w;,
where {c; };”:1 are the linear coefficients and most of them
are zero. The reconstruction error is measured using the
squared L2 norm ||x — 377", a;w; ||2. To achieve sparsity
among the codes, L1 regularization is utilized: 77", |o;|1.
To avoid the degenerated case where most coefficients are
zero and the basis vectors are of large magnitude, L2 regu-
larization is applied to the basis vectors: ||w;||3. We apply
the LDD-L1 regularizer to encourage the supports of the
basis vectors to have small overlap. Putting these pieces
together, we obtain the LDD-L1 regularized SC (LDD-L1-
SC) problem

Imin FIX — WAZ + M\ |A] + 22 [W3

+22 (r(WTW) — log det(WTW)) + \y|[W|;
(%)

where A € R™*"™ denotes all the linear coefficients.

Deep Neural Networks (DNNs) In a DNN with L hid-
den layers, each hidden layer [ is equipped with ") units
and each unit 7 is connected with all units in layer [ — 1. We
treat units in layer [ as a group of responses and units in the
layer [ — 1 as the corresponding covariates. Hidden unit ¢

at layer [ is parameterized by a weight vector wgl). For the
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m) weight vectors W) = {wgl)}g’i? in each layer [, we

apply the LDD-L1 regularizer to encourage them to have
less-overlapped supports. An LDD-L1 regularized DNN
problem can be defined in the following way:

i WL L 0
oumin, LAVOHL) + A K 2VO)

where L({WW1L ) is the objective function of this
DNN. In the experiments, we study two popular in-
stances of DNNs: long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) and convolutional
neural network (CNN).

3.3. Algorithm

For LDD-L1-regularized MLR, NN and DML problems,
we solve them using proximal gradient descent (Parikh
& Boyd, 2014). The proximal operation is with respect
to the L1 regularizer in LDD-L1. The algorithm iter-
atively performs the following three steps until conver-
gence: (1) calculate gradient of £L(W) + A(tr(W TW) —
logdet(W TW)) where £(W) is the loss function of the
unregularized ML model and tr(W T W) —logdet(W T W)
is the LDD regularizer in LDD-L1; (2) perform gradient de-
scent update of W; (3) apply the proximal operator of the
L1 regularizer to W.

For LDD-L1-SC, we solve it by alternating between A
and W: (1) updating A with W fixed; (2) updating W
with A fixed. These two steps alternate until conver-
gence. With W fixed, the sub-problem defined over A
is ming 3|/ X — WA|% + A;|Al;, which can be de-
composed into n Lasso problems (P1): fori = 1,--- | n,
min,, 3|/x; — Wa, |3 + A\i]a;|; where a; is the coef-
ficient vector of the i-th sample. Lasso can be solved
by many algorithms, such as proximal gradient descent
(PGD). Fixing A, the sub-problem defined over W is
(P2): minw 1| X — WA|Z + 22(|[W|% + M[W]; +
23 (r(WTW) — log det(WTW)). We solve this prob-
lem using an ADMM-based algorithm. First, we write the
problem into an equivalent form: minw 3|/ X — WA/||% +

22 [ W|2 4 Aa| W11 + 22 (tr(WT W) —log det(W T W),
subject to W = W. Then we write down the augmented
Lagrangian function (P3): 1| X — WA |2 + 22 |W|% +
M| WiH(U, W= W)+ §||W W |3+ 3 (r(W W)~
log det(W "W)). We minimize this Lagrangian function
by alternating among W, \7\7', and U.

Update W The subproblem defined on W is (P4):
minw  3|X — WAIZ + %[W[% + (UW) +
23 (r(WTW)—log det(WTW))+2 W =W ||2., which
can be solved using a coordinate descent (CD) algorithm.
In each iteration of CD, one basis vector is chosen for up-
date while the others are fixed. Without loss of generality,

Algorithm 1 Algorithm for solving the LDD-L1-SC prob-
lem
Initialize W and A
repeat
Update A with W being fixed, by solving n Lasso
problems (P1).
repeat
repeat
for i + 1tom do
Update the ith column vector w; of W using
Eq.(6)
end for
until convergence of the problem (P4)
Update W by solving the Lasso problem (P5)
U« U+ (W-W)
until convergence of the problem (P3)
until convergence of the problem defined in Eq.(5)

we assume it is wj. The loss function defined over w; is
3 % — Sy aawr — agwi |3 + 22528 |lwy [|3 -
23logdet(W W) + u'wy + £|jw; — W1 |3. The opti-
mal solution can be obtained via the following procedures:
(1) calculate M = I — W_;(WI, W_;)"'WT,, where
W_1 = [wa, -, Wp]; (2) perform eigen-decomposition:
M = UXU'; (3) solve the scalar quadratic equation

d
7 > (U'b)2 = (ye—A3)? w.rty, wherec = Y1"_ | a2 +

Ao+As+pandb = Z?:l ail(Xi*erZQ i Wi)—utpW;:
(4) calculate w as:

w1 = 7U(yel — A3X) 71U b, (6)

The detailed derivation is deferred to the supplements.

Update W The subproblem defined on W is (P5)
ming; MW/ — (U, W) + 5|W — W||%, which is a
Lasso problem and can be solved using PGD.

Update U The update equation of U is simple: U =
U+ (W-W).

4. Generalization Error Analysis

In this section, we analyze how the LDD-LI1 regularizer
affects the generalization error of ML models. We use
the distance metric learning (DML) model to perform the
study. In DML, the hypothesis function is u(x,y) =
[WT(x — y)||3 and the loss function ¢ is the logistic
loss £(u(x,y),t) = log(1 + exp((2t — 1)u(x,y))). Let
U = {u: (xy) » [W(x-y)3W) < 7}
denote the hypothesis set and A = {{ : (x,y,t) —
(u(x,y),t),u € U} denote the loss class, which is the
composition of the loss function with each of the hypothe-
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ses. In U, we add the constraint (W) < 7 to incor-
porate the impact of the LDD-LI1 regularizers Q(W). 7
controls the strength of regularization. A smaller 7 en-
tails stronger promotion of nonoverlap. 7 is controlled
by the regularization parameter A in Eq.(4). Increasing A
reduces 7. Given the joint distribution p* of input data
pair (x,y) and the binary label ¢ indicating whether this
data pair is similar or dissimilar, the risk of the hypoth-
esis u is L(u) = Exy p~ps [((u(x,y),t)]. Its empiri-
cal counterpart (training error) can be defined as E(u) =
% ZnN:1 (uw(Xpn,yYn),tn). The generalization error of a
hypothesis w is defined as L(u) — L(u), which represents
how well the algorithm can learn and usually depends on
the complexity of the hypothesis class and the number of
training examples.

To facilitate the analysis, we define a capacity variable on
W. We first prove that the generalization error can be up-
per bounded by an increasing function of the capacity vari-
able. Then we show that the capacity variable can be upper
bounded by an increasing function of the LDD regularizer.
Combining these two steps we reveal the relationship be-
tween the generalization error and the LDD-L1 regularizer.

Definition 1 (Capacity Variable) Let mq,--- , 7, be the
eigenvalues of W' W. Then the capacity variable is de-
fined as:

W)= |y 1.

The following inequality helps us to understand the intu-
itive meaning of C(W):

1
a||WTW — I, <C(W). (7)

LIWTW — I,,,||; measures the closeness between the
Gram matrix W T W and an identity matrix using L1 norm.
The smaller this quantity is, the closer to being orthogo-
nal the vectors in W are. Being an upper bound of this
quantity, C(W) essentially determines the level of near-
orthogonality among vectors.

Qaa(W) = QW) —y[W][; < QW) < 7. De-
fine W = {W € R*™|Q(W) < 7]} and C(W) =
supweyy C(W). The following lemma shows that the gen-

eralization error can be upper bounded using C(W).

Lemma 1 Suppose supx y)[|x — yl2 < Bo, then with
probability at least 1 — §, we have

L(u) — L(u) < 4BZ sup |[W'[|;/ CO0+m
W’ew

+[B(2)(5(W)+m)+1]\/@_

®)

The upper bound is an increasing function of C(W). The
next lemma shows that C(W') can be upper bounded by
an increasing function of the LDD regularizer §2;44(W) =
tr(WTW) — log det(WT W) —m.

Lemma 2 Let g(z) = x — log(z + 1). Then we have
C(W) < g_l(Qldd(W)/m)m.

where g=1(-) is the inverse function of g on [0,00) and is
an increasing function.

Since Q4a(W) < 7, we have C(W) < g~ Y(r/m)m
for any W € W, ie, CW) < g '(r/m)m. Simi-
larly, [Wl; = (W) — Q(W))/7 < 7/7. Substi-
tuting these two inequalities into Lemma 1, we obtain the
following theorem where the generalization error is upper

bounded based on 7.

Theorem 1 Suppose sup x y[|x — yll2 < Bo. With prob-
ability at least 1 — §, we have

L(’LL) B i—/(u < 4B§T m(g—1(r/m)m+1)
IR ry @
+[B2m(g~ (7 /m) + 1) + 1]/ 2eell/o),

From this generalization error bound (GEB), we can see
two major implications. First, LDD-L1 can effectively con-
trol the GEB. Increasing the strength of LDD-L1 regular-
ization (by enlarging \) reduces 7, which decreases the
GEB since it is an increasing function of 7. Second, the
GEB converges with rate O(1/v/N), where N is the num-
ber of training data pairs. This rate matches with that in
(Bellet & Habrard, 2015; Verma & Branson, 2015).

5. Experiments
5.1. Simulation Study

The simulation study is performed on the multiclass lo-
gistic regression model. We set the number of classes to
10. Each class is relevant to 5 variables. The variables of
different classes have no overlap. We generate 1000 data
samples from a multivariate Gaussian distribution with zero
mean and the covariance matrix is set to an identity matrix.
In the coefficient vector of each class, the entries corre-
sponding to the relevant variables are uniformly sampled
from [—1, 1] and the rest entries are set to zero. Given a
generated sample x and the generated coefficient matrix
W € R!0%30 the class label of sample x is determined
as y = argmax,, [Wx + b];, where b € R'? is a randomly
generated bias vector whose entries are sampled indepen-
dently from a univariate normal distribution. We split the
dataset into train/validation/test set with 600/200/200 ex-
amples respectively. The regularization parameter is tuned
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Sensitivity ~ Specificity | Error rate
L1 0.76 0.71 0.31
Elastic Net 0.74 0.72 0.30
LDD-L1 0.82 0.75 0.24

Table 1. Sensitivity and specificity for support recovery and error
rate for prediction.

on the validation set to achieve the best prediction perfor-
mance. We generate 50 simulated datasets. The perfor-
mance is averaged over these 50 datasets. We compare our
method with L1-regularization (Tibshirani, 1996) and elas-
tic net (Zou & Hastie, 2005). We did not compare with
LDD since it is not able to select variables.

Following (Kim & Xing, 2012), we use sensitivity (true
positive rate) and specificity (true negative rate) to mea-
sure the performance of recovering the true supports of the
coefficient vectors, shown in the second and third column
of Table 1. Our method outperforms the baselines with
a large margin. LDD-L1 encourages the supports of dif-
ferent weight vectors to have less overlap, which makes it
more suitable to select nonoverlapping variables. We also
compare the performance of different methods in terms of
prediction errors, shown in the fourth column of Table 1.
LDD-L1 achieves the lowest error rate. Since the variables
selected by our method are closer to the ground-truth, the
predictions made by our method based upon these selected
variables are more accurate.

5.2. Experiments on Real Data

We apply the LDD-L1 to 3 ML models and 4 datasets
and verify whether it is able to improve generalization per-
formance. In each experiment, the hyperparameters were
tuned on the validation set.

Sparse Coding for Text Representation Learning The
SC experiments were conducted on two text datasets: 20-
Newsgroups! (20-News) and Reuters Corpus® Volume 1
(RCV1). The 20-News dataset contains newsgroup doc-
uments belonging to 20 categories, where 11314, 3766 and
3766 documents were used for training, validation and test-
ing respectively. The original RCV1 dataset contains doc-
uments belonging to 103 categories. Following (Cai &
He, 2012), we chose the largest 4 categories which contain
9625 documents, to carry out the study. The number of
training, validation and testing documents are 5775, 1925,
1925 respectively. For both datasets, stopwords were re-
moved and all words were changed into lower-case. Top
1000 words with the highest document frequency were se-
lected to form the vocabulary. We used tf-idf to represent
documents and the feature vector of each document is nor-

'http://qwone.com/~jason/20Newsgroups/
2http: //www.daviddlewis.com/resources/
testcollections/rcvl/

20-News RCV1
Method Test Gap Test Gap
SC 0.592 | 0.119 | 0.872 | 0.009
LDD-SC 0.605 | 0.108 | 0.886 | 0.005
L1-SC 0.606 | 0.105 | 0.897 | 0.005
LDD-L1-SC | 0.612 | 0.099 | 0.909 | -0.015

Table 2. Classification accuracy on the test sets of 20-News and
RCV1, and the gap between training and test accuracy.

malized to have unit L2 norm. For 20-News, the number of
basis vectors in LDD-L1-SC is set to 50. A1, A2, A3 and Ay
are set to 1, 1, 0.1 and 0.001 respectively. For RCV1, the
number of basis vectors is set to 200. A1, A3, A3 and \4 are
set to 0.01, 1, 1 and 1 respectively. We compared LDD-L1
with LDD-only and L1-only.

To evaluate the model performance quantitatively, we ap-
plied the dictionary learned on the training data to infer
the linear coefficients (A in Eq.5) of test documents, then
performed k-nearest neighbors (KNN) classification on A.
Table 2 shows the classification accuracy on test sets of
20-News and RCV1 and the gap? between the accuracy on
training and test sets. Without regularization, SC achieves a
test accuracy of 0.592 on 20-News, which is lower than the
training accuracy by 0.119. This suggests that an overfit-
ting to training data occurs. With LDD-L1 regularization,
the test accuracy is improved to 0.612 and the gap between
training and test accuracy is reduced to 0.099, demonstrat-
ing the ability of LDD-L1 in alleviating overfitting. Though
LDD alone and L1 alone improve test accuracy and re-
duce train/test gap, they perform less well than LDD-L1,
which indicates that for overfitting reduction, encouraging
nonoverlap is more effective than solely promoting orthog-
onality or solely promoting sparsity. Similar observations
are made on the RCV1 dataset. Interestingly, the test accu-
racy achieved by LDD-L1-SC on RCV1 is better than the
training accuracy.

Table 3 shows the selected variables (words that have
nonzero weights) for 9 exemplar basis vectors learned by
LDD-L1-SC on the 20-News dataset. From the selected
words, we can see basis vector 1-9 represent the following
semantics respectively: crime, faith, job, war, university,
research, service, religion and Jews. The selected words
of different basis vectors have no overlap. As a result,
it is easy to associate each vector with a unique concept,
in other words, easy to interpret. Figure 2 visualizes the
learned vectors where the black dots denote vectors’ sup-
ports. As can be seen, the supports of different basis vectors
are landed over different words and their overlap is small.

LSTM for Language Modeling We apply LSTM net-
works (Hochreiter & Schmidhuber, 1997) to learn language
models on the Penn Treebank (PTB) dataset (Marcus et al.,

3Training accuracy minus test accuracy.
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Figure 2. Visualization of basis vectors

Selected Words
crime, guns
faith, trust
worked, manager
weapons, citizens
board, uiuc
application, performance, ideas
service, quality
bible, moral
christ, jews, land, faq

Basis Vector

NelNeo BEN Bie SRV I S

Table 3. Selected words of 9 exemplar basis vectors

1993), which consists of 923K training, 73K validation,
and 82K test words. Following (Mikolov et al.), top 10K
words with highest frequency were selected to form the vo-
cabulary. All other words are replaced with a special token
UNK. The LSTM network architecture follows the word
language model (PytorchTM) provided in Pytorch®. The
number of hidden layers is set to 2. The embedding size is
1500. The size of hidden state is 1500. Following (Press
& Wolf, 2016), the word embedding and softmax weights
are tied. The number of training epochs is 40. Dropout
with 0.65 is used. The initial learning rate is 20. Gradi-
ent clipping threshold is 0.25. The size of mini-batch is
20. In LSTM training, the network is unrolled for 35 it-
erations. Perplexity is used for evaluating language mod-
eling performance (lower is better). The weight parame-
ters are initialized uniformly between [-0.1, 0.1]. The bias
parameters are initialized as 0. We compare with the fol-
lowing regularizers: (1) L1 regularizer; (2) orthogonality-
promoting regularizers based on cosine similarity (CS) (Yu
etal.,2011), incoherence (IC) (Bao et al., 2013), mutual an-
gle (MA) (Xie et al., 2015), decorrelation (DC) (Cogswell
etal., 2015), angular constraint (AC) (Xie et al., 2017a) and
LDD (Xie et al., 2017b).

Table 4 shows the perplexity on the PTB test set. With-
out regularization, PytorchLM achieves a perplexity of
72.3.  With LDD-L1 regularization, the perplexity is
significantly reduced to 71.1. This shows that LDD-
L1 can effectively improve generalization performance.
Compared with the sparsity-promoting L1 regularizer and
orthogonality-promoting regularizers, LDD-L1 — which

*nttps://github.com/pytorch/examples/
tree/master/word_language_model

Network Test
RNN (Mikolov & Zweig, 2012) 124.7
RNN+LDA (Mikolov & Zweig, 2012) 113.7
Deep RNN (Pascanu et al., 2013) 107.5
Sum-Product Network (Cheng et al., 2014) 100.0
RNN+LDA+KN-5+Cache (Mikolov & Zweig, 2012) | 92.0
LSTM (medium) (Zaremba et al., 2014) 82.7
CharCNN (Kim et al., 2016) 78.9
LSTM (large) (Zaremba et al., 2014) 78.4
Variational LSTM (Gal & Ghahramani, 2016) 73.4
PytorchLM 72.3
CS-PytorchLM (Yu et al., 2011) 71.8
IC-PytorchLM (Bao et al., 2013) 71.9
MA-PytorchLM (Xie et al., 2015) 72.0
DC-PytorchLM (Cogswell et al., 2015) 72.2
AC-PytorchLM (Xie et al., 2017a) 71.5
LDD-PytorchLM (Xie et al., 2017b) 71.6
L1-PytorchLM 71.8
LDD-L1-PytorchLM 71.1
Pointer Sentinel LSTM (Merity et al., 2016) 70.9
Ensemble of 38 Large LSTMs (Zaremba et al., 2014) | 68.7
Variat. LSTM Ensem. (Gal & Ghahramani, 2016) 68.7
Variational RHN (Zilly et al., 2016) 68.5
Variational LSTM + REAL (Inan et al., 2016) 68.5
Neural Architecture Search (Zoph & Le, 2016) 67.9
Variational RHN + RE (Inan et al., 2016) 66.0
Variational RHN + WT (Zilly et al., 2016) 65.4
Variational RHN+WT+Dropout (Zilly et al., 2016) 64.4
Architecture Search + WT V1 (Zoph & Le, 2016) 64.0
Architecture Search + WT V2 (Zoph & Le, 2016) 62.4

Table 4. Word-level perplexities on PTB test set

promotes nonoverlap by simultaneously promoting sparsity
and orthogonality — achieves lower perplexity. For the con-
venience of readers, we also list the perplexity achieved by
other state of the art deep learning models. The LDD-L1
regularizer can be applied to these models as well to poten-
tially boost their performance.

CNN for Image Classification The CNN experiments
were performed on the CIFAR-10 dataset’. It consists
of 32x32 color images belonging to 10 categories, where
50,000 images were used for training and 10,000 for test-
ing. 5000 training images were used as the validation set
for hyperparameter tuning. We augmented the dataset by
first zero-padding the images with 4 pixels on each side,
then randomly cropping the padded images to reproduce
32x32 images. The CNN architecture follows that of the
wide residual network (WideResNet) (Zagoruyko, 2016).

5https://www.cs.toronto.edu/~kriz/cifar.
html
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Network Error
Maxout (Goodfellow et al., 2013) 9.38
NiN (Lin et al., 2013) 8.81
DSN (Lee et al., 2015) 7.97
Highway Network (Srivastava et al., 2015)  7.60
All-CNN (Springenberg et al., 2014) 7.25
ResNet (He et al., 2016) 6.61
ELU-Network (Clevert et al., 2015) 6.55
LSUV (Mishkin & Matas, 2015) 5.84
Fract. Max-Pooling (Graham, 2014) 4.50
WideResNet (Huang et al., 2016) 3.89
CS-WideResNet (Yu et al., 2011) 3.81
IC-WideResNet (Bao et al., 2013) 3.85
MA-WideResNet (Xie et al., 2015) 3.68

DC-WideResNet (Cogswell et al., 2015) 3.77
LCD-WideResNet (Rodriguez et al., 2016)  3.69

AC-WideResNet (Xie et al., 2017a) 3.63
LDD-WideResNet (Xie et al., 2017b) 3.65
L1-WideResNet 3.81
LDD-L1-WideResNet 3.60
ResNeXt (Xie et al., 2016) 3.58
PyramidNet (Huang et al., 2016) 3.48
DenseNet (Huang et al., 2016) 3.46
PyramidSepDrop (Yamada et al., 2016) 3.31

Table 5. Classification error (%) on CIFAR-10 test set

The depth and width are set to 28 and 10 respectively. The
networks are trained using SGD, where the epoch number
is 200, the learning rate is set to 0.1 initially and is dropped
by 0.2 at 60, 120 and 160 epochs, the minibatch size is
128 and the Nesterov momentum is 0.9. The dropout prob-
ability is 0.3 and the L2 weight decay is 0.0005. Model
performance is measured using error rate, which is the
median of 5 runs. We compared with (1) L1 regularizer;
(2) orthogonality-promoting regularizers including CS, IC,
MA, DC, AC, LDD and one based on locally constrained
decorrelation (LCD) (Rodriguez et al., 2016).

Table 5 shows classification errors on CIFAR-10 test
set. Compared with the unregularized WideResNet which
achieves an error rate of 3.89%, the proposed LDD-L1 reg-
ularizer greatly reduces the error to 3.60%. LDD-L1 out-
performs the L1 regularizer and orthogonality-promoting
regularizers, demonstrating that encouraging nonoverlap is
more effective than encouraging sparsity alone or orthogo-
nality alone in improving generalization performance. The
error rates achieved by other state of the art methods are
also listed.

5.3. LDD-L1 and Nonoverlap

We verify whether the LDD-L1 regularizer is able to pro-
mote nonoverlap. The study is performed on the SC model
and the 20-News dataset. The number of basis vectors was
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Figure 3. Overlap score versus the regularization parameter

set to 50. For 5 choices of the regularization parameter
of LDD-L1: {10~4,1073,--- , 1}, we ran the LDD-L1-SC
model until convergence and measured the overlap score
(defined in Eq.2) of the basis vectors. The tradeoff param-
eter y inside LDD-L1 is set to 1. Figure 3 shows that the
overlap score consistently decreases as the regularization
parameter of LDD-L1 increases, which implies that LDD-
L1 can effectively encourage nonoverlap. As a compar-
ison, we replaced LDD-L1 with LDD-only and L1-only,
and measured the overlap scores. As can be seen, for LDD-
only, the overlap score remains to be 1 when the regulariza-
tion parameter increases, which indicates that LDD alone
is not able to reduce overlap. This is because under LDD-
only, the vectors remain dense, which renders their sup-
ports to be completely overlapped. Under the same regu-
larization parameter, LDD-L1 achieves lower overlap score
than L1, which suggests that LDD-L1 is more effective in
promoting nonoverlap. Given that -y — the tradeoff param-
eter associated with the L1 norm in LDD-L1 —is set to 1,
the same regularization parameter A imposes the same level
of sparsity for both LDD-L1 and L1-only. Since LDD-L1
encourages the vectors to be mutually orthogonal, the in-
tersection between vectors’ supports is small, which con-
sequently results in small overlap. This is not the case for
L1-only, which hence is less effective in reducing overlap.

6. Conclusions

In this paper, we propose a new type of regularization ap-
proach promoting a nonoverlap effect in variable selection.
This regularizer encourages the weight vectors of differ-
ent responses to be simultaneously sparse and orthogonal,
which reduces the overlap among vectors’ supports. We
apply this regularizer to four exemplar ML models: mul-
ticlass logistic regression, distance metric learning, sparse
coding, and deep neural networks. Efficient algorithms are
developed for solving these regularized problems. Experi-
ments on both simulated and real datasets demonstrate the
effectiveness of this regularizer in selecting less-overlapped
variables and improving generalization performance.
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