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Abstract
This paper studies the problem of estimating the
graphon function – a generative mechanism for
a class of random graphs that are useful approx-
imations to real networks. Specifically, a graph
of n vertices is generated such that each pair of
two vertices i and j are connected independently
with probability ρn × f(xi, xj), where xi is the
unknown d-dimensional label of vertex i, f is an
unknown symmetric function, and ρn, assumed
to be Ω(log n/n), is a scaling parameter charac-
terizing the graph sparsity. The task is to estimate
graphon f given the graph. Recent studies have
identified the minimax optimal estimation error
rate for d = 1. However, there exists a wide
gap between the known error rates of polynomial-
time estimators and the minimax optimal error
rate. We improve on the previously known error
rates of polynomial-time estimators, by analyz-
ing a spectral method, namely universal singular
value thresholding (USVT) algorithm. When f
belongs to either Hölder or Sobolev space with
smoothness index α, we show the error rates of
USVT are at most (nρ)−2α/(2α+d). These error
rates approach the minimax optimal error rate
log(nρ)/(nρ) proved in prior work for d = 1,
as α increases, i.e., f becomes smoother. Fur-
thermore, when f is analytic with infinitely many
times differentiability, we show the error rate of
USVT is at most logd(nρ)/(nρ). When f is a
step function which corresponds to the stochastic
block model with k blocks for some k, the error
rate of USVT is at most k/(nρ), which is larger
than the minimax optimal error rate by at most
a multiplicative factor k/ log k. This coincides
with the computational gap observed in commu-
nity detection. A key ingredient of our analysis is
to derive the eigenvalue decaying rate of the edge
probability matrix using piecewise polynomial
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approximations of the graphon function f .

1. Introduction
Many modern systems and datasets can be represented as
networks with vertices denoting the objects and edges (possi-
bly weighted or labelled) encoding their interactions. Exam-
ples include online social networks such as Facebook friend-
ship network, biological networks such as protein-protein
interaction networks, and recommender systems such as
movie rating datasets. A key task in network analysis is to
estimate the underlying network generating mechanism, i.e.,
how the edges are formed in a network. It is useful for many
important applications such as studying network evolution
over time (Pensky, 2016), predicting missing links in net-
works (Miller et al., 2009; Airoldi et al., 2013; Gao et al.,
2016), learning hidden user prefererences in recommender
systems (Song et al., 2016), and correcting errors in crowd-
sourcing systems (Lee & Shah, 2017). However, in practice
we usually observe only a very small fraction of edge con-
nections in these networks, which obscures the underlying
network generating mechanism. For example, around 80%
of the molecular interactions in cells of Yeast (Yu et al.,
2008) are unknown. In Netflix movie dataset, about 99%
of movie ratings are missing and the observed ratings are
noisy.

In this paper, we are interested in understanding when and
how the underlying network generating mechanism can
be efficiently inferred from a partial observation of a net-
work. We assume the network is generated according to
the graphon model (Lovász & Szegedy, 2006). Concretely,
given n vertices, the edges are generated independently,
connecting each pair of two distinct vertices i and j with a
probability

Mij = f(xi, xj), (1)

where xi ∈ X is the latent feature vector of vertex i that
captures various characteristics of vertex i; f : X × X →
[0, 1] is a symmetric function called graphon. We assume no
self loop and setMii = 0 for 1 ≤ i ≤ n. We further assume
the feature vectors xi’s are drawn i.i.d. from a measurable
space X according to a probability distribution µ.

Graphon model captures a key characteristic of real net-
works, that is, the edge connections are dependent on latent
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features of vertices rather than specific vertex identities.
Graphon model was originally developed as a limit of a se-
quence of graphs with growing sizes (Lovász, 2012), and has
been applied to various network analysis problems ranging
from testing graph properties to counting homomorphisms
to charactering distances between two graphs (Lovász, 2012;
Borgs et al., 2008; 2012) to detecting communities (Bickel
& Chen, 2009). Graphon model encompasses many existing
network models as special cases. Setting f to be a constant
p, it gives rise to Erdős-Rényi random graphs, where each
edge is formed independently with probability p. In the
case where f is a step function or X is a discrete set, the
model specializes to the stochastic block model (Holland
et al., 1983), where each vertex belongs to a community,
and the edge probability between i and j depends only on
which communities they are in. If X is a Euclidean space of
dimension d and f(xi, xj) is a function of the Euclidean dis-
tance ‖xi−xj‖, then the grahon model reduces to the latent
space model (Hoff et al., 2002; Handcock et al., 2007).

To capture a partial observation of the network, we as-
sume every edge is observed independently with probability
ρ ∈ [0, 1], where ρ = ρn may converge to 0 as n → ∞.
Given the resulting observed graph, the problem of interest
is to estimate the underlying network generating mechanism
– the graphon f . However, without observing xi’s, there is
no way to uniquely identify f. To overcome this identifia-
bility issue, we follow the prior work (Gao et al., 2015) and
consider estimating f under the expected empirical loss1:

1

n2
E

 ∑
i,j∈[n]

(
f̂(xi, xj)− f(xi, xj)

)2 .
This is equivalent to estimating the edge probability matrix
M under the mean squared error (Gao et al., 2015):

MSE(M̂) ,
1

n2
E
[∥∥∥M̂ −M∥∥∥2

F

]
, (2)

where M̂ij = f̂(xi, xj). The fundamental estimation limits
are phrased in terms of the minimax mean-squared error:

R∗n , inf
M̂

sup
f∈F

sup
µ∈P

MSE(M̂),

where F denotes a set of admissible graphon functions f ,
and P denotes the set of all possible probability measures

1 By the definition of the expected empirical loss, we only need
to estimate the edge probabilities {f(xi, xj)}. An alternative way
to overcome the identifiablity issue is to consider estimating f
up to weak isometry under the expected integral loss (Wolfe &
Olhede, 2013). As shown in (Klopp et al., 2015)[Section 3], the
results of estimating f under the expected empirical loss can be
readily extended to estimating f up to weak isometry under the
expected integral loss by including an extra agnostic error term
due to the discretization of X by xi’s.

on X . The minimax estimation error depends on the smooth-
ness of graphon f , the structure of latent space (X , µ), and
the observation probability ρ.

There is a recent surge of interest in graphon estimation.
Various procedures have been proposed and analyzed (Gao
et al., 2015; Klopp et al., 2015; Gao et al., 2016; Wolfe &
Olhede, 2013; Airoldi et al., 2013; Yang et al., 2014; Chan
& Airoldi, 2014; Cai et al., 2014; Zhang et al., 2015; Borgs
et al., 2015a; Klopp & Verzelen, 2017; Borgs et al., 2017).
A recent line of work (Gao et al., 2015; Klopp et al., 2015;
Gao et al., 2016) has characterized the minimax error rate
in certain special cases. In particular, for stochastic block
model with k blocks, it is shown that the minimax error rate
is k2

n2ρ + log k
nρ . For fully observed graphons with f being

Hölder smooth on X = [0, 1] and ρ = 1, the minimax error
rate turns out be n−1 log k + n−2α/(α+1), where α is the
smoothness index of f . This result was extended by (Klopp
et al., 2015; Gao et al., 2016) to sparse regimes where ρ→ 0
as n→∞.

From a computational perspective, the problem appears to
be much harder and far less well-understood. In the spe-
cial case where f is α-Hölder smooth on X = [0, 1], a
universal singular value thresholding (USVT) algorithm
is shown in (Chatterjee, 2015) to achieve an error rate of
n−1/3ρ−1/2. However, this performance guarantee is far
from the minimax optimal rate log(nρ)/(nρ). A similar
spectral method is shown in (Xu et al., 2014) to achieve a
vanishing MSE when nρ � log n but without an explicit
characterization of the rate of the convergence. The nearest-
neighbor based approach is analyzed in (Song et al., 2016)
under a stringent assumption nρ �

√
n. A simple degree

sorting algorithm (Borgs et al., 2015b) is shown to achieve
an error rate of (log(nρ)/(nρ))

α/(4α+d) for α ∈ (0, 1] un-
der the restrictive assumption that

∫ 1

0
f(x, y)dy is strictly

monotone in x.

In summary, despite the recent significant effort devoted
to developing fundamental limits and efficient algorithms
for graphon estimation, an understanding of the statistical
and computational aspects of graphon estimation is still
lacking. In particular, there is a wide gap between the known
performance bounds of polynomial-time estimator and the
minimax optimal estimation rate. This raises a fundamental
question:

Is there a polynomial-time estimator that is guaranteed to
achieve the minimax optimal rate?

In this paper, we provide a partial answer to this question by
analyzing the universal singular value thresholding (USVT)
algorithm proposed by Chatterjee (Chatterjee, 2015). The
universal singular value thresholding is a simple and versa-
tile method for structured matrix estimation and has been
applied to a variety of different problems such as rank-
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ing (Shah et al., 2016). It truncates the singular values of A
at a threshold slightly above the spectral norm ‖A−E [A] ‖,
and estimates M by a properly rescaled A after trunca-
tion. It is computationally efficient, however, its perfor-
mance guarantee established in (Chatterjee, 2015) requires
the total number of observed edges to be much larger than
n(2d+2)/(d+2) to attain a vanishing MSE. In contrast, our
improved performance bound shows that the total number
of observed edges only needs to be a constant factor larger
than n log n, irrespective of the latent space dimension d.

More formally, by assuming the average vertex degree is
at least logarithmic in n, i.e., nρ = Ω(log n), and X is
a compact subset in Rd, the mean-squared error rate of
USVT is shown to be upper bounded by (nρ)−2α/(2α+d),
when f belongs to either α-smooth Hölder function class
H(α,L) or α-smooth Sobolev space S(α,L). This conver-
gence rate of USVT is approaching the minimax optimal
rate log(nρ)/(nρ) provided in (Gao et al., 2015) for d = 1,
as f becomes smoother, i.e., α increases. In fact, we show
that if f is analytic with infinitely many times differentiabil-
ity2, then the error rate is upper bounded by logd(nρ)/(nρ).

In the special case where f is a step fuction or X is a dis-
crete set, then the graphon model specializes to the stochas-
tic block model with k blocks for some k. In this case,
the error rate of USVT is shown to be k/(nρ), which is
larger than the optimal minimax rate by at most a multi-
plicative factor k/ log k. This factor coincides with the ratio
of the Kesten-Stigum threshold and information-theoretic
threshold in community detection (Banks et al., 2016; Abbe
& Sandon, 2015; Banks et al., 2018). Based on com-
pelling but non-rigorous statistical physics arguments, it
is believed that no polynomial-time algorithms are able
to detect the communities between the KS-threshold and
IT-threshold (Moore, 2017). This coincidence indicates
that k/(nρ) may be the optimal estimation rate among all
polynomial-time algorithms, and the minimax optimal rate
may not be attainable in polynomial-time. During the prepa-
ration of this manuscript, we became aware of an earlier
arXiv preprint (Klopp & Verzelen, 2017)[Proposition 4]
which also derives the error rate of k/(nρ).

Our proof incorporates three interesting ingredients. One is
a characterization of the estimation error of USVT in terms
of the tail of eigenvalues of M , and the spectral norm of the
noise perturbation ‖A − E [A|M ] ‖, see e.g., (Shah et al.,
2016)[Lemma 3]. The second one is a high-probability
upper bound on ‖A− E [M |A] ‖ obtained from matrix con-
centration inequalities initially developed by (Feige & Ofek,
2005). The last but most important one is a characterization

2The minimax lower bound in (Gao et al., 2015)[Appendix
A.1] is only established for the α-smooth Hölder function class for
any fixed α and d = 1. It is an open question whether the error
rate of logd(nρ)/(nρ) is minimax-optimal for analytic graphons.

Algorithm 1 Universal Singular Value Thresholding
(USVT) (Chatterjee, 2015)

1: Input: A ∈ Rn×n, ρ ∈ [0, 1] and a threshold τ > 0.
2: Let A =

∑n
i=1 siuiv

>
i be its singular value decompo-

sition with s1 ≥ s2 ≥ · · · ≥ sn.
3: Let S be the set of “thresholded” singular values: S =
{i : si ≥ τ}.

4: Let
Â =

∑
i∈S

siuiv
>
i

and M̃ = Â/ρ.

5: Output a matrix M̂ ∈ [0, 1]n×n such that M̂ii = 0 for
all i ∈ [n], and for 1 ≤ i < j ≤ n, M̂ij = M̂ji and

M̂ij =


M̃ij , if M̃ij ∈ [0, 1]

1, if M̃ij > 1

0, if M̃ij < 0.

of the tail of eigenvalues of M using piecewise polynomial
approximations of f , which were originally used to study
the spectrum of integral operators defined by f (Birman &
Solomyak, 1967; 1977). The piecewise constant approxima-
tions of f have appeared in the previous work on graphon
estimation (Chatterjee, 2015; Gao et al., 2015; Klopp et al.,
2015), and are sufficient for the purpose of deriving minimax
estimation rates because the smoothness of f beyond α = 1
does not improve the rates. However, piecewise degree-bαc
polynomial approximations are needed for showing USVT
to achieve a faster converging rate as α increases.

Notation For a vector x ∈ Rd, let ‖x‖2 denote its `2 norm
and ‖x‖∞ = max1≤i≤d |xi| denote its `-infinity norm. For
any matrix M , let ‖M‖ denote its spectral norm and ‖M‖F
denote its Frobenius norm. For any positive integer n, let
[n] = {1, . . . , n}. For any positive constant α, let bαc
denotes the largest integer strictly smaller than α. For two
real numbers α and β, let α ∧ β = min{α, β} and α ∨
β = max{α, β}. If κ = (κ1, . . . , κd) is a multi-index
with κi ∈ N, then |κ| =

∑d
i=1 κi, κ! =

∏d
i=1 κi!, and

xκ =
∏d
i=1 x

κi
i for a vector x ∈ Rd.

2. Main results
Let A denote the adjacency matrix of the observed graph
with Aii = 0 by convention. Then conditional on x =
(x1, . . . , xn), for 1 ≤ i < j ≤ n, Aij = Aji are
independently distributed as Bern (ρMij). In particular,
E [A|M ] = ρM .

To describe our main results, we first recall the universal
singular value thresholding (USVT) algorithm (Chatterjee,
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2015) as stated in Algorithm 1. Note that according to the
graphon model (1), the edge probability matrix M may not
be of low-rank. Nevertheless, it is possible that the singular
values of M , or equivalently magnitudes of eigenvalues,
drop off fast enough and as a consequence M is approxi-
mately low-rank. If this is indeed the case, then a natural
idea to estimate M is via low-rank approximations of A.
In particular, USVT truncates the singular values of A at a
proper threshold τ , and estimates M by the rescaled A after
truncation.

Note that Algorithm 1 applies hard-thresholding to the
singular values of A. Alternatively, we can use soft-
thresholding (Koltchinskii et al., 2011) and let Â =∑
i∈S(si − τ)uiv

>
i . Our main results with the hard-

thresholding also apply to the soft-thresholding. As ar-
gued in (Chatterjee, 2015), the cut-off threshold τ is cho-
sen to be slightly above ‖A − E [A|M ] ‖, so that noise
is suppressed and signals corresponding to large singu-
lar values of E [A|M ] are maintained. Since conditional
on M , A is a random matrix with independent entries
bounded in [0, 1] of variance at most ρ, it is expected that
‖A − E [A|M ] ‖ . √nρ with high probability, in view of
standard matrix concentration inequalities. This turns out
to be true if the observed graph is not too sparse, i.e., there
exists a positive constant C such that

nρ ≥ C log n. (3)

However, when the observed graph is sparse with nρ =
o(log n), due to the existence of high-degree vertices, ‖A−
E [A|M ] ‖ � √nρ with high probability (Krivelevich &
Sudakov, 2003).

Motivated by the discussion above, we focus on the rela-
tively sparse regime where (3) holds, and set τ = c0

√
nρ

for a positive large constant c0, whose value depends on the
constant C in (3). It is known that with high probability,

‖A− E [A|M ] ‖ ≤ κ√nρ,

where

κ =

{
4 + o(1) nρ = ω(log n)

2 + o(1) nρ = ω(log4 n)
, (4)

see, e.g., (Hajek et al., 2016)[Lemma 30]. Hence, the
constant c0 can be set to be a universal constant strictly
larger than 4 in the case of nρ � log(n) and 2 in the
case of nρ � log4(n). Notably, in these cases, the cut-
off threshold τ is universal, independent of the underlying
graphon f .

Next, we present our main results without proofs. The ex-
cluded details can be found in the full paper (Xu, 2017). Our
first result provides an upper bound to the estimation error of
USVT. A similar result without explicit constants is proved

in (Shah et al., 2016)[Lemma 3], which improves on the
previous result in (Chatterjee, 2015)[Lemma 3.5]. Another
similar result with slightly different constants is proved in
(Koltchinskii et al., 2011)[Theorem 1] for soft singular value
thresholding and in (Klopp et al., 2011)[Theorem 2] for hard
singular value thresholding.

Theorem 1. Consider the relatively sparse regime where
(3) holds. For all c > 0 there exists a positive constant κ
such that if τ = (1 + δ)κ

√
nρ for a fixed constant δ > 0,

then conditional on M , with probability at least 1− n−c,

1

n2
‖M̂ −M‖2F

≤ 16(1 + δ)2 min
0≤r≤n

κ2r
nρ

+
1

n2δ2

∑
i≥r+1

λ2i (M)

 .

It further follows that MSE(M̂) is bounded by the same
error term as above plus the failing probability n−c.

Theorem 1 gives an upper bound to the estimation error
of USVT in terms of the tail of eigenvalues of M and the
observation probability ρ. The upper bound invovles min-
imization of a sum of two terms over integers 0 ≤ r ≤ n:
the first term r/(nρ) can be viewed as the estimation error
for a rank-r matrix; the second term n−2

∑
i≥r+1 λ

2
i (M) is

the tail of eigenvalues of M and charaterizes the approxi-
mation error of M by the best rank-r matrix. The optimal r
is chosen to achieve the best trade-off between the estima-
tion error and the approximaiton error. Moreover, a lighter
tail of eigenvalues of M implies a faster convergence rate
of the estimation error. To characterize different tails of
eigenvalues of M , we introduce the following definitions of
polynomial and super-polynomial decays.

Definition 1 (Polynomial decay). We say the eigenvalues
of M asymptotically satisfy a polynomial decay with rate
β > 0 if for all integers 0 ≤ r ≤ n− 1,

1

n2

∑
i≥r+1

E
[
λ2i (M)

]
≤ c0r−β + c1n

−1,

where c0 and c1 are two constants independent of n and r.

Definition 2 (Super-polynomial decay). We say the eigen-
values of M asymptotically satisfy a super-polynomial de-
cay with rate α > 0 if for all integers 0 ≤ r ≤ n− 1,

1

n2

∑
i≥r+1

E
[
λ2i (M)

]
≤ c0e−c2r

α

+ c1n
−1,

where c0, c1, c2 are constants independent of n and r.

We remark that in the above two definitions, we allow for
a residual term c1n

−1, which is responsible for the contri-
bution of diagonal entries of M . According to Theorem 1,



Rates of Convergence of Spectral Methods for Graphon Estimation

this residual term only induces an additional n−1 error in
the upper bound to MSE and will not affect our main results.
The following corollary readily follows from Theorem 1
by choosing the optimal r according to the decay rates of
eigenvalues of M .

Corollary 1. Consider the relatively sparse regime where
(3) holds and suppose the eigenvalues of M satisfy a poly-
nomial decay with rate β > 0. Then there exists a positive
constant κ > 0 such that if τ = (1 + δ)κ

√
nρ for a fixed

constant δ > 0,

MSE(M̂) ≤ c′(nρ)−
β
β+1 .

If instead the eigenvalues of M satisfy a super-polynomial
decay with rates α > 0, then

MSE(M̂) ≤ c′ (log(nρ))
1/α

nρ
,

where c′ is a positive constant independent of n.

Proof. The first conclusion follows from Theorem 1 by
choosing c = 1 and r = b(nρ)1/(β+1)c and the second one
follows by choosing c = 1 and r = b(log(nρ)/c2)

1/αc.

Next we specialize our general results in different settings
by deriving the decay rates of eigenvalues of M.

2.1. Stochastic block model

We first present results on the rate of convergence in the
stochastic block model setting, where xi ∈ {1, 2, . . . , k}
indicating which community that vertex i belongs to. In this
case, Mij only depends on the communities of vertex i and
vertex j, and M has rank at most k.

Theorem 2. Assume (3) holds under the stochastic block
model with k blocks. There exists a positive constant κ > 0
such that if τ = (1+δ)κ

√
nρ for some fixed constant δ > 0,

then

MSE(M̂) ≤ c′′
[
k

nρ
∧ 1

]
.

where c′′ is a positive constant depending on κ and δ.

Proof. Under the stochastic block model, M is of rank at
most k. Thus λi(M) = 0 for all i ≥ k+ 1. Moreover, since
Mij ∈ [0, 1], it follows that

∑k
i=1 λ

2
i (M) = ‖M‖2F ≤ n2.

Applying Theorem 1 with r = 0 and r = k yields the
desired result.

Theorem 2 shows that the convergence rate of MSE of
USVT is at most k

nρ ∧ 1, while the previous result in (Chat-
terjee, 2015) establishes that the convergence rate is at most

√
k/n for ρ = 1. During the preparation of this manuscript,

we became aware of an earlier arXiv preprint (Klopp &
Verzelen, 2017)[Proposition 4] which also proves the error
rate of k/(nρ).

The minimax optimal rate derived in (Klopp et al., 2015;
Gao et al., 2016) is

(
k2

n2ρ + log k
nρ

)
∧ 1. Hence, the error

rate of USVT is larger than the minimax optimal rate by
at most a multiplicative factor of k/ log k, which resem-
bles the computational gap observed in community detec-
tion (Banks et al., 2016; Abbe & Sandon, 2015) and the
related high-dimensional statistical inference problems dis-
cussed in (Banks et al., 2018). In particular, it is shown
in (Banks et al., 2016; Abbe & Sandon, 2015) that estimation
better than randomly guessing is attainable efficiently by
spectral methods when above the Kesten-Stigum threshold,
while it is information-theoretically possible even strictly
below the KS threshold by a multiplicative factor k/ log k
for large k. In between the KS threshold and information-
theoretic threshold, non-trivial estimation is information-
theoretically possible but believed to require exponential
time. The same conclusion also holds for exact commu-
nity recovery as shown in (Chen & Xu, 2014). Due to this
coincidence, it is tempting to believe that k

nρ ∧ 1 might
be the optimal estimation rate among all polynomial-time
algorithms; however, we do not have a proof.

2.2. Smooth graphon

Next we proceed to the smooth graphon setting. We assume
X = [0, 1)d for simplicity. 3. There are various notions to
characterize the smoothness of graphon. In this paper, we fo-
cus on the following two notions, which are widely adopted
in the non-parametric regression literature (Tsybakov, 2008).
Given a function g : X → R and a multi-index κ, let

∇κg(x) =
∂|κ|g(x)

(∂x)κ
(5)

denote its partial derivative whenever it exists.

Definition 3 (Hölder class). Let α and L be two positive
numbers. The Hölder class H(α,L) on X is defined as
the set of functions g : X → R whose partial derivatives
satisfy4

∑
κ:|κ|=bαc

1

κ!
|∇κg(x)−∇κg(x′)| ≤ L‖x− x′‖α−bαc∞ .

(6)

3If X is a compact set in Rd, then there exists a positive con-
stant a such that X ⊂ [−a, a)d. Hence, the general compact set
case can be reduced to X = [0, 1)d by a proper scaling.

4 Changing the infinity-norm to a different norm (e.g. `2 norm)
only changes L (by a factor may depending on d and α) and thus
will not affect rates of convergence.
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Note that if α ∈ (0, 1], then (6) is equivalent to the Lip-α
condition:

|g(x)− g(x′)| ≤ L‖x− x′‖α∞. (7)

One can also measure the smoothness with respect to the
underlying measure µ. This leads to the consideration of
Sobolev space (Leoni, 2009). For ease of exposition, we
assume µ is the Lebesgue measure. The main results can be
extended to more general Borel measures.

Definition 4 (Sobolev space). Let α and L be two positive
numbers. The Sobolev space S(α,L) on (X , µ) is defined
as the set of functions g : X → R whose partial derivatives5

satsify∑
κ:|κ|=α

∫
X
‖∇κg(x)‖22 dx ≤ L2, for integral α,

and for non-integral α,

∑
κ:|κ|=bαc

∫
X×X

‖∇κg(x)−∇κg(y)‖22
‖x− y‖2(α−bαc)+d2

dxdy ≤ L2.

Note that the graphon f(x, y) is a bi-variate function. We
treat it as a function of x for every fixed y, and introduce
the following two conditions on f .

Condition 1 (Hölder condition on f ). There exist two posi-
tive numbers α and L such that f(·, y) ∈ H(α,L) for every
y ∈ X .

Condition 2 (Sobolev condition on f ). There exist two pos-
itive numbers α and L such that f(·, y) ∈ S(α,L(y)) for
every y, where L(y) : X → R satisfies that

∫
X L

2(y)dy ≤
L2.

The following key result shows that the eigenvalues of M
drop off to zero in a polynomial rate depending on the
smoothness index α of f.

Proposition 1. Suppose that f satisfies either Condition 1
or Condition 2. Then there exists a constantC = C(α,L, d)
only depending on α, L, and d such that for all integers
0 ≤ r ≤ n− 1,

1

n2

∑
i≥r+1

E
[
λ2i (M)

]
≤ C(α,L, d)

(
n−1 + r−2α/d

)
.

Remark 1. In the special case where f is Hölder smooth
with α = 1, Proposition 1 has been proved in (Chatterjee,
2015). In particular, it is shown in (Chatterjee, 2015) that f
can be well-approximated by a piecewise constant function.
As a consequence, M can be approximated by a rank-r

5More generally, the Sobolev space is defined when only weak
derivatives exist (Leoni, 2009).

block matrix with r2 blocks, and the entry-wise approxima-
tion error in the squared Frobenius norm is shown to be
approximately r−2α/d. The same idea can be readily ex-
tended to the case α ∈ [0, 1]. However, piecewise constant
approximations of f no longer suffice for α > 1, because
Hölder smoothness condition (6) no longer implies Lip-α
condition (7). In fact (7) with α > 1 will imply that f ≡ C
for some constant C. Instead, we show that f can be well
approximated by piecewise polynomials of degree bαc.

By combining Proposition 1 with Corollary 1, we immedi-
ately get the following result on the convergence rate of the
estimation error of USVT.

Theorem 3. Under the graphon estimation model, assume
(3) holds, and f satisfies either Condition 1 or Condition 2.
There exists a positive constant κ such that if τ = (1 +
δ)κ
√
nρ for some fixed constant δ > 0, then

MSE(M̂) ≤ c′′(nρ)−
2α

2α+d ,

where c′′ is a positive constant independent of n.

Theorem 3 implies that if f is infinitely many times differ-
entiable, then the MSE of USVT converges to zero faster
than (nρ)−1+ε for an arbitrarily small constant ε > 0. In
fact, we can prove a sharper result when f is analytic, i.e.,
f is infinitely differentiable and its Taylor series expansion
around any point in its domain converges to the function in
some neighborhood of the point. One concerete example
of analytic function which appears in the study of matrix
completion is f(x, y) = 1/(1+exp(−〈x, y〉)) (Ganti et al.,
2015).

Theorem 4. Under the graphon estimation model, suppose
there there exists positive constants a and b such that for all
multi-indices κ and all y ∈ X

sup
x∈X

∂|κ|f(x, y)

(∂x)κ
≤ ba|κ|κ!. (8)

There exists positive constants c0 and c1 only depending on
a, b, d such that for all integers 0 ≤ r ≤ n− 1,

1

n2

∑
i≥r+1

λ2i (M) ≤ c1
(
n−1 + exp

(
−c0r1/d

))
. (9)

Moreover, assume (3) holds. Then there exists positive con-
stants c′, c′′ such that if τ = c′′

√
nρ,

MSE(M̂) ≤ c′ logd (nρ)

nρ
.

We remark that for a fixed y ∈ X , (8) is a sufficient and
necessary condition for f(·, y) being analytic (Komatsu,
1960). Note that (9) implies the eigenvalues of M has a
super-polynomial decay with rate α = 1/d. Its proof is
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based on approximating f(·, y) using its Taylor series trun-
cated at degree ` � r1/d. When d = 1, the eigenvalues of
M decays to zero exponentially fast in r; such an exponen-
tial decay can be also proved via Chebyshev polynomial
approximation of f as shown in (Little & Reade, 1984).

2.2.1. COMPARISON TO MINIMAX OPTIMAL RATES

We compare the rates of convergence of USVT for estimat-
ing Hölder smooth graphons to the minimax optimal rates
when the dimension of latent feature space d = 1 (Gao et al.,
2015; Klopp et al., 2015; Gao et al., 2016):

R∗n �


1, nρ = O(1)
log(nρ)
nρ , ω(1) ≤ nρ ≤ nα(log n)α+1

(n2ρ)−
α
α+1 , nρ ≥ nα(log n)α+1

.

(10)

Thus, as graphon gets smoother, i.e., α increases, the upper
bound to the rate of convergence of USVT (nρ)−2α/(2α+1)

approaches the minimax optimal rate log(nρ)/(nρ).

2.3. Connections to spectrum of integral operators

We state a useful result, connecting the eigenvalues of M to
the spectrum of an integral operator defined in terms of f.
This allows us to translate existing results on the decay rates
of eigenvalues of integral operators to those of M. Define
an operator T : L2(X , µ)→ L2(X , µ) as

(T g) (x) ,
∫
X
f(x, y)g(y)µ(dy), ∀g ∈ L2(X , µ), (11)

where f acts as a kernal function. Hence, M can be also
viewed as a kernal matrix. We assume that the graphon f
is square-integrable, i.e.,

∫
X×X f

2(x, y)µ(dx)µ(dy) <∞.
In this case, the operator T is known as Hilbert-Schmidt
integral operator, which is compact. Therefore it admits a
discrete spectrum with finite multiplicity of all of its non-
zero eigenvalues (see e.g. (Kato, 1966; Koltchinskii, 1998;
von Luxburg et al., 2005)). Moreover, any of its eigenfunc-
tions is continuous onX . Denote the eigenvalues of operator
T sorted in decreasing order by |λ1(T )| ≥ |λ2(T )| ≥ · · ·
and its corresponding eigenfunctions with unit L2(X , µ)
norm by φ1, φ2, · · · . By the definition of λk and φk, we
have∫
X×X

(
f(x, y)−

m∑
k=1

λk(T )φk(x)φk(y)

)2

µ(dx)µ(dy)

→ 0, as m→∞ (12)

see, e.g., (Kato, 1966)[Chapter Five, Section 2.4].

The following theorem upper bounds the tail of eigenvalues
of M in expectation using the tail of eigenvalues of T .
Previous results in (Koltchinskii & Giné, 2000) provide

similar upper bounds to the `2 distance between the ordered
eigenvalues of M and those of T .

Theorem 5. For any integer r ≥ 0,

1

n2

∑
k>r

E
[
λ2k(M)

]
≤
∞∑
k>r

λ2k(T ) +
1

n

r∑
k,`=1

λk(T )λ`(T )E
[
φ2k(x1)φ2`(x1)

]
.

(13)

The second term on the right hand side of (13) is responsible
for the contribution of the diagonal entries of M . When
E
[
φ2k(x1)φ2`(x1)

]
is bounded and

∑∞
k=1 λk(T ) <∞, this

second term is on the order of n−1.

It is well known that if the kernel function f is smoother, the
eigenvalues of T drops to zero faster. There is vast literature
on estimating the decay rates of the eigenvalues of T in
terms of the smoothness conditions of f , see, e.g., (Krein,
1965; Birman & Solomyak, 1977; König, 2013; Delgado &
Ruzhansky, 2014). Theorem 5 allows us to translate those
existing results on the decay rates of eigenvalues of T to
those of M , as illustrated by examples in Section 3.

3. Numerical examples
We provide numerical results on synthetic datasets, which
corroborate our theoretical results. Additional numerical
results on stochastic block models can be found in the full
paper (Xu, 2017). We assume the sparsity level ρ is known
and set the threshold τ = 2.01

√
nρ throughout the exper-

iments. In the case where ρ is unknown, one can apply
cross-validation procedure to adaptively choose the sparsity
level ρ as shown in (Gao et al., 2016). We first apply USVT
with input (A, τ, ρ), and then output the estimator M̂ , and
finally calculate the MSE error MSE(M̂).

3.1. Translation invariant graphon

For some a > 0, let h : [−a, a] → R denote an even
function, i.e., h(x) = h(−x). Let us extends its domain
to the real line by the periodic extension such that h(x +
2ka) = h(x) for all x ∈ [−a, a] and integers k ∈ Z. By
construction h has a period 2a. Using this function, we can
define a translation-invariant graphon on the product space
[−a, a]× [−a, a] via f(x, y) = h(x− y). Since h is even,
it follows that f is symmetric. Then the integral operator T
defined in (11) reduces to: for all x ∈ [−a, a],

(T g) (x) =
1

2a

∫ a

−a
h(x− y)g(y)dy =

1

2a
(h ∗ g) (x),

where ∗ denotes the convolution. Hence, we can explicitly
determine the eigenvalues of T via Fourier analysis. In



Rates of Convergence of Spectral Methods for Graphon Estimation

particular, let ĥ[k] denote the Fourier coefficients:

ĥ[k] =
1

2a

∫ a

−a
h(x)e−jπkx/adx,

where throughout this section j denotes the imaginary part
such that j2 = −1, Since h is even, it follows that ĥ[k]’s
are real and ĥ[k] = ĥ[−k]. Fourier analysis entails a one-to-
one correspondence between eigenvalues of T and Fourier
coefficients of h: λk(T ) = ĥ[k].

We specify h : [−1, 1]→ R as h(x) = |x| and simulate the
graphon model with f(x, y) = h(x− y) for x, y ∈ [−1, 1]
and the underlying measure µ being uniform over [−1, 1].
Since h(x) = |x|, the Fourier coefficients can be explicitly
computed as λk(T ) = ĥ[k] = 2 sin2(πk/2)/(π2k2) with
eigenfunctions given by {cos(πkx)}∞k=0 and sin(πkx)}∞k=1.
It follows from Theorem 5 that the eigenvalues of M satisfy

1

n2

∑
i≥r+1

E
[
λ2i (M)

]
≤ O(n−1) +O(r−3) (14)

uniformly over all integers r ≥ 0. Therefore, our theory
predicts that the MSE of USVT converges to zero at least
in a rate of (nρ)−3/4. The simulation results for varying
observation probabilities are depicted in Fig. 1. Panel (a)
shows the MSE converges to 0 as the number of vertices
n increases. In Panel (b), we rescale the x-axis to log(nρ)
and the y-axis to the log of MSE. The curves for different ρ
align well with each other after the rescaling and decrease
linearly with a slope of approximately 0.8, which is close to
3/4 as predicted by our theory.
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Figure 1. The MSE error of USVT estimator under the translation
invariant graphon f(x, y) = |x− y|. Panel (a): MSE versus the
number of vertices n; Panel (b): The log of MSE versus log(nρ).
Each point represents the average of MSE over 10 independent
runs.

3.2. Sobolev graphon

In this section, we simulate the graphon model with X =
[0, 1] and µ being the uniform measure and f(x, y) =
min{x, y}. Then ∇xf(x, y) = 1{x≤y} and ∇yf(x, y) =
1{y≤x}. Moreover, |f(x, y)−f(x′, y′)| ≤ |x−x′|+|y−y′|.

However, the second-order weak derivatives of f do not ex-
ist. Therefore, f is Sobolev smooth with α = 1. In this case,
one can get a bound on the eigenvalue decay rate tighter than
Proposition 1 by directly computing λk(T ) and invoking
Theorem 5. Note that

(T g) (x) =

∫ x

0

yg(y)dy + x

∫ 1

x

g(y)dy.

Suppose φ is an eigenfunction of T with eigenvalue λ. Then∫ x

0

yφ(y)dy + x

∫ 1

x

φ(y)dy = λφ(x).

It follows that φ(0) = 1 and λφ′(x) =
∫ 1

x
φ(y)dy. It further

implies that φ′(1) = 0 and λφ′′ + φ = 0. Therefore, the
eigenfunction and eigenvalue pairs are given by

φk(x) = sin
(2k − 1)πx

2
, and λk(T ) =

(
2

(2k − 1)π

)2

.

It follows from Theorem 5 that the eigenvalues of M satisfy
(14) uniformly over all integers r ≥ 0. Therefore, our theory
predicts that the MSE of USVT converges to zero in a rate
of (nρ)−3/4. The simulation results for varying observation
probabilities are depicted in Fig. 2. The curves in Panel (b)
for different ρ align well with each other after the rescaling
and decrease linearly with a slope of approximately 0.7,
which is close to 3/4 as predicted by our theory.

0 2000 4000 6000 8000

0

0.005

0.01

0.015

0.02

0.025

M
S

E

3.5 4 4.5 5 5.5 6
-5.5

-5

-4.5

-4

-3.5

lo
g
(M

S
E

)

(a) (b)

Figure 2. The MSE error of USVT estimator under the first-order
sobolev graphon f(x, y) = min{x, y}. Panel (a): MSE versus the
number of vertices n; Panel (b): The log of MSE versus log(nρ).
Each point represents the average of MSE over 10 independent
runs.

4. Conclusions and future work
In this paper, we establish upper bounds to the graphon
estimation error of USVT when the average vertex degree is
at least logarithmic in n. Our results can be extended to the
case of bounded average degrees by first trimming the high-
degree vertices (Feige & Ofek, 2005) and then applying
USVT. We leave this extension as future work. Another
fundamental and open question is whether the minimax
optimal rate can be achieved in polynomial-time.
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