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Abstract
Bandit is a framework for designing sequential ex-
periments, where a learner selects an arm A ∈ A
and obtains an observation corresponding to A in
each experiment. Theoretically, the tight regret
lower-bound for the general bandit is polynomial
with respect to the number of arms |A|, and thus,
to overcome this bound, the bandit problem with
side-information is often considered. Recently,
a bandit framework over a causal graph was in-
troduced, where the structure of the causal graph
is available as side-information and the arms are
identified with interventions on the causal graph.
Existing algorithms for causal bandit overcame
the Ω(

√
|A|/T ) simple-regret lower-bound; how-

ever, their algorithms work only when the inter-
ventionsA are localized around a single node (i.e.,
an intervention propagates only to its neighbors).
We then propose a novel causal bandit algorithm
for an arbitrary set of interventions, which can
propagate throughout the causal graph. We also
show that it achieves O(

√
γ∗ log(|A|T )/T ) re-

gret bound, where γ∗ is determined by using a
causal graph structure. In particular, if the maxi-
mum in-degree of the causal graph is a constant,
then γ∗ = O(N2), where N is the number of
nodes.

1. Introduction
Multi-armed bandit has been widely recognized as a stan-
dard framework for modeling online learning with a limited
number of observations. In each round in the bandit prob-
lem, a learner chooses an arm A from given candidates A,
and obtains a corresponding observation. Since observation
is limited, the learner must adopt an efficient strategy for
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exploring the optimal arm A∗ ∈ A. The efficiency of the
strategy is measured by regret, and the theoretically tight
lower-bound is O(

√
|A|) with respect to the number of

arms |A| in the general multi-armed bandit setting. Thus,
in order to improve the above lower bound, one requires
additional information for the bandit setting. For example,
contextual bandit (Agarwal et al., 2014; Auer et al., 2002)
is a well-known class of bandit problems with side informa-
tion on domain-expert knowledge. For this setting, there is
a logarithmic regret bound O(

√
log |A|) with respect to the

number of arms. In this paper, we also achieveO(
√

log |A|)
regret bound for a novel class of bandit problems with side
information. To this end, let us introduce our bandit setting
in detail.

Causal graph (Pearl, 2009) is a well-known tool for mod-
eling a variety of real problems, including computational
advertising (Bottou et al., 2013), genetics (Meinshausen
et al., 2016), agriculture (Splawa-Neyman et al., 1990), and
marketing (Kim et al., 2008). Based on causal graph dis-
covery studies (Eberhardt et al., 2005; Hauser & Bühlmann,
2014; Hu et al., 2014; Shanmugam et al., 2015), Lattimore
et al. (2016) recently introduced the causal bandit frame-
work. They consider the problem of finding the best in-
tervention which causes desirable propagation of a proba-
bilistic distribution over a given causal graph with a limited
number of experiments T . In this setting, the arms are
identified as interventions A on the causal graph. A set
of binary random variables V1, V2, . . . , VN is associated
with nodes v1, v2, . . . , vN of the causal graph. At each
round of an experiment, a learner selects an intervention
A ∈ A ⊆ {0, 1, ∗}N which enforces a realization of a
variable Vi to Ai when Ai ∈ {0, 1}. The effect of the inter-
vention then propagates throughout the causal graph through
the edges, and a realization ω ∈ {0, 1}N over all nodes is
observed after propagation. The goal of the causal bandit
problem is to control the realization of a target variable VN
with an optimal intervention.

Figure 1 is an illustrative example of the causal bandit prob-
lem. In the figure, the four nodes on the right represent a
consumer decision-making model in e-commerce borrowed
from (Kim et al., 2008). This model assumes that customers
make a decision to purchase based on their perceived risk
in an online transition (e.g., defective product), the con-
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sumer’s trust of a web vendor, and the perceived benefit
in e-commerce (e.g., increased convenience). Consumer
trust influences perceived risk. Here, we consider control-
ling customer’s behavior by two kinds of advertising that
correspond to adding two nodes (Ad A and Ad B) to be
intervened into the model. Ad A can change only the relia-
bility of a website, that is, it can influence the decision of
customers in an indirect way through the middle nodes. In
contrast, Ad B can change the perceived benefit. The aim is
to increase the number of purchases by consumers through
choosing an effective advertisement. This is indeed a bandit
problem over a causal graph.

The work in (Lattimore et al., 2016) considered the causal
bandit problem to minimize simple regret and offered an
improved regret bound over the aforementioned tight lower-
bound Ω(

√
|A|/T ) (Audibert & Bubeck, 2010)[Theorem

4] for the general bandit setting (Audibert & Bubeck, 2010;
Gabillon et al., 2012). Sen et al. (2017) extended this study
by incorporating a smooth intervention, and they provided
a new regret bound parameterized by the performance gap
between the optimal and sub-optimal arms. This parame-
terized bound comes from the technique developed for the
general multi-armed bandit problem (Audibert & Bubeck,
2010). These analyses, however, only work for a special
class of interventions with known true parameters. Indeed,
they only consider localized interventions.

Main contribution This paper proposes the first algo-
rithm for the causal bandit problem with an arbitrary set of
interventions (which can propagate throughout the causal
graph), with a theoretically guaranteed simple regret bound.
The bound is O(

√
γ∗ log(|A|T )/T ), where γ∗ is a parame-

ter bounded on the basis of the graph structure. In particular,
γ∗ = O(N2) if the maximum in-degree of the causal graph
is bounded by a constant, where N is the number of nodes.

The major difficulty in dealing with an arbitrary intervention
comes from accumulation and propagation of estimation er-
ror. Existing studies consider interventions that only affect
the parents Pk of a single node Vk. To estimate the rela-
tionship between Pk and Vk in this setting, we could apply
an efficient importance sampling algorithm (Bottou et al.,
2013; Lattimore et al., 2016). On the other hand, when
we intervene an arbitrary node, it can affect the probabilis-
tic propagation mechanism in any part of the causal graph.
Hence, we cannot directly control the realization of interme-
diate nodes when designing efficient experiments.

The proposed algorithm consists of two steps. First, the
preprocessing step is devoted to estimating parameters
for designing efficient experiments used in the main step.
More precisely, we focus on estimation of parameters with
bounded relative error. By truncating small parameters that
are negligible but tend to have large relative error, we man-

PURCHASE

Perceived risk

Consumer trust

Perceived benefit

Ad A

Ad B

Ad A

Ad B

Figure 1. Simple example of a causal graph.

age to avoid accumulation of estimation error. In the main
step, we apply an importance sampling approach introduced
in (Lattimore et al., 2016; Sen et al., 2017) on the basis of
estimated parameters with a guaranteed relative error. This
step allows us to estimate parameters with bounded absolute
error, which results in the desired regret bound.

Owing to space limitations, all the proofs are omitted, where
they can be found in the full version of this paper (Yabe
et al., 2018).

Related studies Minimizing simple regret in bandit prob-
lems is called the best-arm identification (Gabillon et al.,
2012; Kaufmann et al., 2016) or pure exploration (Bottou
et al., 2013) problem, and it has been extensively studied in
the machine learning research community. The inference of
a causal graph structure is also well-studied, which can be
classified into causal graph discovery and causal inference:
Causal graph discovery (Eberhardt et al., 2005; Hauser &
Bühlmann, 2014; Hu et al., 2014; Shanmugam et al., 2015)
considers efficient experiments for determining the structure
of causal graph, while causal inference (Mooij et al., 2016;
Pearl, 2009; Shimizu et al., 2011; Spirtes & Glymour, 1991)
challenges one to determine the graph structure only from
historical data without additional experiments. The causal
bandit problem designs experiments without using historical
data, which is rather compatible with causal graph discovery
studies.

2. Causal bandit problem
This section introduces the causal bandit problem proposed
by (Lattimore et al., 2016).

Let G = (V, E) be a directed acyclic graph (DAG) with a
node set V = {v1, v2, . . . , vN} and a (directed) edge set E.
Let (vi, vj) denote an edge from vi to vj . Without loss of
generality, we suppose that the nodes in V are topologically
sorted so that no edge from vi to vj exists if i ≥ j. For each
n = 1, . . . , N , let Pn denote the index set of the parents
of vn, i.e., Pn = {i ∈ {1, . . . , n− 1} : (vi, vn) ∈ E}. We
then define Pn = Pn ∪ {n}.
Each node vn ∈ V is associated with a random variable
Vn, which takes a value in {0, 1}. The distribution of Vn is
then influenced by the variables associated with the parents
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of vn (unless Vn is intervened, as described below). For
each π ∈ {0, 1}Pn , the parameter αn(π) defined below
characterizes the distribution of Vn given the realizations of
its parents:

αn(π) := Prob

(
Vn = πn

∣∣∣∣ Vi = πi for all i ∈ Pn,
vn is not intervened

)
.

That is to say, if the parents vi for i ∈ Pn are realized as
πi, then Vn = πn with probability αn(π), and Vn = 1−πn
with probability 1− αn(π).

Together with a DAG, we are also given a set A of in-
terventions. Each intervention is identified with a vector
A ∈ {∗, 0, 1}N , where An 6= ∗ implies that Vn is inter-
vened and that the realization of Vn is fixed as An. Let
π ∈ {0, 1}Pn . Given an intervention A ∈ A and real-
izations πi over the parents i ∈ Pn, the probability that
Vn = πn holds is then determined as follows:

Prob (Vn = πn | Vi = πi for all i ∈ Pn,do(A))

=


αn(π) if An = ∗,
1 if An = πn,

0 if An = 1− πn.
This equality together with the adjacency of the causal graph
G completely determines the joint distribution over the
variables V1, V2, . . . , VN , under an arbitrary intervention
A ∈ A.

In the causal bandit problem, we are given a DAG G =
(V, E) and a set A of interventions. However, the param-
eters αn (n = 1, . . . , N ) are not known. Our ideal goal is
then to find an interventionA∗ ∈ A that maximizes the prob-
ability µ(A∗) of realizing VN = 1, where µ : A → [0, 1] is
defined by

µ(A) := Prob(VN = 1 | do(A))

for each A ∈ A.

For this purpose, we discuss the following algorithms. First,
they estimate µ(A) (A ∈ A) from T experimental trials.
Each experiment consists of the application of an interven-
tion and the observation of a realization π ∈ {0, 1}N over
all nodes. Let µ̂(A) denote the estimate of µ(A). Second,
the algorithm selects the intervention Â that maximizes µ̂.
We evaluate the efficiency of such an algorithm with the
simple regret RT defined as follows:

RT = µ(A∗)− E[µ(Â)].

Note that, even if an algorithm is deterministic, Â includes
stochasticity since the observations obtained in each experi-
ment are produced by a stochastic process.

In this paper, we assume that N ≥ 3 and T ≥ 2 for ease of
technical discussion.

3. Proposed Algorithm
We propose an algorithm for the causal bandit problem,
and present a regret bound of the proposed algorithm in
this section. Let Cn = 2|Pn| for each n = 1, . . . , N , and
C =

∑N
n=1 Cn. For S ⊆ S′ ⊆ [1, N ] and π ∈ {0, 1}S′ , let

πS denote the restriction of π onto S.

3.1. Outline of the proposed algorithm

Recall that the purpose of the causal bandit problem is to
identify an intervention A∗ that maximizes µ(A∗). This
task is trivial if αn is known for all n = 1, . . . , N , because
µ(A) can then be calculated for all A ∈ A. Let B(A) =
{π′ ∈ {0, 1}N | π′i = Ai if Ai 6= ∗, π′N = 1}, and for
n ∈ [1, N ], let In,A denote the set of nodes in [1, n] which
are not intervened by A; In,A := {m ∈ [1, n] | Am = ∗}.
µ(A) can then be represented as

µ(A) =
∑

π∈B(A)

∏
n∈IN,A

αn(πPn
).

Therefore, for computing µ approximately, our algorithm
estimates αn (n = 1, . . . , N ).

In order to estimate αn efficiently, we are required to ma-
nipulate the random variables associated with the parents
of vn. More concretely, to estimate αn(π) for π ∈ Pn,
we require samples with realization ω ∈ {0, 1}N satisfying
πi = ωi over the parents i ∈ Pn of vn. For n = 1, 2, . . . , N ,
π ∈ {0, 1}Pn , and A ∈ A, we thus introduce the additional
quantities βn(π,A) that denote the probability of realiz-
ing ω with ωPn

= π under a given intervention A. More
precisely, we define

βn(π,A)

:=

{
Prob(Vm = πm,∀m ∈ Pn | do(A)) if An = ∗,
0 otherwise.

Our algorithm consists of two phases. The first phase esti-
mates βn (n = 1, . . . , N ), and the second phase estimates
αn (n = 1, . . . , N). The algorithm requires T/3 experi-
ments in the first phase, and 2T/3 experiments in the sec-
ond phase. In the rest of this section, we first explain those
phases and present a regret bound on the algorithm.

3.2. First Phase: Estimation of β

Here, we introduce the estimation phase of βn for all n =
1, . . . , N . The pseudo-code of this phase is described in
Algorithm 1. Algorithm 1 requires a non-negative number
λ as a parameter, which will be set to C3/N . We perform
T/3 experiments in this phase.

Before explaining the details of Algorithm 1, we note that
βn can be calculated from α1, . . . , αn−1. For π ∈ {0, 1}Pn ,
let Bn(π,A) := {π′ ∈ {0, 1}n−1 | π′i = πi if i ∈
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Algorithm 1 Estimation of β
Require: λ
Ensure: β̂n (n = 1, . . . , N ) and D
1: Gn ← ∅ for n = 1, 2, . . . , N
2: for n = 1, 2, . . . , N do
3: for π ∈ {0, 1}Pn do
4: Calculate β̂n(π,A) for each A ∈ A by (2)
5: Calculate Ân,π = argmaxA∈Aβ̂n(π,A)
6: tn(π)← 0 and tn(π)← 0
7: for j = 1, . . . , T/(3C) do
8: Conduct an experiment with Ân,π and let ω ∈

{0, 1}N be the obtained result
9: tn(π)← tn(π) + 1 if ωi = πi for all i ∈ Pn

10: tn(π) ← tn(π) + 1 if ωi = πi for all i ∈ Pn and
ωn = 1

11: end for
12: for k = 0, 1 do
13: Extend π to π′ ∈ {0, 1}Pn with π′

n = k
14: Compute α̌′

n(π′) by (3)
15: If (4) holds, then Gn ← Gn ∪ {π′}
16: Compute α̌n(π′) by (5)
17: end for
18: end for
19: end for
20: Compute Hn and Dn (n = 1, 2, . . . , N ) by (6) and (7)
21: return β̂n (n = 1, 2, . . . , N) and D = {Dn | n =

1, 2, . . . , N}

Pn, π′i = Ai if Ai 6= ∗} denote the set of realizations over
V1, V2, . . . , Vn−1 that is consistent with the realization π
over Pn and the intervention A. If An = ∗, then βn(π,A)
is described as

βn(π,A) =
∑

π′∈Bn(π,A)

∏
m∈In−1,A

αm(π′Pm
). (1)

Algorithm 1 consists of N iterations. The n-th iteration
computes the following objects:

• an estimate β̂n of βn,
• Ân,π ∈ A for each π ∈ {0, 1}Pn ,
• an estimate α̌n of αn, and
• Gn ⊆ {0, 1}Pn .

We remark that α̌n in Algorithm 1 are used only for com-
puting an estimate β̂n and are not used for estimating µ.
An estimate of αn is computed in the next phase of our
algorithm.

At the beginning of the n-th iteration, we compute β̂n(π,A)
for each π ∈ {0, 1}Pn and A ∈ A by (1) substituting α̌m
for αm;

β̂n(π,A) =
∑

π′∈Bn(π,A)

∏
m∈In−1,A

α̌m(π′Pn
). (2)

Let us confirm that this β̂n(π,A) can be computed if α̌m
(m = 1, . . . , n− 1) are available.

For each π ∈ {0, 1}Pn , then, we identify an intervention

Algorithm 2 Estimation of α
Require: β̂n (n = 1, . . . , N ) and D
Ensure: α̂n (n = 1, . . . , N )
1: for n = 1, 2, . . . , N and each π ∈ {0, 1}Pn do
2: t′n(π)← 0 and t′n(π)← 0

3: Calculate Ân,π := argmaxA∈Aβ̂n(π,A)
4: for j = 1, . . . , T/(3C) do
5: Conduct an experiment with Ân,π and let ω ∈ {0, 1}N

be the obtained result
6: for m = 1, . . . , N with (Ân,π)m = ∗ do
7: t′m(ωPm)← t′m(ωPm) + 1
8: t′m(ωPm)← t′m(ωPm) + 1 if ωm = 1
9: end for

10: end for
11: end for
12: Compute an optimal solution η̂ for (8)
13: for t = 1, 2, . . . , T/3 do
14: Sample At from U(η̂)
15: Conduct experiment with At and let ω ∈ {0, 1}N be the

obtained realization
16: for n = 1, . . . , N with An = ∗ do
17: t′n(ωPn)← t′n(ωPn) + 1
18: t′n(ωPn)← t′n(ωPn) + 1 if ωn = 1
19: end for
20: end for
21: for n = 1, 2, . . . , N and π ∈ {0, 1}Pn do
22: Compute α̂′

n(π) by (9) and α̂n(π) by (10)
23: end for
24: return α̂n.

Algorithm 3 Causal Bandit
1: Apply Algorithm 1 with λ = C3/N to obtain β̂n (n =

1, . . . , N ) and D
2: Apply Algorithm 2 to obtain α̂n (n = 1, . . . , N )
3: Calculate µ̂(A) for each A ∈ A by (11)
4: return Â := argmax

A∈A
µ̂(A)

Ân,π that attains maxA∈A β̂n(π,A). Using Ân,π, we com-
pute α̌n(π) as follows, where π is an extension of π onto
{0, 1}Pn . We conduct T/(3C) experiments with Ân,π . Let
tn(π) be the number of experiments in those T/(3C) ex-
periments in which the obtained realization ω ∈ {0, 1}N
satisfies ωi = πi for each i ∈ Pn. Let tn(π) be the number
of experiments counted in tn(π), where ωn = 1 also holds.
We then compute α̌′n(π) using the equation

α̌′n(π) =

{
tn(π)/tn(π) if πn = 1,

1− tn(π)/tn(π) if πn = 0.
(3)

The vector π ∈ {0, 1}Pn is added to Gn if

α̌′n(π)β̂n(π, Ân,π) ≤ 2eS(λ), (4)

where S(λ) is defined as

S(λ) :=
12λN2C log T

T
.

ThisGn reserves such π ∈ {0, 1}Pn that α̌′n(π) is too small
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to estimate αn(π) with sufficient accuracy. Then α̌n(π) is
determined by replacing α̌′n(π) with 0 for π ∈ Gn:

α̌n(π) :=

{
α̌′n(π) if π 6∈ Gn,
0 otherwise.

(5)

This replacement contributes to reducing the relative estima-
tion error of β̂n′ in subsequent steps (n′ = n+ 1, . . . , N ).

After iterating for all n = 1, 2, . . . , N , the algorithm com-
putes Hn and Dn (n = 1, 2, . . . , N ) defined by

Hn =
{
π ∈ {0, 1}Pn

∣∣∣β̂n(πPn
, Ân,π) ≤ 8eC2S(λ)

}
,

(6)

Dn = Gn ∪Hn. (7)

This Dn contributes to bound the absolute error of the esti-
mation of β̂n(πPn

) for π 6∈ Dn. The algorithm returns an
estimate β̂n and the family D := {Dn | n = 1, 2, . . . , N}.

3.3. Second Phase: Estimation of α

In this phase, our algorithm computes an estimate α̂n of
αn for all n = 1, . . . , N . The pseudo-code for this phase
is given in Algorithm 2. As an input, it receives β̂n (n =
1, . . . , N) and D from Algorithm 1.

Algorithm 2 consists of two parts. The first part conducts
T/(3C) experiments with Ân,π (computed from β̂n(π,A),
A ∈ A) for each n = 1, . . . , N and π ∈ {0, 1}Pn . This is
the same process used to compute α̌′n in Algorithm 1. Let

D↓n := {π ∈ {0, 1}Pn | π0, π1 ∈ Dn}

where πk is the extension of π ∈ {0, 1}Pn onto {0, 1}Pn

with πkn = k. Let us define a set Jn := {0, 1}Pn \D↓n and
a constant rn,π := β̂n(π, Ân,π)/C for each n = 1, . . . , N
and π ∈ {0, 1}Pn . In the second part, the algorithm solves
the following optimization problem:

min
η∈[0,1]A

max
A∈A

∑
n∈IN,A

∑
π∈Jn

β̂2
n(π,A)∑

A′∈A ηA′ β̂n(π,A′) + rn,π

s.t.
∑
A′∈A

ηA′ = 1. (8)

Note that, for each n = 1, 2, . . . , N , π ∈ Jn only if
β̂n(π, Ân,π) > 0 according to Line 20 of Algorithm 1.
Thus the denominator is positive for every π ∈ Jn, and the
above optimization problem is well-defined. Let η̂ be an
optimal solution for (8). Consider the distribution U(η̂) over
A that generates A with a probability of η̂A. The second
part samples an intervention according to U(η̂) and uses it
to conduct experiments, for T/3 times,.

For each n = 1, . . . , N and π ∈ {0, 1}Pn , the algorithm
counts the number t′n(π) (resp., t′n(π)) of experiments that

result in ω ∈ {0, 1}N with ωPn
= π (resp., ωPn

= π and
ωn = 1). Then, α̂′n(π) (n = 1, . . . , N , π ∈ {0, 1}Pn) is
defined by

α̂′n(π) =

{
t′n(πPn

)/t′n(πPn
) if πn = 1,

1− t′n(πPn
)/t′n(πPn

) if πn = 0.
(9)

The output α̂n is defined by

α̂n(π) =

{
α̂′n(π) if π 6∈ Dn,

0 otherwise.
(10)

3.4. Regret bound

Pseudo-code of our entire algorithm is provided in Algo-
rithm 3. It computes an estimate β̂ of β by Algorithm 1
and then computes α̂ by Algorithm 2. It then computes an
estimate µ̂ of µ by

µ̂(A) =
∑

π∈B(A)

∏
n∈IN,A

α̂n(πPn
) (11)

for each A ∈ A. The algorithm returns an intervention
Â ∈ A that maximizes µ̂.

Let us define γ∗ as the optimum value of the following
problem:

γ∗ := min
η∈[0,1]A

max
A∈A

N∑
n=1

∑
π∈{0,1}Pn

:βn(π,A)>0

β2
n(π,A)∑

A′∈A ηA′βn(π,A′)

s.t.
∑
A′∈A

ηA′ = 1. (12)

The regret bound of Algorithm 3 is parameterized by the
optimum value γ∗:

Theorem 1. The regret RT of Algorithm 3 satisfies

RT ≤ O
(√

max{γ∗, N} log(|A|T )

T

)
.

The notation O(·) is used here under the assumption that N
is sufficiently small with respect to T but not negligible. The
optimum value γ∗ is bounded as follows. Let |A| denote
the number of nodes intervened by A, i.e., |A| := |{n ∈
[1, N ] : An ∈ {0, 1}}|:
Proposition 2. It holds that N − minA∈A |A| ≤ γ∗ ≤
min{NC,N |A|}.

Since the lower-bound for the general best-arm identi-
fication problem is Ω(

√
|A|/T ) (Audibert & Bubeck,

2010)[Theorem 4], our algorithm provides a better regret
bound when the number of interventions |A| is large com-
pared to γ∗ ≤ NC, which is only dependent on the causal
graph structure.
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Remark 3. We present Algorithms 1, 2, and 3 for the
setting that every αn(π) is unknown. However, our al-
gorithms can be applied even when αn(π) is known for
some n = 1, . . . , N and π ∈ {0, 1}Pn by incorporating
minor modifications. In this case, we denote the number of
unknown αn(π) as C. The modified algorithm just skips
experiments for estimating the known αn(π), and we can
define β̂n(πPn

, A) = 0 for such n and π. We then redefine
γ∗ by replacing corresponding βn(πPn

, A) with 0 in (12),
and our bound in Theorem 1 is valid for this decreased γ∗.
In particular, we can recover the regret bound considered in
(Lattimore et al., 2016)[Theorem 3] as follows:

Corollary 4. Suppose thatαn(π) is known for every n < N

and π ∈ {0, 1}Pn . Then the regret RT of Algorithm 3
satisfies RT ≤ O(

√
γ∗ log(|A|T )/T ), where

γ∗ = min
η∈[0,1]A

max
A∈A

∑
π∈{0,1}PN

β2
N (π,A)∑

A′∈A ηA′βN (π,A′)

s.t.
∑
A′∈A

ηA′ = 1.

Remark 5. Our problem setting is often called hard inter-
vention, which directly controls the realization of a node vn
as An ∈ {0, 1}. In contrast, Sen et al. (2017) introduced the
soft intervention model on a node vn where an intervention
changes the conditional probability αn of a node vn. They
in fact considered a simple case where a graph has a single
node vk such that PN = Pk ∪ {k}, whose conditional prob-
ability can be controlled by soft intervention, and proved
parameterized regret bound.

We here remark that their model can be implemented by the
hard intervention model with an arbitrary set of interven-
tions. The details of this implementation is presented in our
full paper.

4. Proofs
This section presents an approach for proving Theorem 1.
Complete proofs for all the statements are presented in the
full version (Yabe et al., 2018).

4.1. Accuracy of Algorithm 1

For n = 1, 2, . . . , N , let α̌n and α̌′n be the stochas-
tic estimates computed in Algorithm 1, and Ân,π :=

argmax
A∈A

β̂n(π,A) be the action determined from the esti-

mate β̂n. Let G be defined by G = {Gn | n = 1, . . . , N}.
Using G, we define αn,G and βn,G as follows. For each
n ∈ [1, N ] and π ∈ {0, 1}Pn , we define αn,G(π) by

αn,G(π) :=

{
αn(π) if π 6∈ Gn,
0 otherwise.

For each n ∈ [1, N ], π ∈ {0, 1}Pn , and A ∈ A, we define
βn,G(π,A) by

βn,G(π,A) =
∑

π′∈Bn(π,A)

∏
m∈In−1,A

αm,G(π′Pn
).

Thus αn,G(π) is obtained from αn(π) by truncating its
values if π ∈ Gn, and βn,G is defined from αn,G. We
define αn,D and βn,D in the same way. Since Gn ⊆ Dn,
we observe that βn,D(π,A) ≤ βn,G(π,A) ≤ βn(π,A).
Similarly, for A ∈ A, we define µD(A) by

µD(A) =
∑

π∈B(A)

∏
m∈IN,A

αm,D(πPm
). (13)

The following proposition demonstrates the error bound for
outputs β̂n and D from Algorithm 1.

Proposition 6. Let β̂n and D be the outputs of Algorithm 1
with parameter λ ≥ 1. Then the following holds with a
probability of at least 1 − 6C/T : for every n ∈ [1, N ],
π ∈ {0, 1}Pn \Dn with π = πPn , and A ∈ A:

1

e
βn,D(π,A) ≤ β̂n(π,A) ≤ eβn(π,A), (14)

αn(π)βn(π, Ân,π) ≥ S(λ), (15)

βn(π,A) ≤ eβ̂n(π,A) + eβ̂n(π, Ân,π)/C, (16)

µ(A)− µD(A) ≤ 8e2(C3 + C)S(λ). (17)

We prepare the following three lemmas to prove Propo-
sition 6. The first lemma is an application of Chernoff’s
bound, which bounds the relative error of the estimation α̌′n:

Lemma 7. Let n ∈ [1, N ], π ∈ {0, 1}Pn , and π = πPn .

(i) If αn(π)βn(π, Ân,π) ≤ S(λ), then the following holds
with a probability of at least 1− 2/T :

α̌′n(π)βn(π, Ân,π) ≤ 2S(λ).

(ii) If αn(π)βn(π, Ân,π) ≥ S(λ), then the following holds
with a probability of at least 1− 3/T :(

1− 1√
λN

)
αn(π) ≤ α̌′n(π) ≤

(
1 +

1√
λN

)
αn(π).

The second lemma bounds the gap produced by truncation
of αn that is conducted for introducing αn,G and αn,D. We
use the notation H↓n := {πPn | π ∈ Hn}.
Lemma 8. (i) Let n ∈ [1, N ] and π ∈ {0, 1}Pn . For every
A ∈ A, it holds that

βn(π,A)− βn,G(π,A)

≤
N∑
m=1

∑
π′∈Gm

max
A′∈A

αm(π′)βm,G(π′Pm
, A′).
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(ii) For every A ∈ A, it holds that

µ(A)− µD(A) ≤
N∑
m=1

∑
π∈Gm

max
A′∈A

αm(π)βm,G(πPm , A
′)

+

N∑
m=1

∑
π′∈H↓m

max
A′′∈A

βm,G(π′, A′′).

The third lemma bounds the relative error of β̂. This state-
ment can be proven by induction on the basis of Lemma 7.

Lemma 9. The following holds for every n = 1, 2, . . . , N ,
π ∈ {0, 1}Pn with π = πPn , and A ∈ A with a probability
of at least 1− 6C/T :

1

e
βn,G(π,A) ≤ β̂n(π,A) ≤ eβn,G(π,A),

π ∈ Gn if αn(π)βn(π, Ân,π) < S(λ),(
1− 1√

λN

)
αn(π) ≤ α̌′n(π) ≤

(
1 +

1√
λN

)
αn(π)

if αn(π)βn(π, Ân,π) ≥ S(λ).

Then Proposition 6 is proven on the basis of Lemmas 7–9.

4.2. Accuracy of Algorithm 2

This subsection bounds the gap between the true value µ(A)
and its estimate µ̂(A) given by Algorithm 2, assuming that
the input of Algorithm 2, which is output of Algorithm 1,
satisfies the conditions in Proposition 6.

Proposition 10. Suppose that λ ≥ 1, and β̂n and D sat-
isfy (14), (15), (16), and (17). Let α̂n be the output of
Algorithm 2, and let µ̂ be defined by (11). Then the follow-
ing holds for every A ∈ A with a probability of at least
1− (10C + 2)/T :

|µ(A)− µ̂(A)| ≤
√

2e6γ∗ log(|A|T )

T
+

√
8e2C3 log T

λT

+ 8e2(C3 + C)S(λ).

Recall that IN,A := {m ∈ [1, N ] | Am = ∗} for A ∈ A.
For n ∈ [1, N ] and π ∈ {0, 1}Pn , let ∆αn(π) := α̂n(π)−
αn,D(π). For A ∈ A and J ⊆ IN,A, we define fJ(A) by

fJ(A) =
∑

π∈B(A)

∏
m∈IN,A\J

αm,D(πPm
)
∏
n∈J

∆αn(πPn
).

Observe that fJ(A) is given by replacing αn,D(πPn
) by

∆αn(πPn
) for n ∈ J in the definition (13) of µD. Recall

that µ̂(A) is given by replacing αn,D(π) in the definition of
µD by α̂n(π) for all n ∈ IN,A. Based on these relationships,
we have the following lemma:

Lemma 11. For A ∈ A, it holds that:

µD(A) = f∅(A), µ̂(A) =
∑

J⊆IN,A

fJ(A). (18)

For j ∈ IN,A, let f j(A) := f{j}(A). We provide prob-
abilistic bounds for the linear terms (|J | = 1) and super-
linear terms (|J | ≥ 2) in (18), separately, using Hoeffding’s
inequality.

Lemma 12. Suppose that (14), (15), and (16) hold.

(i) The following holds with a probability of at least 1 −
(C + 2)/T :

max
A∈A

∣∣∣∣∣∣
∑

j∈IN,A

f j(A)

∣∣∣∣∣∣ ≤
√

2e6γ∗ log(|A|T )

T
.

(ii) The following holds with a probability of at least 1 −
9C/T :

max
A∈A

∑
J⊆IN,A:|J|≥2

|fJ(A)| ≤
√

8e2C3 log T

λT
.

The above two lemmas imply Proposition 10.

4.3. Proof of Theorem 1

We present a sketch of proof of Theorem 1, on the basis
of Propositions 6 and 10, as follows. Putting λ = C3/N ,
by Propositions 2 6, and 10, the following holds for every
A ∈ A with a probability of at least 1− (16C + 2)/T :

|µ(A)− µ̂(A)|

≤
√

8e6 max{γ∗, N} log(|A|T )

T
+

192e2NC7 log T

T
.

Let A∗ = argmaxA∈Aµ(A) and Â = argmaxA∈Aµ̂(A).
Then it holds that

µ(A∗)− µ(Â) ≤ |µ(A∗)− µ̂(A∗)|+ |µ(Â)− µ̂(Â)|

= O

(√
max{γ∗, N} log(|A|T )

T

)
.

This implies the desired regret bound.

5. Experiments
We now demonstrate the performance of the proposed algo-
rithm through experimental evaluations and compare it with
a baseline algorithm (Audibert & Bubeck, 2010) which was
proposed for the general bandit problem and thus cannot
take advantage of known causal graph structure.
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Figure 2. The average regret over synthetic and real-world instances

Instances We evaluated the algorithms on both synthetic
and real-world instances. Detailed experimental setting is
presented in the full version (Yabe et al., 2018). Recall that
an instance of the causal bandit problem consists of a DAG
G, an intervention set A, and αn(n = 1, . . . , N).

In the synthetic instances, the DAGG is defined as a directed
complete binary tree of height 4, and then the number of
nodes is N = 25 − 1 = 31, and the number of uncertain
parameter is C = 22× (24−1) + 20×24 = 76. In the real-
world instances, the DAG G is constructed from the Alarm
and the Water data sets in a Bayesian Network Repository1.
The numbers N of nodes in the DAGs constructed from
Alarm and Water data sets are 37 and 32, and the numbers
C of uncertain parameters are 116 and 248, respectively.

For each G, we consider interventions over all leaves which
fixes exactly b ∈ N nodes as 1 and the others as 0. We call
this parameter b budget, and the number of intervention |A|
is then controlled by the budget.

For each n ∈ {1, . . . , N} and π ∈ {0, 1}Pn , we generate
αn(π) from the uniform distribution over [0, 1].

For each of those instances, we executed the algorithms 10
times and compared their average regrets.

Implementation of the proposed algorithm Our algo-
rithm given in Section 3 is designed conservatively to obtain
the theoretical regred bound (Theorem 1), and there is a
room to modify the algorithm to be more efficient in prac-
tice although the theoretical regret bound may not hold for
it. In our implementation, we introduced the following three
modifications into the proposed algorithm. First, while Al-
gorithm 2 discards samples obtained for computing α̌′ in
Algorithm 1 to maintain the independence between β̂ and
α̂, we use all of them also in Algorithm 2 in our imple-
mentation. Next, we ignore the truncation mechanism of
Algorithm 1 by setting λ = 0. We expect these two modifi-
cations make the estimates of the algorithm more accurate.
Finally, instead of solving (8), we set ηA by ηA = 1/C

1http://www.cs.huji.ac.il/˜galel/
Repository/

if A = Ân,π for some n ∈ [1, N ] and π ∈ {0, 1}Pn , and
ηA = 0 otherwise. Since it is time-consuming to solve (8),
this modification makes the algorithm faster.

Experimental results Figure 4.3(i) shows the average re-
grets over the synthetic instances against the number of
rounds T ∈ {C, 2C, . . . , 9C}. Figures 4.3 (ii) and (iii) re-
spectively illustrate the average regrets for the real-world
instances constructed from the Alarm and the Water data
sets.

The results show that the proposed algorithm outperforms
the baseline in every instance. In particular, the gap is
remarkably large (> 0.2) in the Alarm data set (ii) with
a large number of interventions (b = 4, 8, corresponding
to |A| = 793, 3796, respectively,) and a small number of
samples (T ≤ 4C = 464). In these cases, the baseline
cannot apply every intervention at least once. On the other
hand, the regret of the proposed algorithm only grows slowly
with respect to the number of arms |A|, in all instances.
Thus the proposed algorithm provides effective regret, even
when the number of interventions |A| is 30 times larger than
the number of experiments T .

6. Conclusion
In this paper, we proposed the first algorithm for the general
causal bandit problem, where existing algorithms could
deal with only localized interventions, and proved a novel
regret bound O(

√
γ∗ log(|A|T )/T ) which is logarithmic

with respect to the number of arms. Our experimental result
shows that the proposed algorithm is applicable to systems
where the number of interventions |A| is much larger than T .
One important future research direction would be to prove
the gap-dependent bound as Sen et al. (2017) has proven for
localized interventions. Another research direction, which
is mentioned in (Lattimore et al., 2016), would include
incorporation of a causal discovery algorithm to enable
the estimation of the structure of a causal graph, which is
currently assumed to be known in advance.

http://www.cs.huji.ac.il/~galel/Repository/
http://www.cs.huji.ac.il/~galel/Repository/
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