A Semantic Loss Function for Deep Learning with Symbolic Knowledge

A. Axiomatization of Semantic Loss: Details

This appendix provides further details on our axiomatiza-
tion of semantic loss. We detail here a complete axiomati-
zation of semantic loss, which will involve restating some
axioms and propositions from the main paper.

The first axiom says that there is no loss when the logical
constraint « is always true (it is a logical tautology), inde-
pendent of the predicted probabilities p.

Axiom 5 (Truth). The semantic loss of a true sentence is
zero: Vp, LE(true, p) = 0.

Next, when enforcing two constraints on disjoint sets of
variables, we want the ability to compute semantic loss for
the two constraints separately, and sum the results for their
joint semantic loss.

Axiom 6 (Additive Independence). Let o be a sentence
over X with probabilities p. Let 3 be a sentence over Y
disjoint from X with probabilities q. The semantic loss
between sentence o A 3 and the joint probability vector
[p q] decomposes additively: L¥(a A B, [pq]) = L (e, p) +
L*(B,q).

It directly follows from Axioms 5 and 6 that the probabil-
ities of variables that are not used on the constraint do not
affect the semantic loss.

Proposition 5 formalizes this intuition.

Proposition 5 (Locality). Let o be a sentence over X with
probabilities p. For any Y disjoint from X with probabili-
ties q, the semantic loss L¥(a, [pq]) = L*(«, p).

Proof. Follows from the additive independence and truth
axioms. Set 8 = true in the additive independence axiom,
and observe that this sets L¥(3, q) = 0 because of the truth
axiom. O

To maintain logical meaning, we postulate that semantic
loss is monotone in the order of implication.

Axiom 7 (Monotonicity). If « |= 3, then the semantic loss
Ls(«, p) > L8(B, p) for any vector p.

Intuitively, as we add stricter requirements to the logical
constraint, going from S to o and making it harder to sat-
isfy, semantic loss cannot decrease. For example, when (3
enforces the output of an neural network to encode a sub-
tree of a graph, and we tighten that requirement in « to be
a path, semantic loss cannot decrease. Every path is also a
tree and any solution to « is a solution to (.

A first consequence following the monotonicity axiom is
that logically equivalent sentences must incur an identical
semantic loss for the same probability vector p. Hence, the
semantic loss is indeed a semantic property of the logical

sentence, and does not depend on the syntax of the sen-
tence.

Proposition 6. If « = (3, then the semantic loss L¥(a, p) =
Ls(8, p) for any vector p.

A second consequence is that semantic loss must be non-
negative.

Proposition 7 (Non-Negativity). Semantic loss is non-
negative.

Proof. Because « |= true for all «, the monotonicity ax-
iom implies that Vp, L%(a, p) > L®(true, p). By the truth
axiom, L®(true, p) = 0, and therefore L*(«, p) > 0 for all
choices of « and p. O

A state x is equivalently represented as a data vector, as
well as a logical constraint that enforces a value for every
variable in X. When both the constraint and the predicted
vector represent the same state (for example, X1 A = X5 A
X3 vs. [101])), there should be no semantic loss.

Axiom 8 (Identity). For any state x, there is zero semantic
loss between its representation as a sentence, and its repre-
sentation as a deterministic vector: Vx, L(x, x) = 0.

The axioms above together imply that any vector satisfying
the constraint must incur zero loss. For example, when our
constraint « requires that the output vector encodes an ar-
bitrary total ranking, and the vector x correctly represents
a single specific total ranking, there is no semantic loss.

Proposition 8 (Satisfaction). If x = «, then the semantic
loss L¥(a,x) = 0.

Proof of Proposition 8. The monotonicity axiom special-
izes to say that if x = «, we have that Vp,L%(x,p) >
L#(c, p). By choosing p to be x, this implies L%(x,x) >

L%(a,x). From the identity axiom, L°(x,x) = 0, and
therefore 0 > L*(«v, x). Proposition 7 bounds the loss from
below as L*(«, x) > 0. O

As a special case, logical literals (x or —x) constrain a sin-
gle variable to take on a single value, and thus play a role
similar to the labels used in supervised learning. Such con-
straints require an even tighter correspondence: semantic
loss must act like a classical loss function (i.e., cross en-
tropy).

Axiom 9 (Label-Literal Correspondence). The semantic
loss of a single literal is proportionate to the cross-entropy
loss for the equivalent data label: L%(z, p) o< — log(p) and
L*(-z,p) o< —log(1 — p).

Next, we have the symmetry axioms.

Axiom 10 (Value Symmetry). For all p and «, we have that
L%(c, p) = L%(@, 1 — p) where a replaces every variable in
« by its negation.

A Semantic Loss Function for Deep Learning with Symbolic Knowledge

Axiom 11 (Variable Symmetry). Let a be a sentence over
X with probabilities p. Let m be a permutation of the
variables X, let 7(«) be the sentence obtained by replac-
ing variables = by m(x), and let 7(p) be the correspond-
ing permuted vector of probabilities. Then, L8(a, p) =
L (r(a), (p)).

The value and variable symmetry axioms together imply
the equality of the multiplicative constants in the label-
literal duality axiom for all literals.

Lemma 9. There exists a single constant K such that
L*(X,p) = —Klog(p) and L*(=X,p) = —Klog(1 — p)
for any literal x.

Proof. Value symmetry implies that L5(X;,p) =
L5(—=X;,1 — p). Using label-literal correspondence,
this implies K log(p;) = Kalog(l — (1 — p;)) for the
multiplicative constants /; and K5 that are left unspec-
ified by that axiom. This implies that the constants are
identical. A similar argument based on variable symmetry
proves equality between the multiplicative constants for
different <. O

Finally, this allows us to prove the following form of se-
mantic loss for a state x.

Lemma 10. For state x and vector p, we have L®(x, p) x
- Zi:x':Xt 10g Pi — Zi:x|:ﬁX,; IOg(]. - pl)

Proof of Lemma 10. A state x is a conjunction of indepen-
dent literals, and therefore subject to the additive indepen-
dence axiom. Each literal’s loss in this sum is defined by
Lemma 9. O

The following and final axiom requires that semantic loss is
proportionate to the logarithm of a function that is additive
for mutually exclusive sentences.

Axiom 12 (Exponential Additivity). Let o and 5 be mu-
tually exclusive sentences (i.e., @ A (3 is unsatisfiable), and
let f*(K,a,p) = K~ (®P) Then, there exists a posi-
tive constant K such that f*(K,aV 8,p) = f*(K,a,p) +
f2(K,B,p).

We are now able to state and prove the main uniqueness
theorem.

Theorem 11 (Uniqueness). The semantic loss function in
Definition 1 satisfies all axioms in Appendix A and is the
only function that does so, up to a multiplicative constant.

Proof of Theorem 11. The truth axiom states that
Vp, f*(K, true,p) = 1 for all positive constants K.
This is the first Kolmogorov axiom of probability. The
second Kolmogorov axiom for f*(K,.,p) follows from
the additive independence axiom of semantic loss. The

third Kolmogorov axiom (for the finite discrete case) is
given by the exponential additivity axiom of semantic
loss. Hence, f*(K,.,p) is a probability distribution for
some choice of K, which implies the definition up to a
multiplicative constant. O

B. Specification of the Convolutional Neural
Network Model

Table 6 shows the slight architectural difference between
the CNN used in ladder nets and ours. The major difference
lies in the choice of ReLu. Note we add standard padded
cropping to preprocess images and an additional fully con-
nected layer at the end of the model, neither is used in lad-
der nets. We only make those slight modification so that
the baseline performance reported by Rasmus et al. (2015)
can be reproduced.

C. Hyper-parameter Tuning Details

Validation sets are used for tuning the weight associated
with semantic loss, the only hyper-parameter that causes
noticeable difference in performance for our method. For
our semi-supervised classification experiments, we per-
form a grid search over {0.001,0.005,0.01,0.05,0.1} to
find the optimal value. Empirically, 0.005 always gives the
best or nearly the best results and we report its results on
all experiments.

For the FASHION dataset specifically, because MNIST and
FASHION share the same image size and structure, meth-
ods developed in MNIST should be able to directly per-
form on FASHION without heavy modifications. Because
of this, we use the same hyper-parameters when evaluating
our method. However, for the sake of fairness, we sub-
ject ladder nets to a small-scale parameter tuning in case its
performance is more volatile.

For the grids experiment, the only hyper pa-
rameter that needed to be tuned was again the
weight given to semantic loss, which after trying
{0.001,0.005,0.01,0.05,0.1,0.5,1} was selected to be
0.5 based on validation results. For the preference learning
experiment, we initially chose the semantic loss weight
from {0.001, 0.005, 0.01, 0.05,0.1,0.5,1} to be 0.1 based
on validation, and then further tuned the weight to 0.25.

D. Specification of Complex Constraint
Models

Grids To compile our grid constraint, we first use
Nishino et al. (2017) to generate a constraint for each
source destination pair. Then, we conjoin each of these
with indicators specifying which source and destination

A Semantic Loss Function for Deep Learning with Symbolic Knowledge

(a) Confidently Correct (b) Unconfidently Correct

(c) Unconfidently Incorrect (d) Confidently Incorrect

Figure 5: FASHION pictures grouped by how confidently the supervised base model classifies them correctly. With
semantic loss, the final semi-supervised model predicts all correctly and confidently.

Table 6: Specifications of CNNs in Ladder Net and our proposed method.

CNN in Ladder Net

CNN in this paper

Input 3232 RGB image

Resizing to 36 x 36 with padding

Cropping Back

Whitening
Contrast Normalization
Gaussian Noise with std. of 0.3

3x3 conv. 96 BN LeakyReLU
33 conv. 96 BN LeakyReLU
33 conv. 96 BN LeakyReLLU

3x%3 conv. 96 BN ReLU
3x3 conv. 96 BN ReLU
3x%3 conv. 96 BN ReLU

2 X2 max-poo

ling stride 2 BN

3x3 conv. 192 BN LeakyReLU
3x3 conv. 192 BN LeakyReLU
3x3 conv. 192 BN LeakyReLLU

3x3 conv. 192 BN ReLU
3x3 conv. 192 BN ReLU
3x3 conv. 192 BN ReLU

2 X2 max-poo

ling stride 2 BN

3x3 conv. 192 BN LeakyReLU
1x1 conv. 192 BN LeakyReLU

1x1 conv. 10 BN LeakyReLU

3x3 conv. 192 BN ReLU
3x3 conv. 192 BN ReLU
1x1 conv. 10 BN ReLU

Global meanpool BN

Fully connected BN

10-way softmax

pair must be used, and finally we disjoin all of these to-
gether to form our constraint.

To generate the data, we begin by randomly removing one
third of edges. We then filter out connected components
with fewer than 5 nodes to reduce degenerate cases, and
proceed with randomly selecting pairs of nodes to create
data points.

The predictive model we employ as our baseline is a 5 layer
MLP with 50 hidden sigmoid units per layer. It is trained
using Adam Optimizer, with full data batches (Kingma &
Ba, 2015). Early stopping with respect to validation loss is
used as a regularizer.

Preference Learning We split each user’s ordering into
their ordering over sushis 1,2,3,5,7,8, which we use as the
features, and their ordering over 4,6,9,10 which are the la-
bels we predict. The constraint is compiled directly from

logic, as this can be done in a straightforward manner for
an n-item ordering.

The predictive model we use here is a 3 layer MLP with 25
hidden sigmoid units per layer. It is trained using Adam
Optimizer with full data batches (Kingma & Ba, 2015).
Early stopping with respect to validation loss is used as a
regularizer.

E. Probabilistic Soft Logic Encodings

We here give both encodings on the exactly-one constraint
over three 1, x2, x3. The first encoding is:

("(El A\ T2 AN .’Eg) \Y ((IJ] A\ T2 A\ 1’3) \Y (SUl A\ T2 AN _L’I,'g)
The second encoding is:

(.Tl Vo \/$3) A\ (ﬁxl \/ﬁmg) A\ (ﬁxl \/ﬁ$3) A\ (ﬁxz \/ﬁ$3)

A Semantic Loss Function for Deep Learning with Symbolic Knowledge

Both encodings extend to cases whether the number of vari-
ables is arbitrary.

The norm functions used for these experiments are as de-
scribed in Kimmig et al. (2012), with the loss for an inter-
pretation I being defined as follows:

x1 AN 2o = max{0,I(z1) + I(x2) — 1}
21V xe = min{l(z1) + I(z2),1}

X1 = 1 71(.’,81)

