
Active Learning with Logged Data

A. Preliminaries
A.1. Summary of Key Notations

Data Partitions Tk = {(Xt, Yt, Zt)}t=m+n1+···+nk
t=m+n1+···+nk−1+1 (1 ≤ k ≤ K) is the online data collected in k-th iteration

of size nk = 2k−1. n = n1 + · · · + nK , α = 2m/3n. We define n0 = 0. T0 = {(Xt, Yt, Zt)}t=mt=1 is the logged
data and is partitioned into K + 1 parts T (0)

0 , · · · , T (K)
0 of sizes m0 = m/3,m1 = αn1,m2 = αn2, · · · ,mK = αnK .

Sk = T
(k)
0 ∪ Tk.

Recall that S̃k and T̃k contain inferred labels while Sk and Tk are sets of examples with original labels. The algorithm only
observes S̃k and T̃k.

For (X,Z) ∈ Tk (0 ≤ k ≤ K), Qk(X) = Pr(Z = 1 | X).

Disagreement Regions The candidate set Vk and its disagreement region Dk are defined in Algorithm 1. ĥk =
arg minh∈Vk l(h, S̃k). ν = l(h?).

B(h, r) := {h′ ∈ H | ρ(h, h′) ≤ r}, DIS(V ) := {x ∈ X | ∃h1 6= h2 ∈ V s.t. h1(x) 6= h2(x)}. S(A,α) =⋃
A′⊆A

(
A′ ∩

{
x : Q0(x) ≤ infx∈A′ Q0(x) + 1

α

})
. θ̃(r0, α) = supr>r0

1
r Pr(S(DIS(B(h?, r)), α)).

DIS0 = X . For k = 1, . . . ,K, εk = γ2 supx∈DISk−1

log(2|H|/δk)
mk−1Q0(x)+nk−1

+ γ2

√
supx∈DISk−1

log(2|H|/δk)
mk−1Q0(x)+nk−1

l(h?), DISk =

DIS(B(h?, 2ν + εk)).

Other Notations ρ(h1, h2) = Pr(h1(X) 6= h2(X)), ρS(h1, h2) = 1
|S|
∑
X∈S 1{h1(X) 6= h2(X)}.

For k ≥ 0, σ(k, δ) = supx∈Dk
log(|H|/δ)

mkQ0(x)+nk
, δk = δ

(k+1)(k+2) . ξk = infx∈Dk Q0(x). ζ = supx∈DIS1

1
αQ0(x)+1 .

A.2. Elementary Facts

Proposition 4. Suppose a, c ≥ 0,b ∈ R. If a ≤ b+
√
ca, then a ≤ 2b+ c.

Proof. Since a ≤ b +
√
ca,
√
a ≤

√
c+
√
c+4b

2 ≤
√

c+c+4b
2 =

√
c+ 2b where the second inequality follows from the

Root-Mean Square-Arithmetic Mean inequality. Thus, a ≤ 2b+ c.

A.3. Facts on Disagreement Regions and Candidate Sets

Lemma 5. For any k = 0, . . . ,K, any x ∈ X , any h1, h2 ∈ Vk, 1{h1(x)6=h2(x)}
mkQ0(X)+nkQk(X) ≤ supx′

1{x′∈Dk}
mkQ0(x′)+nk

.

Proof. The k = 0 case is obvious since D0 = X and n0 = 0.

For k > 0, since DIS(Vk) = Dk, 1{h1(x) 6= h2(x)} ≤ 1{x ∈ Dk}, and thus 1{h1(x) 6=h2(x)}
mkQ0(X)+nkQk(X) ≤

1{x∈Dk}
mkQ0(X)+nkQk(X) .

For any x, if Q0(x) ≤ ξk + 1/α, then Qk(x) = 1, so 1{x∈Dk}
mkQ0(X)+nkQk(X) = 1{x∈Dk}

mkQ0(x)+nk
≤ supx′

1{x′∈Dk}
mkQ0(x′)+nk

.

If Q0(x) > ξk + 1/α, then Qk(x) = 0, so 1{x∈Dk}
mkQ0(X)+nkQk(X) = 1{x∈Dk}

mkQ0(x)
≤ 1{x∈Dk}

mkξk+nk
≤ supx′

1{x′∈Dk}
mkQ0(x′)+nk

where the
first inequality follows from the fact that Q0(x) > ξk + 1/α implies mkQ0(x) > mkξk + nk

Lemma 6. For any k = 0, . . . ,K, if h1, h2 ∈ Vk, then l(h1, Sk)− l(h2, Sk) = l(h1, S̃k)− l(h2, S̃k).

Proof. For any (Xt, Yt, Zt) ∈ St that Zt = 1, if Xt ∈ DIS(Vk), then Yt = Ỹt, so 1{h1(Xt) 6= Yt} − 1{h2(Xt) 6= Yt} =
1{h1(Xt) 6= Ỹt} − 1{h2(Xt) 6= Ỹt}. If Xt /∈ DIS(Vk), then h1(Xt) = h2(Xt), so 1{h1(Xt) 6= Yt} − 1{h2(Xt) 6=
Yt} = 1{h1(Xt) 6= Ỹt} − 1{h2(Xt) 6= Ỹt} = 0.

The following lemma is immediate from definition.

Lemma 7. For any r ≥ 2ν, any α ≥ 1, Pr(S(DIS(B(h?, r)), α)) ≤ rθ̃(r, α).
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A.4. Facts on Multiple Importance Sampling Estimators

We recall that {(Xt, Yt)}n0+n
t=1 is an i.i.d. sequence. Moreover, the following fact is immediate by our construction that

S0, · · · , SK are disjoint and that Qk is determined by S0, · · · , Sk−1.

Fact 8. For any 0 ≤ k ≤ K, conditioned on Qk, examples in Sk are independent, and examples in Tk are i.i.d.. Besides,
for any 0 < k ≤ K, Qk, T (k)

0 , . . . , T
(K)
0 are independent.

Unless otherwise specified, all probabilities and expectations are over the random draw of all random variables (including
S0, · · · , SK , Q1, · · · , QK).

The following lemma shows multiple importance estimators are unbiased.

Lemma 9. For any h ∈ H, any 0 ≤ k ≤ K, E[l(h, Sk)] = l(h).

The above lemma is immediate from the following lemma.

Lemma 10. For any h ∈ H, any 0 ≤ k ≤ K, E[l(h, Sk) | Qk] = l(h).

Proof. The k = 0 case is obvious since S0 = T
(0)
0 is an i.i.d. sequence and l(h, Sk) reduces to a standard importance

sampling estimator. We only show proof for k > 0.

Recall that Sk = T
(k)
0 ∪ Tk, and that T (k)

0 and Tk are two i.i.d. sequences conditioned Qk. We denote the conditional
distributions of T (k)

0 and Tk given Qk by P0 and Pk respectively. We have

E[l(h, Sk) | Qk] = E

 ∑
(X,Y,Z)∈T (k)

0

1{h(X) 6= Y }Z
mkQ0(X) + nkQk(X)

| Qk

+ E

 ∑
(X,Y,Z)∈Tk

1{h(X) 6= Y }Z
mkQ0(X) + nkQk(X)

| Qk


= mkEP0

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| Qk

]
+ nkEPk

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| Qk

]
where the second equality follows since T (k)

0 and Tk are two i.i.d. sequences given Qk with sizes mk and nk respectively.

Now,

EP0

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| Qk

]
= EP0

[
EP0

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| X,Qk

]
| Qk

]
= EP0

[
EP0

[
1{h(X) 6= Y }Q0(X)

mkQ0(X) + nkQk(X)
| X,Qk

]
| Qk

]
= EP0

[
1{h(X) 6= Y }Q0(X)

mkQ0(X) + nkQk(X)
| Qk

]
where the second equality uses the definition PrP0

(Z | X) = Q0(X) and the fact that T (k)
0 and Qk are independent.

Similarly, we have EPk
[

1{h(X)6=Y }Z
mkQ0(X)+nkQk(X) | Qk

]
= EPk

[
1{h(X)6=Y }Qk(X)
mkQ0(X)+nkQk(X) | Qk

]
.

Therefore,

mkEP0

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| Qk

]
+ nkEPk

[
1{h(X) 6= Y }Z

mkQ0(X) + nkQk(X)
| Qk

]
= mkEP0

[
1{h(X) 6= Y }Q0(X)

mkQ0(X) + nkQk(X)
| Qk

]
+ nkEPk

[
1{h(X) 6= Y }Qk(X)

mkQ0(X) + nkQk(X)
| Qk

]
= EP0

[
1{h(X) 6= Y }mkQ0(X) + nkQk(X)

mkQ0(X) + nkQk(X)
| Qk

]
= ED [1{h(X) 6= Y }] = l(h)

where the second equality uses the fact that distribution of (X,Y ) according to P0 is the same as that according to Pk, and
the third equality follows by algebra and Fact 8 that Qk is independent with T (k)

0 .
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The following lemma will be used to upper-bound the variance of the multiple importance sampling estimator.

Lemma 11. For any h1, h2 ∈ H, any 0 ≤ k ≤ K,

E

 ∑
(X,Y,Z)∈Sk

(
1{h1(X) 6= h2(X)}Z
mkQ0(X) + nkQk(X)

)2

| Qk

 ≤ ρ(h1, h2) sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x) + nkQk(x)

.

Proof. We only show proof for k > 0. The k = 0 case can be proved similarly.

We denote the conditional distributions of T (k)
0 and Tk given Qk by P0 and Pk respectively. Now, similar to the proof of

Lemma 10, we have

E

 ∑
(X,Y,Z)∈Sk

(
1{h1(X) 6= h2(X)}Z
mkQ0(X) + nkQk(X)

)2

| Qk


=

∑
(X,Y,Z)∈Sk

E

[
1{h1(X) 6= h2(X)}Z

(mkQ0(X) + nkQk(X))
2 | Qk

]

=mkEP0

[
1{h1(X) 6= h2(X)}Z

(mkQ0(X) + nkQk(X))
2 | Qk

]
+ nkEPk

[
1{h1(X) 6= h2(X)}Z

(mkQ0(X) + nkQk(X))
2 | Qk

]

=mkEP0

[
1{h1(X) 6= h2(X)}Q0(X)

(mkQ0(X) + nkQk(X))
2 | Qk

]
+ nkEPk

[
1{h1(X) 6= h2(X)}Qk(X)

(mkQ0(X) + nkQk(X))
2 | Qk

]

=EP0

[
1{h1(X) 6= h2(X)} mkQ0(X) + nkQk(X)

(mkQ0(X) + nkQk(X))2
| Qk

]
=EP0

[
1{h1(X) 6= h2(X)}
mkQ0(X) + nkQk(X)

| Qk
]

≤EP0 [1{h1(X) 6= h2(X)} | Qk] sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x) + nkQk(x)

=ρ(h1, h2) sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x) + nkQk(x)

.

B. Deviation Bounds
In this section, we demonstrate deviation bounds for our error estimators on Sk. Again, unless otherwise specified, all
probabilities and expectations in this section are over the random draw of all random variables, that is, S0, · · · , SK ,
Q1, · · · , QK .

We use following Bernstein-style concentration bound:

Fact 12. Suppose X1, . . . , Xn are independent random variables. For any i = 1, . . . , n, |Xi| ≤ 1, EXi = 0, EX2
i ≤ σ2

i .
Then with probability at least 1− δ, ∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 2

3
log

2

δ
+

√√√√2

n∑
i=1

σ2
i log

2

δ
.

Theorem 13. For any k = 0, . . . ,K, any δ > 0, with probability at least 1− δ, for all h1, h2 ∈ H, the following statement
holds:

|(l(h1, Sk)− l(h2, Sk))− (l(h1)− l(h2))| ≤ 2 sup
x∈X

1{h1(x) 6= h2(x)} 2 log
4|H|
δ

3

mkQ0(x) + nkQk(x)
+

√
2 sup
x∈X

1{h1(x) 6= h2(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
ρ(h1, h2).

(4)
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Proof. We show proof for k > 0. The k = 0 case can be proved similarly. When k > 0, it suffices to show that for any
k = 1, . . . ,K, δ > 0, conditioned on Qk, with probability at least 1− δ, (4) holds for all h1, h2 ∈ H.

For any k = 1, . . . ,K, for any fixed h1, h2 ∈ H, define A := supx∈X
1{h1(x) 6=h2(x)}

mkQ0(x)+nkQk(x)
. Let N := |Sk|, Ut :=

1{h1(Xt)6=Yt}Zt
mkQ0(Xt)+nkQk(Xt)

− 1{h2(Xt) 6=Yt}Zt
mkQ0(Xt)+nkQk(Xt)

, Vt := (Ut − E[Ut|Qk])/2A.

Now, conditioned on Qk, {Vt}Nt=1 is an independent sequence by Fact 8. |Vt| ≤ 1, and E[Vt|Qk] = 0. Besides, we have

N∑
t=1

E[V 2
t |Qk] ≤ 1

4A2

N∑
t=1

E[U2
t |Qk]

≤ 1

4A2

N∑
t=1

E
(
1{h1(Xt) 6= h2(Xt)}Zt
mkQ0(Xt) + nkQk(Xt)

)2

≤ ρ(h1, h2)

4A

where the second inequality follows from |Ut| ≤ 1{h1(Xt)6=h2(Xt)}Zt
mkQ0(Xt)+nkQk(Xt)

, and the third inequality follows from Lemma 11.

Applying Bernstein’s inequality (Fact 12) to {Vt}, conditioned on Qk, we have with probability at least 1− δ,∣∣∣∣∣
m∑
t=1

Vt

∣∣∣∣∣ ≤ 2

3
log

2

δ
+

√
ρ(h1, h2)

2A
log

2

δ
.

Note that
∑m
t=1 Ut = l(h1, Sk) − l(h2, Sk), and

∑m
t=1 E[Ut | Qk] = l(h1) − l(h2) by Lemma 10, so

∑m
t=1 Vt =

1
2A (l(h1, Sk)− l(h2, Sk)− l(h1) + l(h2)). (4) follows by algebra and a union bound overH.

Theorem 14. For any k = 0, . . . ,K, any δ > 0, with probability at least 1− δ, for all h1, h2 ∈ H, the following statements
hold simultaneously:

ρSk(h1, h2) ≤ 2ρ(h1, h2) +
10

3
sup
x∈X

1{h1(x) 6= h2(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
; (5)

ρ(h1, h2) ≤ 2ρSk(h1, h2) +
7

6
sup
x∈X

1{h1(x) 6= h2(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
. (6)

Proof. Let N = |Sk|. Note that for any h1, h2 ∈ H, ρSk(h1, h2) = 1
N

∑
t 1{h1(Xt) 6= h2(Xt)}, which is the empirical

average of an i.i.d. sequence. By Fact 12 and a union bound overH, with probability at least 1− δ,

|ρ(h1, h2)− ρSk(h1, h2)| ≤ 2

3N
log

4|H|
δ

+

√
2ρ(h1, h2)

N
log

4|H|
δ

.

On this event, by Proposition 4, ρ(h1, h2) ≤ 2ρSk(h1, h2) + 4
3N log 4|H|

δ + 2
N log 4|H|

δ ≤ 2ρSk(h1, h2) + 10
3N log 4|H|

δ .

Moreover,

ρSk(h1, h2) ≤ ρ(h1, h2) +
2

3N
log

4|H|
δ

+

√
2ρ(h1, h2)

N
log

4|H|
δ

≤ ρ(h1, h2) +
2

3N
log

4|H|
δ

+
1

2
(2ρ(h1, h2) +

1

N
log

4|H|
δ

)

≤ 2ρ(h1, h2) +
7

6N
log

4|H|
δ

where the second inequality uses the fact that ∀a, b > 0,
√
ab ≤ a+b

2 .

The result follows by noting that ∀x ∈ X , N = |Sk| = mk + nk ≥ mkQ0(x) + nkQk(x).
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Corollary 15. There are universal constants γ0, γ1 > 0 such that for any k = 0, . . . ,K, any δ > 0, with probability at
least 1− δ, for all h, h1, h2 ∈ H, the following statements hold simultaneously:

|(l(h1, Sk)− l(h2, Sk))− (l(h1)− l(h2))| ≤ γ0 sup
x∈X

1{h1(x) 6= h2(x)} log |H|2δ

mkQ0(x) + nkQk(x)
+γ0

√
sup
x∈X

1{h1(x) 6= h2(x)} log |H|2δ

mkQ0(x) + nkQk(x)
ρS(h1, h2);

(7)

l(h)− l(h?) ≤ 2(l(h, Sk)− l(h?, Sk)) + γ1 sup
x∈X

1{h(x) 6= h?(x)} log |H|δ
mkQ0(x) + nkQk(x)

+ γ1

√
sup
x∈X

1{h(x) 6= h?(x)} log |H|δ
mkQ0(x) + nkQk(x)

l(h?).

(8)

Proof. Let event E be the event that (4) and (6) holds for all h1, h2 ∈ H with confidence 1− δ
2 respectively. Assume E

happens (whose probability is at least 1− δ).

(7) is immediate from (4) and (6).

For the proof of (8), apply (4) to h and h?, we get

l(h)− l(h?) ≤ l(h, Sk)− l(h?, Sk) + 2 sup
x∈X

1{h(x) 6= h?(x)} 2 log
4|H|
δ

3

mkQ0(x) + nkQk(x)
+

√
2 sup
x∈X

1{h(x) 6= h?(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
ρ(h, h?).

By triangle inequality, ρ(h, h?) = PrD(h(X) 6= h?(X)) ≤ PrD(h(X) 6= Y )+PrD(h?(X) 6= Y ) = l(h)−l(h?)+2l(h?).
Therefore, we get

l(h)− l(h?) ≤ l(h, Sk)− l(h?, Sk) + 2 sup
x∈X

1{h(x) 6= h?(x)} 2 log
4|H|
δ

3

mkQ0(x) + nkQk(x)

+

√
2 sup
x∈X

1{h(x) 6= h?(x))} log 4|H|
δ

mkQ0(x) + nkQk(x)
(l(h)− l(h?) + 2l(h?))

≤ l(h, Sk)− l(h?, Sk) +

√
2 sup
x∈X

1{h(x) 6= h?(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
(l(h)− l(h?))

+2 sup
x∈X

1{h(x) 6= h?(x)} 2 log
4|H|
δ

3

mkQ0(x) + nkQk(x)
+

√
4 sup
x∈X

1{h(x) 6= h?(x)} log 4|H|
δ

mkQ0(x) + nkQk(x)
l(h?)

where the second inequality uses
√
a+ b ≤

√
a+
√
b for a, b ≥ 0.

(8) follows by applying Proposition 4 to l(h)− l(h?).

C. Technical Lemmas
For any 0 ≤ k ≤ K and δ > 0, define event Ek,δ to be the event that the conclusions of Theorem 13 and Theorem 14 hold
for k with confidence 1− δ/2 respectively. We have Pr(Ek,δ) ≥ 1− δ, and that Ek,δ implies inequalities (4) to (8).

We first present a lemma which can be used to guarantee that h? stays in candidate sets with high probability by induction..

Lemma 16. For any k = 0, . . .K, any δ > 0. On event Ek,δ , if h? ∈ Vk then,

l(h?, S̃k) ≤ l(ĥk, S̃k) + γ0σ(k, δ) + γ0

√
σ(k, δ)ρS̃k(ĥk, h?).
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Proof.

l(h?, S̃k)− l(ĥk, S̃k)

=l(h?, Sk)− l(ĥk, Sk)

≤γ0 sup
x

1{h?(x) 6= ĥk(x)} log |H|δ
mkQ0(x) + nkQk(x)

+ γ0

√
sup
x

1{h?(x) 6= ĥk(x)} log |H|δ
mkQ0(x) + nkQk(x)

ρSk(ĥk, h?)

≤γ0σ(k, δ) +
√
γ0σ(k, δ)ρS̃k(ĥk, h).

The equality follows from Lemma 6. The first inequality follows from (7) of Corollary 15 and that l(h?) ≤ l(ĥk). The last
inequality follows from Lemma 5 and that ρS̃k(ĥk, h

?) = ρSk(ĥk, h
?).

Next, we present two lemmas to bound the probability mass of the disagreement region of candidate sets.

Lemma 17. For any k = 0, . . . ,K, any δ > 0, let Vk+1(δ) := {h ∈ Vk | l(h, S̃k) ≤ l(ĥk, S̃k) + γ0σ(k, δ) +

γ0

√
σ(k, δ)ρS̃k(ĥk, h)}. Then there is an absolute constant γ2 > 1 such that for any 0, . . . ,K, any δ > 0, on event

Ek,δ , if h? ∈ Vk, then for all h ∈ Vk+1(δ),

l(h)− l(h?) ≤ γ2σ(k, δ) + γ2
√
σ(k, δ)l(h?).

Proof. For any h ∈ Vk+1(δ), we have

l(h)− l(h?)

≤2(l(h, Sk)− l(h?, Sk)) + γ1σ(k,
δ

2
) + γ1

√
σ(k,

δ

2
)l(h?)

=2(l(h, S̃k)− l(h?, S̃k)) + γ1σ(k,
δ

2
) + γ1

√
σ(k,

δ

2
)l(h?)

=2(l(h, S̃k)− l(ĥk, S̃k) + l(ĥk, S̃k)− l(h?, S̃k)) + γ1σ(k,
δ

2
) + γ1

√
σ(k,

δ

2
)l(h?)

≤2(l(h, S̃k)− l(ĥk, S̃k)) + γ1σ(k,
δ

2
) + γ1

√
σ(k,

δ

2
)l(h?)

≤(2γ0 + γ1)σ(k,
δ

2
) + 2γ0

√
σ(k,

δ

2
)ρS̃k(h, ĥk) + γ1

√
σ(k,

δ

2
)l(h?)

≤(2γ0 + γ1)σ(k,
δ

2
) + 2γ0

√
σ(k,

δ

2
)(ρSk(h, h?) + ρSk(ĥk, h?)) + γ1

√
σ(k,

δ

2
)l(h?) (9)

where the first inequality follows from (8) of Corollary 15 and Lemma 5, the first equality follows from Lemma 6, the
third inequality follows from the definition of Vk(δ), and the last inequality follows from ρS̃k(h, ĥk) = ρSk(h, ĥk) ≤
ρSk(h, h?) + ρSk(ĥk, h

?).

As for ρSk(h, h?), we have ρSk(h, h?) ≤ 2ρ(h, h?) + 16
3 σ(k, δ8 ) ≤ 2(l(h)− l(h?)) + 4l(h?) + 16

3 σ(k, δ8 ) where the first
inequality follows from (5) of Theorem 14 and Lemma 5, and the second inequality follows from the triangle inequality.
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For ρSk(ĥk, h
?), we have

ρSk(ĥk, h
?) ≤ 2ρ(ĥk, h

?) +
16

3
σ(k,

δ

8
)

≤ 2(l(ĥk)− l(h?) + 2l(h?)) +
16

3
σ(k,

δ

8
)

≤ 2(2(l(ĥk, Sk)− l(h?, Sk)) + γ1σ(k,
δ

2
) + γ1

√
σ(k,

δ

2
)l(h?) + 2l(h?)) +

16

3
σ(k,

δ

8
)

≤ (2γ1 +
16

3
)σ(k,

δ

8
) + 2γ1

√
σ(k,

δ

2
)l(h?) + 4l(h?)

≤ (4 + γ1)l(h?) + (3γ1 +
16

3
)σ(k,

δ

8
)

where the first inequality follows from (5) of Theorem 14 and Lemma 5, the second follows from the triangle inequality, the
third follows from (8) of Theorem 15 and Lemma 5, the fourth follows from the definition of ĥk, the last follows from the
fact that 2

√
ab ≤ a+ b for a, b ≥ 0.

Continuing (9) and using the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, we have:

l(h)−l(h?) ≤ (2γ0+γ1+2γ0

√
3γ1 +

32

3
)σ(k,

δ

8
)+(2γ0

√
8 + γ1+γ1)

√
σ(k,

δ

8
)l(h?)+2

√
2γ0

√
σ(k,

δ

8
)(l(h)− l(h?)).

The result follows by applying Proposition 4 to l(h)− l(h?).

Lemma 18. On event
⋂K−1
k=0 Ek,δk/2, for any k = 0, . . .K, Dk ⊆ DISk.

Proof. Recall that δk = δ
(k+1)(k+2) . On event

⋂K−1
k=0 Ek,δk/2, h? ∈ Vk for all 0 ≤ k ≤ K by Lemma 16 and induction.

The k = 0 case is obvious since D0 = DIS0 = X . Now, suppose 0 ≤ k < K, and Dk ⊆ DISk. We have

Dk+1 ⊆ DIS
({
h : l(h) ≤ ν + γ2

(
σ(k, δk/2) +

√
σ(k, δk/2)ν

)})
⊆ DIS

(
B
(
h?, 2ν + γ2

(
σ(k, δk/2) +

√
σ(k, δk/2)ν

)))
where the first line follows from Lemma 17 and the definition of Dk, and the second line follows from triangle inequality
that Pr(h(X) 6= h?(X)) ≤ l(h) + l(h?) (recall ν = l(h?)).

To prove Dk+1 ⊆ DISk+1 it suffices to show γ2

(
σ(k, δk/2) +

√
σ(k, δk/2)ν

)
≤ εk+1.

Note that σ(k, δk/2) = supx∈Dk
log(2|H|/δk)
mkQ0(x)+nk

≤ supx∈DISk
log(2|H|/δk)
mkQ0(x)+nk

since Dk ⊆ DISk. Consequently,

γ2

(
σ(k, δk/2) +

√
σ(k, δk/2)ν

)
≤ εk+1.

D. Proof of Consistency

Proof. (of Theorem 1) Define event E(0) :=
⋂K
k=0 Ek,δk/2. By a union bound, Pr(E(0)) ≥ 1 − δ. On event E(0), by

induction and Lemma 16, for all k = 0, . . . ,K, h? ∈ Vk. Observe that ĥ = ĥK ∈ VK+1(δK/2). Applying Lemma 17 to ĥ,
we have

l(ĥ) ≤ l(h?) + γ2

(
sup
x∈DK

log(2|H|/δK)

mKQ0(x) + nK
+

√
sup
x∈DK

log(2|H|/δK)

mKQ0(x) + nK
l(h?)

)
.

The result follows by noting that supx∈X
1{x∈DK}

mKQ0(x)+nK
≤ supx∈X

1{x∈DISK}
mKQ0(x)+nK

by Lemma 18.
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E. Proof of Label Complexity
Proof. (of Theorem 3) Recall that ξk = infx∈Dk Q0(x) and ζ = supx∈DIS1

1
αQ0(x)+1 .

Define event E(0) :=
⋂K
k=0 Ek,δk/2. On this event, by induction and Lemma 16, for all k = 0, . . . ,K, h? ∈ Vk, and

consequently by Lemma 18, Dk ⊆ DISk.

For any k = 0, . . .K − 1, let the number of label queries at iteration k to be Uk :=
∑n0+···+nk+1

t=n0+···+nk+1 Zt1{Xt ∈ Dk+1}.

Zt1{Xt ∈ Dk+1} = 1{Xt ∈ Dk+1 ∧Q0(Xt) ≤ inf
x∈Dk+1

Q0(x) +
1

α
}

≤ 1{Xt ∈ S(Dk+1, α)}
≤ 1{Xt ∈ S(DISk+1, α)}.

Thus, Uk ≤
∑n0+···+nk+1

t=n0+···+nk+1 1{Xt ∈ S(DISk+1, α)}, where the RHS is a sum of i.i.d. Bernoulli(Pr(S(DISk+1, α)))
random variables, so a Bernstein inequality implies that on an event E(1,k) of probability at least 1 − δk/2,∑n0+···+nk+1

t=n0+···+nk+1 1{Xt ∈ S(DISk+1, α)} ≤ 2nk+1 Pr(S(DISk+1, α)) + 2 log 4
δk

.

Therefore, it suffices to show that on event E(2) := ∩Kk=0(E(1,k) ∩ Ek,δk/2), for some absolute constant c1,

K−1∑
k=0

nk+1 Pr(S(DISk+1, α)) ≤ c1θ̃(2ν + εK , α)(nν + ζ log n log
|H| log n

δ
+ log n

√
nνζ log

|H| log n

δ
).

Now, on event E(2), for any k < K, Pr(S(DISk+1, α)) = Pr(S(DIS(B(h?, 2ν+εk+1)), α)) ≤ (2ν+εk+1)θ̃(2ν+εk+1, α)
where the last inequality follows from Lemma 7.

Therefore,

K−1∑
k=0

nk+1 Pr(S(DISk+1, α))

≤n1 +

K−1∑
k=1

nk+1(2ν + εk+1)θ̃(2ν + εk+1, α)

≤1 + θ̃(2ν + εK , α)(2nν +

K−1∑
k=1

nk+1εk+1)

≤1 + θ̃(2ν + εK , α)

2nν + 2γ2

K−1∑
k=1

( sup
x∈DIS1

log |H|δk/2

(αQ0(x) + 1)
+

√√√√
nkν sup

x∈DIS1

log |H|δk/2

(αQ0(x) + 1)
)


≤1 + θ̃(2ν + εK , α)(2nν + 2γ2ζ log n log

|H|(log n)2

δ
+ 2γ2 log n

√
nνζ log

|H|(log n)2

δ
).

F. Experiment Details
F.1. Implementation

All algorithms considered require empirical risk minimization. Instead of optimizing 0-1 loss which is known to be
computationally hard, we approximate it by optimizing a squared loss. We use the online gradient descent method in
(Karampatziakis & Langford, 2011) for optimizing importance weighted loss functions.

For IDBAL, recall that in Algorithm 1, we need to find the empirical risk minimizer ĥk ← arg minh∈Vk l(h, S̃k), update
the candidate set Vk+1 ← {h ∈ Vk | l(h, S̃k) ≤ l(ĥk, S̃k) + ∆k(h, ĥk)}, and check whether x ∈ DIS(Vk+1).
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Table 5: Dataset information.

Dataset # of examples # of features

synthetic 6000 30
letter (U vs P) 1616 16
skin 245057 3
magic 19020 10
covtype 581012 54
mushrooms 8124 112
phishing 11055 68
splice 3175 60
svmguide1 4000 4
a5a 6414 123
cod-rna 59535 8
german 1000 24

In our experiment, we approximately implement this following Vowpal Wabbit (vw). More specifically,

1. Instead of optimizing 0-1 loss which is known to be computationally hard, we use a surrogate loss l(y, y′) = (y − y′)2.

2. We do not explicitly maintain the candidate set Vk+1.

3. To solve the optimization problem minh∈Vk l(h, S̃k) =
∑

(X,Ỹ ,Z)∈S̃k
1{h(X) 6=Ỹ }Z

mkQ0(X)+nkQk(X) , we ignore the constraint

h ∈ Vk, and use online gradient descent with stepsize
√

η
t+η where η is a parameter. The start point for gradient

descent is set as ĥk−1 the ERM in the last iteration, and the step index t is shared across all iterations (i.e. we do not
reset t to 1 in each iteration).

4. To approximately check whether x ∈ DIS(Vk+1), when the hypothesis space H is linear classifiers, let wk be the

normal vector for current ERM ĥk, and a be current stepsize. We claim x ∈ DIS(Vk+1) if |2w
>
k x|

ax>x
≤
√

C·l(ĥk,S̃k)
mkξk+nk

+
C log(mk+nk)
mkξk+nk

(recall |S̃k| = mk + nk and ξk = infx∈DIS(Vk)Q0(x)) where C is a parameter that captures the model
capacity. See (Karampatziakis & Langford, 2011) for the rationale of this approximate disagreement test.

5. ξk = infx∈DIS(Vk)Q0(x) can be approximately estimated with a set of unlabeled samples. This estimate is always an
upper bound of the true value of ξk.

DBALw and DBALwm can be implemented similarly.

G. Additional Experiment Results
In this section, we present a table of dataset information and plots of test error curves for each algorithm under each policy
and dataset.

We remark that the high error bars in test error curves are largely due to the inherent randomness of training sets since in
practice active learning is sensitive to the order of training examples. Similar phenomenon can be observed in previous work
(Huang et al., 2015).
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synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 1: Test error vs. number of labels under the Identical policy

synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 2: Test error vs. number of labels under the Uniform policy
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synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 3: Test error vs. number of labels under the Uncertainty policy

synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 4: Test error vs. number of labels under the Certainty policy


