Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions

A. Proof of Convergence of Continuous-time Dynamics

In this section, we provide a detailed Lyapunov function based analysis for the convergence of continuous-time dynamics
(3.9).

Proof of Theorem 4.1. Applying 1t6 Formula (Itd, 1944) to the Lyapunov function in (4.1) yields

&, &, &, Yer: + 0%,
d& = —-d —,dX —,dY; — d Al
& 5 t+<(“)Xt’ t>+<8Yt’ t>+2ﬂ2tr o, aYtzUt t, (A.1)
where we use o to make the expression o (X, t) compact when no confusion arises. Note that we have
0 .
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Thus, combining the above partial derivatives with the SDE in (3.9), we obtain

agt - + *
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and

<glg/t’dyi> — BB (V (XAt + u(Y; — VA(XL) + VEadB,, VA* (Y;) — x7).

Submitting the above equations back into (A.1) yields
de, = Bue™ [f(X0) = (") + (VF(X0), x" = Xp))dt + fre® Dy (x*, VA* (V7)) dt
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where the inequality is due to the strong convexity of f. By three point identity (Chen & Teboulle, 1993), we have
Dy (x*,Vh*(Yz)) + Dn(VRh*(Y), X)) — Dp(x*, X)) = (VA(X}) = Y, x* — VA (WR)).

Therefore, we obtain
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Integrating d&; from 0 to ¢, we obtain

L, B * * ¢ 66366T T2, *
E <& — B’ (Vh*(Y,) — x*,o.dB,) + Ttr (O'T V<°h (YT)UT)dr.
0 0 12
Taking expectation and by the property of Brownian motion, we have
t 55126/#
E[&] < & + E[/ ——tr (U:VQh*(Y;-)O'7-)dT:| .
0

By the definition of £; and the non-negativity of Dj,«, we obtain the upper bound on the expected primal function value gap

ts 53 eBr
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which completes the proof. O

E[f(X,) — f(x*)] < e P& + erIE[/O tr (Ujvzh*(lﬂ)ar)dr}
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B. Proof of Convergence for Discrete-time Algorithms

We provide proofs of convergence rates of the proposed Algorithms here. For the shorthand of notation, we use A(x) =
G(x;€) — V f(x) to denote the bias between the stochastic gradient and the full gradient, where x € R and ¢ is a random
vector.

B.1. Proof of Theorem 5.1

Proof of Theorem 5.1. For the ease of presentation, we define Dy, = f(xx) — f(x*)+puDp= (¥, Vh(x*)). By the definition
of Lyapunov function in (5.4), we have & = A;Dy. Then

E[Dy11 — Di] = E[f (xk+1) — f(%Xk) + uDp (Yrt1, VR(X")) — pDp= (1, VA(x)]
= E[f(xp+1) — f(xx) + p{x" = VA" (Yi11), Y — Yrr1) — #Dp (Y, Yir1)]

A — A
=E|f(Xp41) — f(xx) + ktlélikk@(* — VR (Yit1), VI (Xkt1))
[Apy1 — Ak, . |
+E T<X — VA (Yit1)s 11(Yrt1 — VR(Xk41)) + A(Xp41)) — pDhs (i, Yrt1)
ol Appr — A,
=E|f(xXkt1) — f(xx) + T<X = X1, VI (Xkt1)) + Xk — Xpt1, VF(Xk11))
[Apy1 — Ak, . |
+E T<X = VR (Yig1), 1(Yi41 — VA(Xi41)) + Axpg1)) — #Dpe (Y, Y1) | »

where the second equality is due to the three point identity, the third equality follows from (5.3b) and the last one follows
from (5.3a). By strong convexity of f we have

(x* = Xpt1, VF(Xp11)) < F(X7) = f(Xp11) — pDp(X*, Xpe41),
(X = Xpt1, VI (Xpet1)) < F(xk) = f(Xkr1) — wDn(Xp, Xiet 1),

which immediately implies

E[Dy+1 — Dk
(A — A
<E %Gbﬁ) — f(Xkg1) — D (X", Xpeq1)) — NDh(Xk7Xk+1):|
_ Ak+1 B Ak * *
B O = VI k), (ke = VRG41)) + Ak1)) = 1D (Y5 Vi)
(A1 — A
=E Hzikk( - Dk+1 + MDh* (Yk-‘rla Vh(x*)) - MDh(X*,Xk+1)) — /ch(Xk7Xk+1):|
B Ak+1 - Ak * * " "
+E T<X — VA (yrs1), (Y1 = VA(Xki1)) + AXpp1)) — pDu(VE* (yrr1), VA (y&))
Appr — A
= Hilk “E[~Dis1 + nDne (Y1, VA(X")) = pDi (" X511)] - %Hw*(yk) — VI (yis1) |
Appr— A
TR [ = Y (), s = VR(k)) + (6 = VR (v, Alxkin)]
Appr— A
B[~ D — uDn (VR (Y1) %41)]
=~ FGEIVE (i) = VI ()P + SB[ = VA (), A1)
Appr — A Apyr — A
< S SRR D] + S EREI e — VR (i), Alsen))] - B IVA () - VS (i)

where the second inequality is due to the strong convexity of i and the last equality follows from three point identity. We
now give an upper bound of the last term in the above inequality. Note that y, is independent of A(xy1) according to
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(5.3b) and that E[A(xx+1)] = 0, then

Apr— A * *
%E[(x = VR (yk+1), AXk+1))] — %HVh (i) — VA (ys1)]2

A —A
= A ZARTR () = VA (), )] — P48 [V () - T ke

where the last inequality use the fact that bz — az?/2 < b?/(2a) for a > 0 and E[||A(xg41)|%|xk+1] < o?. This
immediately yields

(Ags1 — Ag)? o2

E[Ak11Dg41 — ApDy) < A T

Plugging the definition that &, = A Dy, into the above inequality, and summing from O to £ — 1, we obtain

2 k-1 2
o (Aig1 — 4))
El&:] <& + .
Gl < bt g ; A;

Choose Ay, = k(k + 1)/2 and Ay = 1, we can see that the step size of Algorithm 1 is 1/k. Applying Lemma D.3 and the
definition of & yields the following convergence rate
2
E[gk] S 250 + 20 )
A 7 k(k+1) (k4w

E[f(xx) — f(x")] <

B.2. Proof of Theorem 5.3

We first lay down the following technical lemma about the gradient bound of f over X.

Lemma B.1. Suppose f is p-strongly convex and L-smooth. Then we have
L.\/2M}, x .
IV« < ————= + VS]],
vV Hh
where M}, x = supy e x Dn(x,x').

Proof of Theorem 5.3. Recall the Lyapunov function in (5.4) and the definition that £, = AxDj. Similar to the proof of
Theorem 5.1 we have

E[Dg41 — Di] = E[f (xk+1) — f(xx) + ppDp= (Yr+1, VR(X")) — Dy (yx, VA(x")]
= E[f(xk+1) = f(xx) + (X" = VR*(y1), Yk — Yi+1) + 4D (Y1, Y1)

A — A
= E| S (xs1) = floxe) + =H R (X = VA (yr), VF (x041))
[Ag+1 — Ag, . |
+E T<X — VR*(yr), u(yr — VA(Xk41)) + AXpg1)) + pDpe (Yrg1, Vi)
ol App1 — Ag
=E|f(xkt1) — f(xx) + T<X — Xpt1, VI (Xpt1)) + (X — Xpg1, VI (Xk41))
[Apt1 — Ai, . |
+E T<X — VA (1), (Y& — VA(Xk11)) + AXks1)) + wDpe (Yrr1, Y5) |

where the second equation comes from the three point identity, the third and fourth equations are due to (5.5b) and (5.5a)
respectively. Note that h is pp-strongly convex and Lj-smooth. Without loss of generality, we assume that L;, = 1;
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otherwise, we can replace h with h’ = h/Lj, which is p, / Lj,-strongly convex and 1-smooth. By strong convexity of f we
have

Apt1 — Ay
Ay,

A1 — A 1
L TR e VR (k) iy — VI(X11)) + A(xger1)) + £Dpe (Y1, Vi)

E[Dy41 —Dk] <E (f(x*) = f(%hr1) = pDn(x* Xk 41)) — pDp (Xp, Xg 1)

+E

Apyp1 — Ay
Ay

<

A1 — Ag ]

+E (x* = VB*(yr), 1(y& — VA(Xr41)) + Axpt1)) + pDn+ (Yrt1, Yi)

Aprs — A -
- ’“*114]6’“1@[ — Dpg1 + p((x* = VR* (Y41), VA(Xkt1) = Yit1) — Dh(vh*(yk+1>7xk+1)):|
[ Ar — Ak
| A
A — A
= Dy + uE {Dh* (Yk+1,Yk) +

A1 — Ay

+E (x* = Vh*(yi), 1(yr — VA(Xk41)) + AXps1)) + #Dn (Yr+1, Vi)

App1 — Ay
Ay,

(x* — VR (y), A(xk+1>>]

E[(Vh(xk+1) = Y1, VR (i) = VR* (Yi41)) — Drs (VA(Xk41), Yi+1)]

A1 — A
L TR — VR (y1), VA(Xjet1) — Y1) + (X5 = VR (yi), yi — Vi(x11))]
Apy1 — Ay

D E
k+1 T 1 [ A

(x* = VR (¥r), Y& — Yi+1) + Di= (Y1, Yk):|
- Ak * * 1 2
+p—————E[IVh(xt1+1) = Y1l [VR*(y£) = VA" (Y1) — §\|Vh(Xk-+1) = Yer1lli]

where the second inequality follows from the definition of Dy and that D, (X, Xk+1) is non-negative, the first equality is
due to the three point identity, and the last inequality is due to the 1/uy,-smoothness of h*, Cauchy’s inequality and the fact
that yy, is independent of A(xy1) and E[A(x+1)] = 0. For the last term in the above inequality, we have

* * 1
[Vh(Xkt1) = Vel VA (y&) = VA (Yr+1) || — §||Vh(xk+1) — Yl

—§(||Vh(xk+1) = Yittlls = VR (yk) = VR (yis1)|)” + §||Vh (V&) = VR (yrs1)1?

1 * *
< SIVR*(yr) = VR (yrs1) 1.

Therefore, we obtain

A — A, A — A
E[Dg41 — D] < —H;likk@kﬂ + ME[W@* — VR (¥k), Yk — Yr41) + Dh*(Yk—&-laYk)}
A — A 1
+ p =R | [ VR (y) = VR (v |2
Ay 2
Apsr — A Apir — Ap . L 1
< - ED g+ B | R = VR ()l lyen — el + 5—llyee — mi}
Ay | A 2pn
Apsr —Ap [ 1 ,
kAl 7 Pk 2 _
+u i 22 |Vi+1 — Yells
Apy1 — Ay [(Akt1 — Ag)\/2Mp x 1 )
< Lk~ Ak E ’ e — -~
< i k1 + 4 _ JiinAr lYes1 — vl + 2Mh||yk+1 vl

Apy1 — Ay

1
SR LY /) - — yill? B.1
+I'L Ak |:2‘u%b|y}€+l yk||*:|a ( )
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where the second inequality follows from Cauchy’s inequality and the 1/j,-smoothness of h*. Further by (5.5b) we have

J

A —A 1
Elllyr+1 — yell«] = %E l:HN(vf(Xde) + A(xk41)) + Y& — VR(Xp41)

A A —_
= Huli AkkE[HVf(XHl)H* AR+ )l + pllyr — VAKR11) 4]
(Ak+1 — Ak) (L 2Mh,X * — ) B
- V) + o+ pE[||ye — VA(xx ] ) 2
1A Vi IVf ()] o+ pE[|ly (Xk+1) |] (B.2)

where the second inequality is due to Lemma B.1. By (5.5a) we have that

Ay
A1 — Ay,

lye = Vh(xrss)ll. = Hw<xk+1 ; (Xios1 — xk>> ~ Vhixes)

*

< A u A ” H
X X
= A, i k+1 k12

= ||[VR*(y&) — Xi+1]|2

< /% (B.3)
K

Substituting (B.1) with and (B.2) and (B.3) yields

Ay — A i/ 2Mp x (Ag 1 — Ag)
E[Dysr = D) < == Dy + T Ellyie =yl + 5Bl -l

p(Ag1 — Ay
e By -yl
2 A

o Ak — Ak Dios + Y 2Mp,x (Apt1 — Ak)2CO Mcﬂ
= Ay, VIR A2 2upn Az O

(A1 = 40)°*

2upp AY O

e A A V2Mp x(Agy1 — Ap)? 4 At — Ap)? 4 A = Ak o
= Ay, h N 0 22 A2 4 Ay 0

where Co = (L + p)\/2Mp x/pn + o + ||V f(x*)]]. Multiply Ay, to both sides and we get

A — Ap)? A — A
E[Ak41Diy1 — ArDy] < W l:(/ih + ’“jk’“)cg + 24/ 2Mh,X,ui/$C():| .
3

Note that we have & = A Dy. Setting Ay, = k(k + 1)/2, Ap = 1 and summing from 0 to & — 1 yields

E < &+

(1n + 2)CE + 24/2M, 13 1Co ’“i (Ajp1 — Aj)?

203 = A;

Finally, we plug in the definition of & to get

28 (un + 2)C2 + 24/2Mj, 113 uCo
(k+1) piyp(k +1) '

ELf(x0) — S0)) < 7
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B.3. Proof of Theorem 5.5
Proof of Theorem 5.5. Since we have &, = A, (f(xx) — f(x*) + pDp(x*, Vh(yr))) by (5.4). We have

E[Ex1 — &) = E[Ap1 f(Xpt1) — Apf (xk) = (Apgr — Ap) f(x7)]
+ E[pAk11Dn(x*, VA" (Yi+1)) — A Dy (x*, VR*(yk))]
= E[Ap11(f(xk+1) = f(Zr+1)) + A (f(Zr+1) — F(xk)) + (Akt1 — Ap)(f(Zr41) — F(X7))]
+E[pAg41Dn(, X", VI (yi41)) — AR D (X", V™ (y1))]
S E[Ags1(f(xk+1) = f(zr41) + AV (2 11), 2011 — Xk) — pDp Xk, Z41)]]

+E[(Apt1 — A (Vf(Zr41) Zrt1 — X7) — pDp(x", Zp41)]]

+ E[pdpi1 [Dn(x", VR (yr41)) — Dp(x*, VR*(y&))] + 1(Ak1 — Ar) Du(x™, VA (y1))]

= E[Ap+1(f (%k+1) = f(Zh+1)) + (Akr1 — A)(V f(2Zk41), VR (yi) — x7)]

+ E[—pAr DXk, Ze41) + (A1 — Ap)[Di(x*, VA (yr)) — Di(x", 241)]]

+ E[pdpi1 [Dn(x", VR* (yi41)) — Dn(x", VR (y&))]], (B.4)
where the inequality is due to the strong convexity of f and the last equation follows from (5.6a). Denote Cy, = (Agt1 —
ARV f(zk+1), VR*(yk) — x*), and then we proceed to bound C}, as follows.

Cr = (Ak1 — Ae)(V f(Zr41), VR (yi) = VI (Y1) + (Akr1 — A)(Vf(Zk41), VA (Y1 — x7)
= (Akr1 — Ap)(Vf(Zr11), VA (Y1) — VA (Yit1)) + Ak 1Yk — Yt 1, VA (Yit1) — X7)
+ u(Akr1 — Ap)(VR(Zg+1) — Y, VRO (Y1) — X7) = (k1 — A (A(2Zgt1), VRS (Vi) — X7)
= (Ap+1 — Ae)(V f(241), VR (k) = VI (Yi41)) — A1 DR (VR (yi41), VR (yi))
+ Ak [Dr(x*, VA (yk)) — Dip(x", VA (yi11)] — (A1 — Ak)(A(Zk41), VA" (Yr41) — X7)
+ w(Apr1 — Ap)(VA(Zkg1) — Y, VR (Yry1) — X5)

< (Aptr = Ae) (VS (Zrt1; Ert1), VA (Y) = VA (Yit1))
— i(Axss — ADDUTR (x10), T (i) — 2 00 ) — T ()

+ pAg 1 [Dp (x5, VR (y1)) — Dp(x*, VA* (yrt1))] = (Apt1 — Ak)(A(zky1), VA* (yr) — X5)
+ 1(Ags1 — Ar)(Vh(2i11) — ¥k, VA (Yig1) — X7), (B.5)

where the second equality is due to (5.6b), the third equality follows from the three point identity and the inequality is a
result of the strong convexity of h. To make it brief, we define
 Apg — Ay

Ap
w=—"""""Vh*(y + — X} B.6
A (Yk+1) A (B.6)

We immediately have that zx 1 — W = (A1 — Ak)/Ak+1(Vh*(yr) — VA*(yi+1) by (5.6a). Therefore we can further
bound C} in the following way.

2

Cr < Api1 (Vf(Zh41: Eht1), Zog1 — W) — m

+ pAp+1[Dr(x*, VR*(yx)) — Da(x", VA" (Y41))] = (Ak+1 — Ak)(A(zk41), VR (yi) — X7)

— WAg+1 — Ag) D (VA (yr+1), VR (1)) + (A1 — Ap)(VI(2k41) — i, VR (YE41) — X7)

= fupn A7y Ay
< A1 (Vf(Zhg136k41) Zhp1 — W) — 7—————5 Di(Zr11, W)
(Apyr — Ag)?

+ Ak 1 [Dn(x*, VR (y)) — Din(x*, VA" (yi11))] — (Akr1 — Ar)(A(zk11), VR (yr) — X¥)

— u(Ags1 — Ag) Do(VR* (yrt1), VR (yi)) + (A1 — A)(VR(Zk11) — Yi, VR (Y1) — X5)
< Apst{V f (215 1) Zir1 — X)) — mﬂzkﬂ — xk413

2(Ap1 — Ap)?
+ pAk1[Dr(x*, VA (yk)) — D (x", VA* (yi11))] = (Akt1 — Ak)(A(Zk+41), VA" (yi) — x7)
— (A1 = Ag) Dr(VR* (Yit1), VA (y8)) + 1(Ak1 — Ak)(VA(Zk+1) = Vi, VR (Y1) — x5, (B.T)

lZks1 — w3
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where in the second inequality we use the smoothness of h and in the last inequality we use (5.6c) and the strong convexity
of h. Take expectation and note that A(zy1) is independent of yj, we have

2 A2
E[Cy] <E |:Ak+1<vf(zk+1)vzk+1 = Xp41) — M|Zk+l - Xk+1|§}
+ ElpAp1[Dn(x", VA* (yk)) — Da(X*, VR (yr41))] + Apr1(A(Zk11); Zh1 — Xis1)]
+ E[—p(Ar1 — Ap) Da(VA (Y1), VA (yi)) + 11(Akt1 — A) (VA(Zk41) = Yi, VA (Yirt1) — X7)]
2 A2
<E l:AkJrl (f(zk+1) = f(Xk41) + §||Zk+1 - Xk+1||§> - MIIZM — xXp41l3
+ ElpAp1[Dn(x", VA* (y&)) — Da(x™, VE* (yr41))] + Aps1 (A(Zp41)s 21 — X))
+ E[—p(Ar1 — Ap) Da(VA* (Y1), VA (yi)) + p1(Ak1 — A)(VA(Zk41) — Yi, VA (Yrt1) — X5,

where the second inequality follows from Assumption 3.4. Submitting the above inequality back into B.4 yields

E[Erq1 — Ek]
LAg i, Af o Ak ) 2
<E — Z - X — AR Dy (Xk, 2
< [( 5 2 Aps1 — Ap)? [Zks1 — X1 |” = AR Dp (X, Zit1)

+ E[u(Art1 — Ap) [Dn(x*, VR* (yi)) — Dp(x*, 2541)] — Ak+1(A(Zk+1)s Zhp1 — Xioy1)]
+ 1(Ak+1 — AR)E[=Dn(VR* (Yk+1), VR (yi)) + (VI(Zk11) — Y&, VR (Yit1)) — X))

LA fupa Ag oy Ay
= E[( Laz P Mzt — Xkr1 13 — Ars1 (A(Zrs1), 2o — Xng1) — AR Dy (X, Zrg1)
2 2(Ap1 — Ag)

+ (A1 — ADE(VI(2Zk41) — i, X" = VI (yr)) — Da(VE* (yi): Zi+1))]
+ (A1 — AR)E[=Dn(Vh* (yk+1), VR* (y&)) + (VI(Zk11) — Yi, VA" (Yi41) — X7)]

LApi1  ma A A ) ) }
<E — Z - X —A Az ,Z - X
< [( 5 S Apr — Ap)? 241 = Xkg1llz = Arg1(A(Zri1), Zhpr — Xps1)

— w(Ag1 — Ap)E[Dn(VE* (Yk), Zkt1) + Du(VR* (Yi41), VA (Yi))]
+ 1(Ar1 — AR)ELVA(zr 1) — Y, VR (Yr11) — VR (y1))]
LApi1 A A ) ) }
=E — z - X —A Az ,Z - X
[( 5 5 Apr — Ap)? 2641 = Xkg1llz = Arg1(A(Zri1), Zhor — Xps1)

— w(Ag+1 — AR)E[Dn(VE* (Yk+1), Zkt1)]s

where the first equation follows from the three point identity, in the last inequality we drop the negative term

— 1A Dy, (X, zr+1) and the last equation again follows from the three point identity. We further rearrange the above
inequality and obtain

LAp1  mp AR Ak ) ) }
Elri1 — & < E — Z . — A Az ,Z - X
(ki1 — &) < K 5 S Apry — AP 12641 = Xk41llz = Aks1 (A(Zr41), Zhss — Xkg1)

— (Aps1 — AR)E[Dp (VA" (Yrt1), Zkt1)]

A1 [t Ap g1 2
<E L— ——~— —
<B| 26 (L= R Yy~ w0

S1

2 A2
ppg A (Ag — 1
- 2?14:111(— Ap)? : |1Zk41 = Xer1ll3 — Arr1(A(Zor1), 2ar1 — Xk+1>]’ (B.8)

+E|

Sa

where we used the fact that Dy, (Vh* (yg+1), Zk+1) > 0. We choose Ay, = ppui(k + 1)(k +2)/(4L) + 1 and thus

Ag k+3
S < E[ 2+1 <L - L/H—Q) |Zk41 — Xk—&-l%} <0. (B.9)
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For S, using Cauchy-Schwartz inequality yields

by Az 1 (A
S <E{Ak+1||ﬁ(zk+1)|2||zk+1—Xk+1|2 ELA::l(—Ak) )||Zk+1 X1l
(A1 — Ak)
E|l —FF<||A(z

(Ak—i-l — Ak»)2(72
T 2upp (A - 1)

where for the second inequality we use the simple inequality that bz — az?/2 < b?/2a, Va > 0 and the last inequality
follows from the fact that E[|| A(zy+1)||3] < 0. Then we submit (B.9) and (B.10) back into (B.8) and obtain

(B.10)

(Apy1 — Ap)?0?
— <L 1"
E[gk-i-l gk] = 2/-///-1%(14147 — 1)

Summing up the above inequality from 0 to & — 1 yields

2k1 2k
< A Zr
+1— ofo+ 7

E[&x] < Aoéo + -+

Recall the definition that & = A (f(xx) — f(x*) + uDr(x*, Vh(yx))), we have

ﬁ < 4LA080 +4O'Qk
Av = ikt Dk +2)°

E[f(xx) — f(x7)] <
which completes the proof. ]
C. Proof of Technical Lemmas
In this section, we provide the proof of technical lemmas used in the proof of main theorems.

Proof of Lemma B.1. By smoothness of f we have

IVF)e = IV () = VEAE) [« + V) < Lllx = xT[ + [V F(xT)]

By the strong convexity of h we have
Dy(x,x) = h(x) = h(x) = (VA(x),x = x') > L2 5 | =x'[1%

Combining the two inequalities above yields

L./2M,
m )+ [V £(x T”ﬂwf(x*)n*,

where My x = sup, wex Dn(x, x’). O

IVf(x

D. Auxiliary Lemmas

The following standard results on duality and Bregman divergence are wildly used in the analysis of mirror descent (Lan,
2012; Ghadimi & Lan, 2012; Krichene et al., 2015; Krichene & Bartlett, 2017). Detailed discussion on the properties of
Bregman divergence can be found in Banerjee et al. (2005).

Lemma D.1. If & is p,-strongly convex for some constant u;, > 0, then its conjugate function h* is 1/p,-smooth.

Lemma D.2. Suppose h is strongly convex, for all x, x’ € X, it holds that

Vh*(Vh(x))) =x, Du(x,x") = Dp-(Vh(x'), Vh(x)).
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The following lemma characterizes the upper bound of p-series 2521 1/4P.

Lemma D.3. (Chlebus, 2009) For p < 0, the divergence rate of p-series is given by

~1 _ (k+1)P—1
1+ —< —_ <

Lemma D.4 (Three Point Identity (Chen & Teboulle, 1993)). Let Dy, (-, -) be a Bregman divergence with distance generating
function h. For any a, b that are interior points of dom h and ¢ € dom h, we have

Dy(c,a) + Dp(a,b) — Dp(c,b) = (Vh(b) — Vh(a),c — a).



