A. Proof of Convergence of Continuous-time Dynamics

In this section, we provide a detailed Lyapunov function based analysis for the convergence of continuous-time dynamics (3.9).

Proof of Theorem 4.1. Applying Itô Formula (Itô, 1944) to the Lyapunov function in (4.1) yields

$$d\mathcal{E}_{t} = \frac{\partial \mathcal{E}_{t}}{\partial t}dt + \left\langle \frac{\partial \mathcal{E}_{t}}{\partial \boldsymbol{X}_{t}}, d\boldsymbol{X}_{t} \right\rangle + \left\langle \frac{\partial \mathcal{E}_{t}}{\partial \boldsymbol{Y}_{t}}, d\boldsymbol{Y}_{t} \right\rangle + \frac{\delta \dot{\beta}_{t}^{2}}{2\mu^{2}} \operatorname{tr} \left(\boldsymbol{\sigma}_{t}^{\top} \frac{\partial^{2} \mathcal{E}_{t}}{\partial \boldsymbol{Y}_{t}^{2}} \boldsymbol{\sigma}_{t} \right) dt, \tag{A.1}$$

where we use σ_t to make the expression $\sigma(X_t, t)$ compact when no confusion arises. Note that we have

$$\frac{\partial \mathcal{E}_t}{\partial t} = \dot{\beta}_t e^{\beta_t} (f(\boldsymbol{X}_t) - f(\mathbf{x}^*) + \mu D_h(\mathbf{x}^*, \nabla h^*(\boldsymbol{Y}_t))),$$

$$\frac{\partial \mathcal{E}_t}{\partial \boldsymbol{X}_t} = e^{\beta_t} \nabla f(\boldsymbol{X}_t), \quad \frac{\partial \mathcal{E}_t}{\partial \boldsymbol{Y}_t} = \mu e^{\beta_t} (\nabla h^*(\boldsymbol{Y}_t) - \mathbf{x}^*).$$

Thus, combining the above partial derivatives with the SDE in (3.9), we obtain

$$\left\langle \frac{\partial \mathcal{E}_t}{\partial \mathbf{X}_t}, d\mathbf{X}_t \right\rangle = \dot{\beta}_t e^{\beta_t} \left\langle \nabla f(\mathbf{X}_t), \nabla h^*(\mathbf{Y}_t) - \mathbf{X}_t \right\rangle,$$

and

$$\left\langle \frac{\partial \mathcal{E}_t}{\partial \mathbf{Y}_t}, d\mathbf{Y}_t \right\rangle = -\dot{\beta}_t e^{\beta_t} \left\langle \nabla f(\mathbf{X}_t) dt + \mu(\mathbf{Y}_t - \nabla h(\mathbf{X}_t)) + \sqrt{\delta} \boldsymbol{\sigma} d\mathbf{B}_t, \nabla h^*(\mathbf{Y}_t) - \mathbf{x}^* \right\rangle.$$

Submitting the above equations back into (A.1) yields

$$d\mathcal{E}_{t} = \dot{\beta}_{t}e^{\beta_{t}}[f(\boldsymbol{X}_{t}) - f(\mathbf{x}^{*}) + \langle \nabla f(\boldsymbol{X}_{t}), \mathbf{x}^{*} - \boldsymbol{X}_{t}\rangle]dt + \dot{\beta}_{t}e^{\beta_{t}}\mu D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\boldsymbol{Y}_{t}))dt$$

$$-\mu\dot{\beta}e^{\beta_{t}}\langle \nabla h^{*}(\boldsymbol{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{Y}_{t} - \nabla h(\boldsymbol{X}_{t})\rangle dt - \dot{\beta}e^{\beta_{t}}\langle \nabla h^{*}(\boldsymbol{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{\sigma}_{t}d\boldsymbol{B}_{t}\rangle + \frac{\delta\dot{\beta}_{t}^{2}}{2\mu^{2}}\operatorname{tr}\left(\boldsymbol{\sigma}_{t}^{\top}\frac{\partial^{2}\mathcal{E}_{t}}{\partial\boldsymbol{Y}_{t}^{2}}\boldsymbol{\sigma}_{t}\right)dt$$

$$\leq \mu\dot{\beta}_{t}e^{\beta_{t}}[-D_{h}(\mathbf{x}^{*}, \boldsymbol{X}_{t}) + D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\boldsymbol{Y}_{t}))]dt - \mu\dot{\beta}_{t}e^{\beta_{t}}\langle \nabla h^{*}(\boldsymbol{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{Y}_{t} - \nabla h(\boldsymbol{X}_{t})\rangle dt$$

$$-\dot{\beta}e^{\beta_{t}}\langle \nabla h^{*}(\boldsymbol{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{\sigma}_{t}d\boldsymbol{B}_{t}\rangle + \frac{\delta\dot{\beta}_{t}^{2}}{2\mu^{2}}\operatorname{tr}\left(\boldsymbol{\sigma}_{t}^{\top}\frac{\partial^{2}\mathcal{E}_{t}}{\partial\boldsymbol{Y}_{t}^{2}}\boldsymbol{\sigma}_{t}\right)dt,$$

where the inequality is due to the strong convexity of f. By three point identity (Chen & Teboulle, 1993), we have

$$D_h(\mathbf{x}^*, \nabla h^*(\mathbf{Y}_t)) + D_h(\nabla h^*(\mathbf{Y}_t), \mathbf{X}_t) - D_h(\mathbf{x}^*, \mathbf{X}_t) = \langle \nabla h(\mathbf{X}_t) - \mathbf{Y}_t, \mathbf{x}^* - \nabla h^*(\mathbf{Y}_t) \rangle.$$

Therefore, we obtain

$$\begin{aligned}
d\mathcal{E}_{t} &\leq -\mu \dot{\beta}_{t} e^{\beta_{t}} D_{h}(\nabla h^{*}(\mathbf{Y}_{t}), \mathbf{X}_{t}) dt - \dot{\beta} e^{\beta_{t}} \langle \nabla h^{*}(\mathbf{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{\sigma}_{t} d\boldsymbol{B}_{t} \rangle + \frac{\delta \dot{\beta}_{t}^{2}}{2\mu^{2}} \operatorname{tr} \left(\boldsymbol{\sigma}_{t}^{\top} \frac{\partial^{2} \mathcal{E}_{t}}{\partial \mathbf{Y}_{t}^{2}} \boldsymbol{\sigma}_{t} \right) dt \\
&\leq -\dot{\beta} e^{\beta_{t}} \langle \nabla h^{*}(\mathbf{Y}_{t}) - \mathbf{x}^{*}, \boldsymbol{\sigma}_{t} d\boldsymbol{B}_{t} \rangle + \frac{\delta \dot{\beta}_{t}^{2}}{2\mu^{2}} \operatorname{tr} \left(\boldsymbol{\sigma}_{t}^{\top} \frac{\partial^{2} \mathcal{E}_{t}}{\partial \mathbf{Y}_{t}^{2}} \boldsymbol{\sigma}_{t} \right) dt.
\end{aligned}$$

Integrating $d\mathcal{E}_t$ from 0 to t, we obtain

$$\mathcal{E}_t \leq \mathcal{E}_0 - \int_0^t \dot{\beta} e^{\beta_r} \langle \nabla h^*(\boldsymbol{Y}_r) - \mathbf{x}^*, \boldsymbol{\sigma}_r \mathrm{d}\boldsymbol{B}_r \rangle + \int_0^t \frac{\delta \dot{\beta}_r^2 e^{\beta_r}}{2\mu} \operatorname{tr} \left(\boldsymbol{\sigma}_r^\top \nabla^2 h^*(\boldsymbol{Y}_r) \boldsymbol{\sigma}_r \right) \mathrm{d}r.$$

Taking expectation and by the property of Brownian motion, we have

$$\mathbb{E}[\mathcal{E}_t] \leq \mathcal{E}_0 + \mathbb{E}\left[\int_0^t \frac{\delta \dot{\beta}_r^2 e^{\beta_r}}{2\mu} \operatorname{tr}\left(\boldsymbol{\sigma}_r^\top \nabla^2 h^*(\boldsymbol{Y}_r) \boldsymbol{\sigma}_r\right) dr\right].$$

By the definition of \mathcal{E}_t and the non-negativity of D_{h^*} , we obtain the upper bound on the expected primal function value gap

$$\mathbb{E}[f(\boldsymbol{X}_t) - f(\mathbf{x}^*)] \le e^{-\beta_t} \mathcal{E}_0 + e^{-\beta_t} \mathbb{E}\left[\int_0^t \frac{\delta \dot{\beta}_r^2 e^{\beta_r}}{2\mu} \operatorname{tr}\left(\boldsymbol{\sigma}_r^\top \nabla^2 h^*(\boldsymbol{Y}_r) \boldsymbol{\sigma}_r\right) dr\right],$$

which completes the proof.

B. Proof of Convergence for Discrete-time Algorithms

We provide proofs of convergence rates of the proposed Algorithms here. For the shorthand of notation, we use $\Delta(\mathbf{x}) = G(\mathbf{x}; \xi) - \nabla f(\mathbf{x})$ to denote the bias between the stochastic gradient and the full gradient, where $\mathbf{x} \in \mathbb{R}^d$ and ξ is a random vector.

B.1. Proof of Theorem 5.1

Proof of Theorem 5.1. For the ease of presentation, we define $\mathcal{D}_k = f(\mathbf{x}_k) - f(\mathbf{x}^*) + \mu D_{h^*}(\mathbf{y}_k, \nabla h(\mathbf{x}^*))$. By the definition of Lyapunov function in (5.4), we have $\mathcal{E}_k = A_k \mathcal{D}_k$. Then

$$\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] = \mathbb{E}[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \nabla h(\mathbf{x}^{*})) - \mu D_{h^{*}}(\mathbf{y}_{k}, \nabla h(\mathbf{x}^{*}))]$$

$$= \mathbb{E}[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \mu \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{y}_{k} - \mathbf{y}_{k+1} \rangle - \mu D_{h^{*}}(\mathbf{y}_{k}, \mathbf{y}_{k+1})]$$

$$= \mathbb{E}\left[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \nabla f(\mathbf{x}_{k+1}) \rangle \right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mu(\mathbf{y}_{k+1} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1}) \rangle - \mu D_{h^{*}}(\mathbf{y}_{k}, \mathbf{y}_{k+1})\right]$$

$$= \mathbb{E}\left[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle + \langle \mathbf{x}_{k} - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle\right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mu(\mathbf{y}_{k+1} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1}) \rangle - \mu D_{h^{*}}(\mathbf{y}_{k}, \mathbf{y}_{k+1})\right],$$

where the second equality is due to the three point identity, the third equality follows from (5.3b) and the last one follows from (5.3a). By strong convexity of f we have

$$\langle \mathbf{x}^* - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle \le f(\mathbf{x}^*) - f(\mathbf{x}_{k+1}) - \mu D_h(\mathbf{x}^*, \mathbf{x}_{k+1}),$$

$$\langle \mathbf{x}_k - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle \le f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) - \mu D_h(\mathbf{x}_k, \mathbf{x}_{k+1}),$$

which immediately implies

$$\begin{split} &\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] \\ &\leq \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(f(\mathbf{x}^{*}) - f(\mathbf{x}_{k+1}) - \mu D_{h}(\mathbf{x}^{*}, \mathbf{x}_{k+1})\right) - \mu D_{h}(\mathbf{x}_{k}, \mathbf{x}_{k+1})\right] \\ &+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left\langle\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mu(\mathbf{y}_{k+1} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1})\right\rangle - \mu D_{h^{*}}(\mathbf{y}_{k}, \mathbf{y}_{k+1})\right] \\ &= \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(-\mathcal{D}_{k+1} + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \nabla h(\mathbf{x}^{*})) - \mu D_{h}(\mathbf{x}^{*}, \mathbf{x}_{k+1})\right) - \mu D_{h}(\mathbf{x}_{k}, \mathbf{x}_{k+1})\right] \\ &+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left\langle\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mu(\mathbf{y}_{k+1} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1})\right\rangle - \mu D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}))\right] \\ &\leq \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[-\mathcal{D}_{k+1} + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \nabla h(\mathbf{x}^{*})) - \mu D_{h}(\mathbf{x}^{*}, \mathbf{x}_{k+1})\right] - \frac{\mu \mu_{h}}{2}\|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2} \\ &+ \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[\mu(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{y}_{k+1} - \nabla h(\mathbf{x}_{k+1})\right) + \left\langle\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \Delta(\mathbf{x}_{k+1})\right\rangle\right] \\ &= \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[-\mathcal{D}_{k+1} - \mu D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{x}_{k+1})\right] \\ &- \frac{\mu \mu_{h}}{2}\|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2} + \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[\left\langle\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \Delta(\mathbf{x}_{k+1})\right\rangle\right] - \frac{\mu \mu_{h}}{2}\|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2}, \end{split}$$

where the second inequality is due to the strong convexity of h and the last equality follows from three point identity. We now give an upper bound of the last term in the above inequality. Note that y_k is independent of $\Delta(x_{k+1})$ according to

(5.3b) and that $\mathbb{E}[\Delta(\mathbf{x}_{k+1})] = \mathbf{0}$, then

$$\frac{A_{k+1} - A_k}{A_k} \mathbb{E}[\langle \mathbf{x}^* - \nabla h^*(\mathbf{y}_{k+1}), \Delta(\mathbf{x}_{k+1}) \rangle] - \frac{\mu \mu_h}{2} \| \nabla h^*(\mathbf{y}_k) - \nabla h^*(\mathbf{y}_{k+1}) \|^2
= \frac{A_{k+1} - A_k}{A_k} \mathbb{E}[\langle \nabla h^*(\mathbf{y}_k) - \nabla h^*(\mathbf{y}_{k+1}), \Delta(\mathbf{x}_{k+1}) \rangle] - \frac{\mu \mu_h}{2} \| \nabla h^*(\mathbf{y}_k) - \nabla h^*(\mathbf{y}_{k+1}) \|^2
\leq \frac{(A_{k+1} - A_k)^2 \sigma^2}{2\mu \mu_h A_k^2},$$

where the last inequality use the fact that $bx - ax^2/2 \le b^2/(2a)$ for a > 0 and $\mathbb{E}[\|\Delta(\mathbf{x}_{k+1})\|^2|\mathbf{x}_{k+1}] \le \sigma^2$. This immediately yields

$$\mathbb{E}[A_{k+1}\mathcal{D}_{k+1} - A_k\mathcal{D}_k] \le \frac{(A_{k+1} - A_k)^2}{A_k} \frac{\sigma^2}{2\mu\mu_h}.$$

Plugging the definition that $\mathcal{E}_k = A_k \mathcal{D}_k$ into the above inequality, and summing from 0 to k-1, we obtain

$$\mathbb{E}[\mathcal{E}_k] \le \mathcal{E}_0 + \frac{\sigma^2}{2\mu\mu_h} \sum_{i=0}^{k-1} \frac{(A_{i+1} - A_i)^2}{A_i}.$$

Choose $A_k = k(k+1)/2$ and $A_0 = 1$, we can see that the step size of Algorithm 1 is 1/k. Applying Lemma D.3 and the definition of \mathcal{E}_k yields the following convergence rate

$$\mathbb{E}[f(\mathbf{x}_k) - f(\mathbf{x}^*)] \le \frac{\mathbb{E}[\mathcal{E}_k]}{A_k} \le \frac{2\mathcal{E}_0}{k(k+1)} + \frac{2\sigma^2}{(k+1)\mu\mu_h}.$$

B.2. Proof of Theorem 5.3

We first lay down the following technical lemma about the gradient bound of f over \mathcal{X} .

Lemma B.1. Suppose f is μ -strongly convex and L-smooth. Then we have

$$\|\nabla f(\mathbf{x})\|_* \le \frac{L\sqrt{2M_{h,\mathcal{X}}}}{\sqrt{\mu_h}} + \|\nabla f(\mathbf{x}^*)\|_*,$$

where $M_{h,\mathcal{X}} = \sup_{\mathbf{x},\mathbf{x}'\in\mathcal{X}} D_h(\mathbf{x},\mathbf{x}')$.

Proof of Theorem 5.3. Recall the Lyapunov function in (5.4) and the definition that $\mathcal{E}_k = A_k \mathcal{D}_k$. Similar to the proof of Theorem 5.1 we have

$$\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] = \mathbb{E}[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \nabla h(\mathbf{x}^{*})) - \mu D_{h^{*}}(\mathbf{y}_{k}, \nabla h(\mathbf{x}^{*}))]$$

$$= \mathbb{E}[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \mu \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \mathbf{y}_{k+1} \rangle + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})]$$

$$= \mathbb{E}\left[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \nabla f(\mathbf{x}_{k+1}) \rangle \right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mu(\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1}) \rangle + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$= \mathbb{E}\left[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle + \langle \mathbf{x}_{k} - \mathbf{x}_{k+1}, \nabla f(\mathbf{x}_{k+1}) \rangle\right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mu(\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1}) \rangle + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right],$$

where the second equation comes from the three point identity, the third and fourth equations are due to (5.5b) and (5.5a) respectively. Note that h is μ_h -strongly convex and L_h -smooth. Without loss of generality, we assume that $L_h=1$;

otherwise, we can replace h with $h' = h/L_h$ which is μ_h/L_h -strongly convex and 1-smooth. By strong convexity of f we have

$$\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] \leq \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(f(\mathbf{x}^{*}) - f(\mathbf{x}_{k+1}) - \mu D_{h}(\mathbf{x}^{*}, \mathbf{x}_{k+1})\right) - \mu D_{h}(\mathbf{x}_{k}, \mathbf{x}_{k+1})\right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mu(\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1})\right) + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$\leq \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[-D_{k+1} + \mu(D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})) - D_{h}(\mathbf{x}^{*}, \mathbf{x}_{k+1})\right)\right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mu(\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})) + \Delta(\mathbf{x}_{k+1})\right) + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$= \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[-D_{k+1} + \mu(\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k+1}), \nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}\right) - D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{x}_{k+1})\right)\right]$$

$$+ \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mu(\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})) + \mu D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]\right]$$

$$= -\frac{A_{k+1} - A_{k}}{A_{k}}D_{k+1} + \mu \mathbb{E}\left[D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k}) + \frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \Delta(\mathbf{x}_{k+1})\right)\right]$$

$$+ \mu \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}\left[\left\langle\nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}, \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})\right)\right]$$

$$\leq -\frac{A_{k+1} - A_{k}}{A_{k}}D_{k+1} + \mu \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \mathbf{y}_{k+1}\right) + D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$\leq -\frac{A_{k+1} - A_{k}}{A_{k}}D_{k+1} + \mu \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \mathbf{y}_{k+1}\right) + D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$\leq -\frac{A_{k+1} - A_{k}}{A_{k}}D_{k+1} + \mu \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}}\left(\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \mathbf{y}_{k+1}\right) + D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right]$$

$$+ \mu \frac{A_{k+1} - A_{k}}{A_{k}}\mathbb{E}[\|\nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}\|_{*}\|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{y}_{k+1}\|_{*}^{2}\|$$

where the second inequality follows from the definition of \mathcal{D}_{k+1} and that $D_h(\mathbf{x}_k, \mathbf{x}_{k+1})$ is non-negative, the first equality is due to the three point identity, and the last inequality is due to the $1/\mu_h$ -smoothness of h^* , Cauchy's inequality and the fact that \mathbf{y}_k is independent of $\Delta(\mathbf{x}_{k+1})$ and $\mathbb{E}[\Delta(\mathbf{x}_{k+1})] = \mathbf{0}$. For the last term in the above inequality, we have

$$\begin{split} &\|\nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}\|_{*} \|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\| - \frac{1}{2} \|\nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}\|_{*}^{2} \\ &= -\frac{1}{2} \big(\|\nabla h(\mathbf{x}_{k+1}) - \mathbf{y}_{k+1}\|_{*} - \|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\| \big)^{2} + \frac{1}{2} \|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2} \\ &\leq \frac{1}{2} \|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2}. \end{split}$$

Therefore, we obtain

$$\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] \leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \mu \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \langle \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k}), \mathbf{y}_{k} - \mathbf{y}_{k+1} \rangle + D_{h^{*}}(\mathbf{y}_{k+1}, \mathbf{y}_{k})\right] \\
+ \mu \frac{A_{k+1} - A_{k}}{A_{k}} \mathbb{E}\left[\frac{1}{2} \|\nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\|^{2}\right] \\
\leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \mu \mathbb{E}\left[\frac{A_{k+1} - A_{k}}{A_{k}} \|\mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k})\| \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2} + \frac{1}{2\mu_{h}} \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2}\right] \\
+ \mu \frac{A_{k+1} - A_{k}}{A_{k}} \mathbb{E}\left[\frac{1}{2\mu_{h}^{2}} \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2}\right] \\
\leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \mu \mathbb{E}\left[\frac{(A_{k+1} - A_{k})\sqrt{2M_{h,\mathcal{X}}}}{\sqrt{\mu_{h}} A_{k}} \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2} + \frac{1}{2\mu_{h}} \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2}\right] \\
+ \mu \frac{A_{k+1} - A_{k}}{A_{k}} \mathbb{E}\left[\frac{1}{2\mu_{h}^{2}} \|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2}\right], \tag{B.1}$$

where the second inequality follows from Cauchy's inequality and the $1/\mu_h$ -smoothness of h^* . Further by (5.5b) we have

$$\mathbb{E}[\|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}] = \frac{A_{k+1} - A_{k}}{A_{k}} \mathbb{E}\left[\left\|\frac{1}{\mu}(\nabla f(\mathbf{x}_{k+1}) + \Delta(\mathbf{x}_{k+1})) + \mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})\right\|_{2}\right] \\
\leq \frac{A_{k+1} - A_{k}}{\mu A_{k}} \mathbb{E}[\|\nabla f(\mathbf{x}_{k+1})\|_{*} + \|\Delta(\mathbf{x}_{k+1})\|_{*} + \mu\|\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})\|_{*}] \\
\leq \frac{(A_{k+1} - A_{k})}{\mu A_{k}} \left(\frac{L\sqrt{2M_{h,\mathcal{X}}}}{\sqrt{\mu_{h}}} + \|\nabla f(\mathbf{x}^{*})\|_{*} + \sigma + \mu\mathbb{E}[\|\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})\|_{*}]\right), \tag{B.2}$$

where the second inequality is due to Lemma B.1. By (5.5a) we have that

$$\|\mathbf{y}_{k} - \nabla h(\mathbf{x}_{k+1})\|_{*} = \left\| \nabla h \left(\mathbf{x}_{k+1} + \frac{A_{k}}{A_{k+1} - A_{k}} (\mathbf{x}_{k+1} - \mathbf{x}_{k}) \right) - \nabla h(\mathbf{x}_{k+1}) \right\|_{*}$$

$$\leq \frac{A_{k}}{A_{k+1} - A_{k}} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2}$$

$$= \|\nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}_{k+1}\|_{2}$$

$$\leq \sqrt{\frac{2M_{h,\mathcal{X}}}{\mu_{h}}}.$$
(B.3)

Substituting (B.1) with and (B.2) and (B.3) yields

$$\mathbb{E}[\mathcal{D}_{k+1} - \mathcal{D}_{k}] \leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \frac{\mu\sqrt{2M_{h,\mathcal{X}}}(A_{k+1} - A_{k})}{\sqrt{\mu_{h}}A_{k}} \mathbb{E}[\|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}] + \frac{\mu}{2\mu_{h}} \mathbb{E}[\|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{2}^{2}] \\
+ \frac{\mu(A_{k+1} - A_{k})}{2\mu_{h}^{2}A_{k}} \mathbb{E}[\|\mathbf{y}_{k+1} - \mathbf{y}_{k}\|_{*}^{2}] \\
\leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \frac{\sqrt{2M_{h,\mathcal{X}}}(A_{k+1} - A_{k})^{2}}{\sqrt{\mu_{h}}A_{k}^{2}} C_{0} + \frac{(A_{k+1} - A_{k})^{2}}{2\mu\mu_{h}A_{k}^{2}} C_{0}^{2} \\
+ \frac{(A_{k+1} - A_{k})^{3}}{2\mu\mu_{h}^{2}A_{k}^{3}} C_{0}^{2} \\
\leq -\frac{A_{k+1} - A_{k}}{A_{k}} \mathcal{D}_{k+1} + \frac{\sqrt{2M_{h,\mathcal{X}}}(A_{k+1} - A_{k})^{2}}{\sqrt{\mu_{h}}A_{k}^{2}} C_{0} + \frac{(A_{k+1} - A_{k})^{2}}{2\mu\mu_{h}^{2}A_{k}^{2}} \left(\mu_{h} + \frac{A_{k+1} - A_{k}}{A_{k}}\right) C_{0}^{2},$$

where $C_0 = (L + \mu)\sqrt{2M_{h,\mathcal{X}}/\mu_h} + \sigma + \|\nabla f(\mathbf{x}^*)\|_*$. Multiply A_k to both sides and we get

$$\mathbb{E}[A_{k+1}\mathcal{D}_{k+1} - A_k\mathcal{D}_k] \le \frac{(A_{k+1} - A_k)^2}{2\mu_h^2\mu A_k} \left[\left(\mu_h + \frac{A_{k+1} - A_k}{A_k}\right) C_0^2 + 2\sqrt{2M_{h,\mathcal{X}}\mu_h^3}\mu C_0 \right].$$

Note that we have $\mathcal{E}_k = A_k \mathcal{D}_k$. Setting $A_k = k(k+1)/2$, $A_0 = 1$ and summing from 0 to k-1 yields

$$\mathcal{E}_k \le \mathcal{E}_0 + \frac{(\mu_h + 2)C_0^2 + 2\sqrt{2M_{h,\mathcal{X}}\mu_h^3}\mu C_0}{2\mu_h^2\mu} \sum_{i=0}^{k-1} \frac{(A_{j+1} - A_j)^2}{A_j}.$$

Finally, we plug in the definition of \mathcal{E}_k to get

$$\mathbb{E}[f(\mathbf{x}_k) - f(\mathbf{x}^*)] \le \frac{2\mathcal{E}_0}{k(k+1)} + \frac{(\mu_h + 2)C_0^2 + 2\sqrt{2M_{h,\chi}\mu_h^3}\mu C_0}{\mu_h^2\mu(k+1)}.$$

B.3. Proof of Theorem 5.5

Proof of Theorem 5.5. Since we have $\mathcal{E}_{k} = A_{k}(f(\mathbf{x}_{k}) - f(\mathbf{x}^{*}) + \mu D_{h}(\mathbf{x}^{*}, \nabla h(\mathbf{y}_{k})))$ by (5.4). We have $\mathbb{E}[\mathcal{E}_{k+1} - \mathcal{E}_{k}] = \mathbb{E}[A_{k+1}f(\mathbf{x}_{k+1}) - A_{k}f(\mathbf{x}_{k}) - (A_{k+1} - A_{k})f(\mathbf{x}^{*})] \\
+ \mathbb{E}[\mu A_{k+1}D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})) - \mu A_{k}D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k}))] \\
= \mathbb{E}[A_{k+1}(f(\mathbf{x}_{k+1}) - f(\mathbf{z}_{k+1})) + A_{k}(f(\mathbf{z}_{k+1}) - f(\mathbf{x}_{k})) + (A_{k+1} - A_{k})(f(\mathbf{z}_{k+1}) - f(\mathbf{x}^{*}))] \\
+ \mathbb{E}[\mu A_{k+1}D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})) - \mu A_{k}D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k}))] \\
\leq \mathbb{E}[A_{k+1}(f(\mathbf{x}_{k+1}) - f(\mathbf{z}_{k+1})) + A_{k}[\langle \nabla f(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k} \rangle - \mu D_{h}(\mathbf{x}_{k}, \mathbf{z}_{k+1})]] \\
+ \mathbb{E}[(A_{k+1} - A_{k})[\langle \nabla f(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}^{*} \rangle - \mu D_{h}(\mathbf{x}^{*}, \mathbf{z}_{k+1})]] \\
+ \mathbb{E}[\mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k}))] + \mu (A_{k+1} - A_{k})D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k}))] \\
+ \mathbb{E}[-\mu A_{k}D_{h}(\mathbf{x}_{k}, \mathbf{z}_{k+1}) + \mu (A_{k+1} - A_{k})[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \mathbf{z}_{k+1})]] \\
+ \mathbb{E}[\mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k}))]], \tag{B.4}$

where the inequality is due to the strong convexity of f and the last equation follows from (5.6a). Denote $C_k = (A_{k+1} - A_k)\langle \nabla f(\mathbf{z}_{k+1}), \nabla h^*(\mathbf{y}_k) - \mathbf{x}^* \rangle$, and then we proceed to bound C_k as follows.

$$C_{k} = (A_{k+1} - A_{k})\langle \nabla f(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\rangle + (A_{k+1} - A_{k})\langle \nabla f(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k+1} - \mathbf{x}^{*})\rangle$$

$$= (A_{k+1} - A_{k})\langle \nabla f(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\rangle + \mu A_{k+1}\langle \mathbf{y}_{k} - \mathbf{y}_{k+1}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle$$

$$+ \mu (A_{k+1} - A_{k})\langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle - (A_{k+1} - A_{k})\langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle$$

$$= (A_{k+1} - A_{k})\langle \nabla f(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\rangle - \mu A_{k+1}D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}))$$

$$+ \mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})] - (A_{k+1} - A_{k})\langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle$$

$$\leq (A_{k+1} - A_{k})\langle \nabla f(\mathbf{z}_{k+1}; \xi_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \nabla h^{*}(\mathbf{y}_{k+1})\rangle$$

$$- \mu (A_{k+1} - A_{k})\partial_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) - \frac{\mu \mu_{h} A_{k}}{2} \|\nabla h^{*}(\mathbf{y}_{k+1}) - \nabla h^{*}(\mathbf{y}_{k})\|_{2}^{2}$$

$$+ \mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1}))] - (A_{k+1} - A_{k})\langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}^{*}\rangle$$

$$+ \mu (A_{k+1} - A_{k})\langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle, \tag{B.5}$$

where the second equality is due to (5.6b), the third equality follows from the three point identity and the inequality is a result of the strong convexity of h. To make it brief, we define

$$\mathbf{w} = \frac{A_{k+1} - A_k}{A_{k+1}} \nabla h^*(\mathbf{y}_{k+1}) + \frac{A_k}{A_{k+1}} \mathbf{x}_k.$$
 (B.6)

We immediately have that $\mathbf{z}_{k+1} - \mathbf{w} = (A_{k+1} - A_k)/A_{k+1}(\nabla h^*(\mathbf{y}_k) - \nabla h^*(\mathbf{y}_{k+1}))$ by (5.6a). Therefore we can further bound C_k in the following way.

$$C_{k} \leq A_{k+1} \langle \nabla \widetilde{f}(\mathbf{z}_{k+1}; \boldsymbol{\xi}_{k+1}), \mathbf{z}_{k+1} - \mathbf{w} \rangle - \frac{\mu \mu_{h} A_{k+1}^{2} A_{k}}{2(A_{k+1} - A_{k})^{2}} \| \mathbf{z}_{k+1} - \mathbf{w} \|_{2}^{2}$$

$$+ \mu A_{k+1} [D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1}))] - (A_{k+1} - A_{k}) \langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}^{*} \rangle$$

$$- \mu (A_{k+1} - A_{k}) D_{h} (\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \mu (A_{k+1} - A_{k}) \langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*} \rangle$$

$$\leq A_{k+1} \langle \nabla \widetilde{f}(\mathbf{z}_{k+1}; \boldsymbol{\xi}_{k+1}), \mathbf{z}_{k+1} - \mathbf{w} \rangle - \frac{\mu \mu_{h} A_{k+1}^{2} A_{k}}{(A_{k+1} - A_{k})^{2}} D_{h}(\mathbf{z}_{k+1}, \mathbf{w})$$

$$+ \mu A_{k+1} [D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1}))] - (A_{k+1} - A_{k}) \langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}^{*} \rangle$$

$$- \mu (A_{k+1} - A_{k}) D_{h} (\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \mu (A_{k+1} - A_{k}) \langle \nabla h(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}^{*} \rangle$$

$$\leq A_{k+1} \langle \nabla \widetilde{f}(\mathbf{z}_{k+1}; \boldsymbol{\xi}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1} \rangle - \frac{\mu \mu_{h}^{2} A_{k+1}^{2} A_{k}}{2(A_{k+1} - A_{k})^{2}} \| \mathbf{z}_{k+1} - \mathbf{x}_{k+1} \|_{2}^{2}$$

$$+ \mu A_{k+1} [D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1}))] - (A_{k+1} - A_{k}) \langle \Delta(\mathbf{z}_{k+1}), \nabla h^{*}(\mathbf{y}_{k}) - \mathbf{x}^{*} \rangle$$

$$- \mu (A_{k+1} - A_{k}) D_{h} (\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \mu (A_{k+1} - A_{k}) \langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*} \rangle, \quad (B.7)$$

where in the second inequality we use the smoothness of h and in the last inequality we use (5.6c) and the strong convexity of h. Take expectation and note that $\Delta(\mathbf{z}_{k+1})$ is independent of \mathbf{y}_k , we have

$$\mathbb{E}[C_{k}] \leq \mathbb{E}\left[A_{k+1}\langle\nabla f(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2}\right] \\ + \mathbb{E}[\mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1}))] + A_{k+1}\langle\Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle] \\ + \mathbb{E}[-\mu(A_{k+1} - A_{k})D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \mu(A_{k+1} - A_{k})\langle\nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle] \\ \leq \mathbb{E}\left[A_{k+1}\left(f(\mathbf{z}_{k+1}) - f(\mathbf{x}_{k+1}) + \frac{L}{2}\|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2}\right) - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2}\right] \\ + \mathbb{E}[\mu A_{k+1}[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k+1})))] + A_{k+1}\langle\Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle] \\ + \mathbb{E}[-\mu(A_{k+1} - A_{k})D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \mu(A_{k+1} - A_{k})\langle\nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle],$$

where the second inequality follows from Assumption 3.4. Submitting the above inequality back into B.4 yields

$$\begin{split} &\mathbb{E}[\mathcal{E}_{k+1} - \mathcal{E}_{k}] \\ &\leq \mathbb{E}\left[\left(\frac{LA_{k+1}}{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|^{2} - \mu A_{k}D_{h}(\mathbf{x}_{k}, \mathbf{z}_{k+1})\right] \\ &+ \mathbb{E}[\mu(A_{k+1} - A_{k})[D_{h}(\mathbf{x}^{*}, \nabla h^{*}(\mathbf{y}_{k})) - D_{h}(\mathbf{x}^{*}, \mathbf{z}_{k+1})] - A_{k+1}\langle \Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle] \\ &+ \mu(A_{k+1} - A_{k})\mathbb{E}[-D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1})) - \mathbf{x}^{*}\rangle] \\ &= \mathbb{E}\left[\left(\frac{LA_{k+1}}{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2} - A_{k+1}\langle \Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle - \mu A_{k}D_{h}(\mathbf{x}_{k}, \mathbf{z}_{k+1})\right] \\ &+ \mu(A_{k+1} - A_{k})\mathbb{E}[\langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \mathbf{x}^{*} - \nabla h^{*}(\mathbf{y}_{k})\rangle - D_{h}(\nabla h^{*}(\mathbf{y}_{k}), \mathbf{z}_{k+1})] \\ &+ \mu(A_{k+1} - A_{k})\mathbb{E}[-D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \nabla h^{*}(\mathbf{y}_{k})) + \langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \mathbf{x}^{*}\rangle] \\ &\leq \mathbb{E}\left[\left(\frac{LA_{k+1}}{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2} - A_{k+1}\langle \Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle\right] \\ &- \mu(A_{k+1} - A_{k})\mathbb{E}[\langle \nabla h(\mathbf{z}_{k+1}) - \mathbf{y}_{k}, \nabla h^{*}(\mathbf{y}_{k+1}) - \nabla h^{*}(\mathbf{y}_{k})\rangle] \\ &= \mathbb{E}\left[\left(\frac{LA_{k+1}}{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2} - A_{k+1}\langle \Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle\right] \\ &- \mu(A_{k+1} - A_{k})\mathbb{E}[O_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{z}_{k+1})], \end{cases}$$

where the first equation follows from the three point identity, in the last inequality we drop the negative term $-\mu A_k D_h(\mathbf{x}_k, \mathbf{z}_{k+1})$ and the last equation again follows from the three point identity. We further rearrange the above inequality and obtain

$$\mathbb{E}[\mathcal{E}_{k+1} - \mathcal{E}_{k}] \leq \mathbb{E}\left[\left(\frac{LA_{k+1}}{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}A_{k}}{2(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2} - A_{k+1}\langle\Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle\right] \\
- \mu(A_{k+1} - A_{k})\mathbb{E}[D_{h}(\nabla h^{*}(\mathbf{y}_{k+1}), \mathbf{z}_{k+1})] \\
\leq \mathbb{E}\left[\frac{A_{k+1}}{2}\left(L - \frac{\mu\mu_{h}^{2}A_{k+1}}{(A_{k+1} - A_{k})^{2}}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2}\right] \\
+ \mathbb{E}\left[-\frac{\mu\mu_{h}^{2}A_{k+1}^{2}(A_{k} - 1)}{2(A_{k+1} - A_{k})^{2}} \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2} - A_{k+1}\langle\Delta(\mathbf{z}_{k+1}), \mathbf{z}_{k+1} - \mathbf{x}_{k+1}\rangle\right], \tag{B.8}$$

where we used the fact that $D_h(\nabla h^*(\mathbf{y}_{k+1}), \mathbf{z}_{k+1}) \geq 0$. We choose $A_k = \mu \mu_h^2(k+1)(k+2)/(4L) + 1$ and thus

$$S_1 \le \mathbb{E}\left[\frac{A_{k+1}}{2}\left(L - L\frac{k+3}{k+2}\right) \|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_2^2\right] \le 0.$$
(B.9)

For S_2 , using Cauchy-Schwartz inequality yields

$$S_{2} \leq \mathbb{E}\left[A_{k+1}\|\Delta(\mathbf{z}_{k+1})\|_{2}\|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2} - \frac{\mu\mu_{h}^{2}A_{k+1}^{2}(A_{k} - 1)}{2(A_{k+1} - A_{k})^{2}}\|\mathbf{z}_{k+1} - \mathbf{x}_{k+1}\|_{2}^{2}\right]$$

$$\leq \mathbb{E}\left[\frac{(A_{k+1} - A_{k})^{2}}{2\mu\mu_{h}^{2}(A_{k} - 1)}\|\Delta(\mathbf{z}_{k+1})\|_{2}^{2}\right]$$

$$\leq \frac{(A_{k+1} - A_{k})^{2}\sigma^{2}}{2\mu\mu_{h}^{2}(A_{k} - 1)},$$
(B.10)

where for the second inequality we use the simple inequality that $bx - ax^2/2 \le b^2/2a$, $\forall a > 0$ and the last inequality follows from the fact that $\mathbb{E}[\|\Delta(\mathbf{z}_{k+1})\|_2^2] \le \sigma^2$. Then we submit (B.9) and (B.10) back into (B.8) and obtain

$$\mathbb{E}[\mathcal{E}_{k+1} - \mathcal{E}_k] \le \frac{(A_{k+1} - A_k)^2 \sigma^2}{2\mu \mu_h^2 (A_k - 1)}.$$

Summing up the above inequality from 0 to k-1 yields

$$\mathbb{E}[\mathcal{E}_k] \le A_0 \mathcal{E}_0 + \frac{\sigma^2}{2L} \sum_{i=0}^{k-1} \frac{i+2}{i+1} \le A_0 \mathcal{E}_0 + \frac{\sigma^2 k}{L}.$$

Recall the definition that $\mathcal{E}_k = A_k(f(\mathbf{x}_k) - f(\mathbf{x}^*) + \mu D_h(\mathbf{x}^*, \nabla h(\mathbf{y}_k)))$, we have

$$\mathbb{E}[f(\mathbf{x}_k) - f(\mathbf{x}^*)] \le \frac{\mathcal{E}_k}{A_k} \le \frac{4LA_0\mathcal{E}_0 + 4\sigma^2 k}{\mu \mu_h^2 (k+1)(k+2)},$$

which completes the proof.

C. Proof of Technical Lemmas

In this section, we provide the proof of technical lemmas used in the proof of main theorems.

Proof of Lemma B.1. By smoothness of f we have

$$\|\nabla f(\mathbf{x})\|_* = \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}^*)\|_* + \|\nabla f(\mathbf{x}^*)\|_* \le L\|\mathbf{x} - \mathbf{x}^*\| + \|\nabla f(\mathbf{x}^*)\|_*.$$

By the strong convexity of h we have

$$D_h(\mathbf{x}, \mathbf{x}') = h(\mathbf{x}) - h(\mathbf{x}') - \langle \nabla h(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle \ge \frac{\mu_h}{2} \|\mathbf{x} - \mathbf{x}'\|^2.$$

Combining the two inequalities above yields

$$\|\nabla f(\mathbf{x})\|_* \leq \frac{\sqrt{2}L}{\sqrt{\mu_h}} \sqrt{D_h(\mathbf{x}, \mathbf{x}^*)} + \|\nabla f(\mathbf{x}^*)\|_* \leq \frac{L\sqrt{2M_{h,\mathcal{X}}}}{\sqrt{\mu_h}} + \|\nabla f(\mathbf{x}^*)\|_*,$$

where $M_{h,\mathcal{X}} = \sup_{\mathbf{x},\mathbf{x}' \in \mathcal{X}} D_h(\mathbf{x},\mathbf{x}')$.

D. Auxiliary Lemmas

The following standard results on duality and Bregman divergence are wildly used in the analysis of mirror descent (Lan, 2012; Ghadimi & Lan, 2012; Krichene et al., 2015; Krichene & Bartlett, 2017). Detailed discussion on the properties of Bregman divergence can be found in Banerjee et al. (2005).

Lemma D.1. If h is μ_h -strongly convex for some constant $\mu_h > 0$, then its conjugate function h^* is $1/\mu_h$ -smooth.

Lemma D.2. Suppose h is strongly convex, for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, it holds that

$$\nabla h^*(\nabla h(\mathbf{x})) = \mathbf{x}, \quad D_h(\mathbf{x}, \mathbf{x}') = D_{h^*}(\nabla h(\mathbf{x}'), \nabla h(\mathbf{x})).$$

The following lemma characterizes the upper bound of $p\text{-series }\sum_{j=1}^k 1/j^p.$

Lemma D.3. (Chlebus, 2009) For p < 0, the divergence rate of p-series is given by

$$1 + \frac{k^{1-p} - 1}{1 - p} \le \sum_{j=1}^{k} \frac{1}{j^p} \le \frac{(k+1)^{1-p} - 1}{1 - p}.$$

Lemma D.4 (Three Point Identity (Chen & Teboulle, 1993)). Let $D_h(\cdot, \cdot)$ be a Bregman divergence with distance generating function h. For any \mathbf{a} , \mathbf{b} that are interior points of dom h and $\mathbf{c} \in \text{dom } h$, we have

$$D_h(\mathbf{c}, \mathbf{a}) + D_h(\mathbf{a}, \mathbf{b}) - D_h(\mathbf{c}, \mathbf{b}) = \langle \nabla h(\mathbf{b}) - \nabla h(\mathbf{a}), \mathbf{c} - \mathbf{a} \rangle.$$