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1. Technical Proofs

From now on, we suppress the dependence of Ayi(N\)’s and
A () on A for ease of presentation and simply use Ay;’s
and A whenever there is no ambiguity.

Lemm:a_l S._l. Under the condition Cl, we have that
)\maw(AmAIn) = OPX (1)

Proof. Define the following matrix
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Then it is straightforward to see that

AmAﬁ = KDlKT7
where D = diag{Bu, .. .,Bmm} with B, = (K” +
mAL) "2, forl =1,...,m. Then
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which implies that

Ky,
1 & Koy

)\max(A AT S mi Z m'}x{ : Bll(K{lv R
Kml

m

=3 Z Amax (Bu Z K Kx)

— 0p,(1).

The last inequality follows from condition C1. O

Lemma S.2. Under the conditions C1-C2, for a fixed )\, we
have that
LX) -

R\ X) = op, {R(NX)}. (S.1)

Proof. Using similar notations in equation (12), it is straight-
forward to show that
LX) =

% (A, Y —F)" W (A, Y - F), (52

where Y = F + e. Using (12), we have that

LX) - R(\X) = f%FT(I —A,) WA,

2
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+ AL WA, e - %u(AﬁWAm).

Since the random error € and the covariate X are indepen-
dent in model (1), to show (S.1), it suffices to show the
following two equations

Var, {leFT(I - Am)TwAms} = op, {R*(\|X)},(S.3)
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= opy {R*(A[X)}.(S.4)

m)}



We first show (S.3). Straightforward algebra yields that

1 _ _
Var, {FT(I - Am)TWAms}

N
= TOFT(1- AW (A,AL) WL A, )F
< Phons (AnALW) iy 5t A,

= op (DR’ (N X) = op {R* (N[ X))},

where the second last equation follows from conditions C2-
C3 and Lemma (S.1) part (a).

Now we show (S.4). Straightforward algebra yields that
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< i X
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= o2NR(\|X)

= opx () R* (N[ X)
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where b;; is the (i, j)th element of matrix AT WA, and
K, = E.e* + o*. The last equality follows from conditions
C2-C3 and Lemma S.1. Using (S.3)-(S.4), the equation (S.1)
follows from a simple application of the Cauchy-Schwartz
inequality and the Markov’s inequality. The proof is com-
plete. O

Proof of Lemma 1. Using (S.2) and (13), we have that

_ — 1
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FT(1-A,)"We (S.6)

following two equations

Var, {;]FT(I - Am)TWe} = op, {R*(\|X)}, (S.7)

Var, {jlveTAmWs} = op {R*(\|X)}. (S.8)

) Ve first show (S.7). Straightforward algebra yields that

1 _
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= opy (WR* (N X) = op, {R*(A| X))},

R*(A|X)

where the second last equation follows from conditions C2-
C3. Next, we show (S.8). Using condition C2, similar to
the inequality (S.5), it is straightforward to show that

N2
< Kl)\max(w)
- No?2
_ Kl/\max(w)
F2NR(\X)
= or (1) R*(A| X)),
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where K, = E.e* 4+ ¢* is bounded. Hence, (S.8) is proved
using, again, condition C2-C3. Using (S.7)-(S.8) and (S.1),
the equation (16) follows from a simple application of the
Cauchy-Schwartz inequality and the Markov’s inequality.
The proof is complete. O

Proof of Theorem 1. Using Lemma 1 and Lemma S.2, it
suffices to show that

dGCVpo (A X) = U X) = op.  {R(\IX)}. (S.9)

Using the first order Taylor expansion of (1 — 2)~2 around
x =0, we have that (1 — )72 = 1 + 2z + 3(1 — z*) %22
for some z* € (0,2). Under condition C3, we have that

r(A,)

=X = opy (1) and thus we can consider the following
decomposition

dGCV(A|X) — T\ X) =

1 _ _
(YT a0 w- A,mpy - o2

2tr(A,,, W)

I

Notice that the random error € and the covariate X are
independent in model (1). We will show (16) using equa-
tion (S.1) in Lemma S.2, for which it suffices to show the

| 7 - {tr(A,, W)}?
YT ALY WL A, ()Y 0, (L1220
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Using condition C4, we have that

tr(A,, W)

N = oe {RVPOIX) (S.10)

which implies that 1T = op, (R(\| X)) since LYT{I -
A, (M}YTW{I — A,,(\)}Y is bounded. For part I, we
can write

2tr(A,,, W)

7o {IYT{I AL )YTWHI - A, (V)Y — 02} ~

N
2tr(A,,, W)
N
1 7 9 2tr(A,, W)  4{tr(A,,,W)}?5?
+ (NE? We —o ) N N2 .

= {U()\|X) - JbeTWs}

By Lemma 1, we have that U(\X) — +eTWe =
R(A|X) + op, « {R(A|X)}. Under condition C3, one has

that tr(Ame) = opy (1), and thus

2tr(A,,, W)

{U()\|X) - ;]ETWE} ~

= or.  {R(\X)}.
Furthermore, since +¢”We — 02 = Op_(N~1/2) (condi-
tion C3 (a)) and NR()\|X)P—X_>00 (condition C2), we have
that " We — 0% = op_, {R/?(A\|X)}. Using this and
equation (S.10), we have that

= oz,  {R(\X)}.

N
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The third part of I is op, { R(A|X)} due to equation (S.10).
Therefore, we have shown that

dGCV(A|X) — U(AX) = op. , {R(NX)},

which completes the proof. O



