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Abstract
Complex performance measures, beyond the pop-
ular measure of accuracy, are increasingly being
used in the context of binary classification. These
complex performance measures are typically not
even decomposable, that is, the loss evaluated on a
batch of samples cannot typically be expressed as
a sum or average of losses evaluated at individual
samples, which in turn requires new theoretical
and methodological developments beyond stan-
dard treatments of supervised learning. In this pa-
per, we advance this understanding of binary clas-
sification for complex performance measures by
identifying two key properties: a so-called Karmic
property, and a more technical threshold-quasi-
concavity property, which we show is milder than
existing structural assumptions imposed on per-
formance measures. Under these properties, we
show that the Bayes optimal classifier is a thresh-
old function of the conditional probability of pos-
itive class. We then leverage this result to come
up with a computationally practical plug-in clas-
sifier, via a novel threshold estimator, and further,
provide a novel statistical analysis of classifica-
tion error with respect to complex performance
measures.

1. Introduction
Binary classification, with the goal of predicting a binary
response given input features, is perhaps the classical prob-
lem in machine learning, with wide ranging applications.
A key ingredient in binary classification is a performance
measure, that quantifies how well a given classifier fits the
data. While the performance measure of accuracy has been
the predominant focus of both theory and practice, it has
severe limitations in many practical settings, such as imbal-
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anced classes, and where different types of errors made by
the classifier have different costs (Gu et al., 2009; Wallace
et al., 2011). Accordingly, practitioners in applied machine
learning settings such as information retrieval and medical
diagnosis have developed complex performance metrics that
capture important trade-offs between different types of er-
rors; we have collated a few instances in Table 1. A key
complication with many complex classification performance
metrics, such as the F-measure (Manning et al., 2008) and
Harmonic Mean (Kennedy et al., 2009), is that they cannot
be decomposed into the sum or average of individual losses
on each sample. Even the simple performance measure
of precision — the fraction of correct positive predictions,
among the set of positive predictions — is not a sum of
individual losses on each sample. Thus, the standard theo-
retical and practical treatments of supervised learning, such
as standard empirical risk minimization that minimizes the
empirical expectation of a loss evaluated on a single random
example, are not applicable.

This practical reality has motivated research into effec-
tive and efficient algorithms tailored to complex non-
decomposable performance measures. One class of ap-
proaches extend standard empirical risk minimization to this
non-decomposable setting, which often relies on strong as-
sumptions on either the form of the classifiers, such as requir-
ing linear classifiers (Narasimhan et al., 2015a), or restricted
to specific performance measures such as F-measure (Param-
bath et al., 2015). An alternative approach is the plug-in es-
timator, where we first derive the form of the Bayes optimal
classifier, estimate the statistical quantities associated with
the Bayes optimal classifier, and finally “plug-in” the sam-
ple estimates of the population quantities to then obtain the
overall estimate of the Bayes optimal classifier. In particular,
for many complex performance metrics, the Bayes optimal
classifier is simply a thresholding of the conditional proba-
bility of the positive class (Koyejo et al., 2014; Narasimhan
et al., 2014), so that the plug-in estimator requires (a) an es-
timate of the conditional probability, and (b) the associated
threshold. Plug-in methods have been of particular interest
in non-parametric functional estimation as they typically
require weaker assumptions on the function class and are
often easy to implement.

In this paper, we seek to advance our understanding
and practice of binary classification under complex non-
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decomposable performance measures. We show that for a
very broad class of performance measures, encompassing
a large set of performance measures used in practice, the
Bayes optimal classifier is simply a thresholding of the con-
ditional probability of the response. Towards this general
result, we identify two key properties that a performance
measure could satisfy. The first is what we call a “Karmic”
property that loosely has the performance measure be more
sensitive to an increase in true positives and true negatives,
and a decrease in false positives and false negatives. The
second is a more technical property we call threshold-quasi-
concavity, which in turn ensures the performance measure
is well-behaved around an optimal threshold. As we show
these properties are satisfied by performance metrics used in
practice, and in particular, these conditions are milder than
existing results that restrict either the structural form of the
performance measures, or impose strong shape constraints
such as particular monotonicities.

Our general result has two main consequences, which we
investigate further: one algorithmic, and the other for the
analysis of classification error for general performance mea-
sures. As the algorithmic consequence, we leverage the
derived form of the Bayes optimal classifier, and some ad-
ditional general assumptions on the performance measures,
to provide a tractable algorithm to estimate the threshold,
which coupled with an estimator of the conditional proba-
bility, provides a tractable “plug-in estimator” of the Bayes
optimal classifier. Towards the statistical analysis conse-
quence, we provide an analysis of the excess classification
error, but with respect to general non-decomposable perfor-
mance measures, of the general class of plugin-estimators
for our class of Bayes optimal classifiers. Our analysis of
classification error rates for such plug-in classifiers depend
on three natural quantities: the rate of convergence for the
conditional probability estimate, the rate of convergence
for the threshold estimate, and a measurement of noise in
the data. For the last part, we extend margin or low-noise
assumptions for binary classification with the accuracy per-
formance measure to complex performance measures. Low
noise assumptions, proposed by Mammen et al. (1999) in
the context of the accuracy performance measure, bounds
the noise level in the neighborhood of the Bayes optimal
threshold i.e. 1

2 for standard classification. Under such a
low-noise assumption, Audibert et al. (2007) derive fast con-
vergence rates for plug-in classification rules based on the
smoothness of the conditional probability function. Similar
margin assumptions have also been introduced for density
level set estimation by Polonik (1995). We provide a natural
extension of such a low-noise assumption, under which we
provide explicit rates of convergence of classification error
with respect to complex performance measures. We provide
corollaries for both parametric and non-parametric instances
of our general class of plugin-classifiers.

The rest of the paper is organized as below. In Section 2 we
introduce the problem and relevant notations. The character-
ization and properties of Bayes optimal classifier are derived
in Section 3. We discuss the algorithm for estimating the
plug-in estimator in Section 4, and present the statistical
convergence guarantee in Section 5. Applications of the de-
rived rate for two special cases, Gaussian generative model
and β-Hölder class conditional probability are presented
in Section 6 where explicit convergence rates are provided.
We conclude the paper in Section 7. Detailed proofs are
deferred to the supplementary materials.

2. Problem Setup and Preliminaries
Binary classification entails predicting a binary label Y ∈
{±1} associated with a feature vector X ∈ X ⊂ Rd. Such
a a function mapping f : X 7→ {±1} from the feature
space X to the labels {±1} is called a binary classifier. Let
Θ = {f : X → {±1}} denote a set of binary classifiers.
We assume (X,Y ) has distribution P ∈ P , and let η(x) :=
P(Y = 1|X = x) denote the conditional probability of the
label Y given feature vector x.

A key quantity is the confusion matrix, that consists of four
population quantities: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).
Definition 2.1 (Confusion Matrix). For any classifier f :
Rd 7→ {±1}, its confusion matrix is defined as C(f,P) :=
[TP(f,P),FP(f,P),FN(f,P),TN(f,P)] ∈ [0, 1]4, where:

TP(f,P) = P(Y = +1, f(X) = +1),

FP(f,P) = P(Y = −1, f(X) = +1),

FN(f,P) = P(Y = +1, f(X) = −1),

TN(f,P) = P(Y = −1, f(X) = −1).

(1)

Another key ingredient is the utility or performance measure
U : Θ×P → R, that measures the performance of a classi-
fier. In this paper, we focus on complex binary classification
performance measures that can be expressed as a function
of the confusion matrix. Formally, U(f,P) = G(C(f,P)).
When it is clear from context, we will drop the dependency
of the distribution P in C and U . The confusion-matrix func-
tions G corresponding to popular performance measures are
listed in Table 1. Given the performance measure U , we are
interested in the corresponding Bayes optimal classifier:

f∗ = arg max
f∈Θ

U(f,P). (2)

Given any candidate classifier f , we are then interested in
the excess risk U(f∗,P)− U(f,P), which is the utility gap
between a given classifier f and the corresponding Bayes
optimal.
Assumption 1 (Karmic Performance Measure). The
confusion-matrix function G corresponding to the perfor-
mance measure U is Lipschitz continuous, and satisfies the
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Table 1. Examples of evaluation metrics. Notation: TPR = TP
TP+FN ;TNR = TN

TN+FP .

METRIC DEFINITION REFERENCE G(C)

ACCURACY TP + TN (1, 0, 0, 1)C

ARITHMETIC MEAN (AM) (TPR + TNR)/2 MENON ET AL. (2013) ( C1
C1+C3

+ C4
C2+C4

)/2

YOUDEN’S INDEX TPR + TNR − 1 YOUDEN (1950) C1
C1+C3

+ C4
C2+C4

− 1

Fβ
(1+β2)TP

(1+β2)TP+β2FN+FP VAN RIJSBERGEN (1974) (1+β2,0,0,0)C

(1+β2,1,β2)C

LINEAR-FRACTIONAL a1TP+a2FP+a3FN+a4TN
b1TP+b2FP+b3FN+b4TN KOYEJO ET AL. (2014) aTC

bTC

G-MEAN
√

TPR · TNR DASKALAKI ET AL. (2006)
√

C1C4
(C1+C3)(C2+C4)

Q-MEAN 1−
√

(1−TPR)2+(1−TNR)2

2
KUBAT ET AL. (1997) 1−

√
(

C3
C1+C3

)2+(
C2

C2+C4
)2

2

H-MEAN 2
1/TPR+1/TNR KENNEDY ET AL. (2009) 2

/(
C1+C3

C1
+ C2+C4

C4

)
condition that ∇G(C)T (1,−1,−1, 1)T ≥ CB , for some
constant CB > 0.

We term performance measures that satisfy the condition
∇G(C)T (1,−1,−1, 1)T ≥ CB as “Karmic measures”,
since it guarantees a lower bound on the sensitivity of the
performance measure in the direction of increasing true
positives and true negatives, and decreasing false posi-
tives and false negatives. While our Karmic assumption
slightly weakens the existing monotonicity assumption
used in literature, it is worth pointing out that the analy-
sis in (Narasimhan et al., 2014) requires not only mono-
tonicity but also additional assumptions (Assumption B
in (Narasimhan et al., 2014)). Assumption B assumes the
existence and uniqueness of an optimal threshold, which
turns out to be non-trivial to check. Our analysis on the
threshold-quasi-concavity closes this gap.

Assumption 1 is satisfied if G is strictly monotonically in-
creasing with respect to TP,TN and decreasing with respect
to FP,FN. Such an assumption is natural in that one would
typically prefer a classifier with higher TP for fixed TN
and vice versa (Narasimhan et al., 2015b). This condition
is satisfied by most metrics in common use e.g. for the
F1 measure, ∇G(C)T (1,−1,−1, 1)T = 4(FP+FN)

(2TP+FP+FN)2 is
strictly positive as long as the data is not fully separable.

2.1. Related Work

Representation of the Bayes Optimal Classifier. The
Bayes optimal classifier under the accuracy metric is clas-
sically known to be a thresholding of the conditional prob-
ability of the response, with the threshold of 1/2 (see e.g.
Devroye et al. (2013)). This property of Bayes optimal clas-
sifier having the thresholded form is called the probability
thresholding principle for binary classification by Lewis
(1995). Prior work has also shown that the thresholding
principle, with a metric dependent threshold, for more com-
plex specific measures such as F-measure (Jansche, 2007;

Zhao et al., 2013), Arithmetic Mean (AM) (Menon et al.,
2013), linear-fractional performance metrics (Koyejo et al.,
2014), and monotonic concave metrics (Narasimhan et al.,
2015a).

Plug-in Classifiers for Complex Metrics. For Bayes op-
timal classifiers that have thresholded form, a line of work
has devised plug-in classifiers that then estimate the thresh-
old, and the conditional probability of response. For the
AM metric, Menon et al. (2013) show that the threshold
is simply the proportion of the positive class. For linear
fractional functions, Koyejo et al. (2014) provide an implicit
characterization of the optimal threshold, but the solution of
which in turn requires the knowledge of the optimal classi-
fier, which is unknown in practice. As a practical estimator,
Koyejo et al. (2014) propose an exhaustive search for the
threshold over all data samples, and show that the result-
ing algorithm is consistent, but for which non-asymptotic
convergence rates are not known. Narasimhan et al. (2014)
also note the importance of estimating the optimal thresh-
old, but do not provide practical algorithms. As we show in
Section 3, the empirical risk as a function of the threshold is
in general neither convex nor concave. Hence, care must be
taken to construct an optimization algorithm that guarantees
convergence to the true threshold.

Estimators designed for specific Utility Functions. Per-
haps the most studied non-decomposable performance met-
ric is the F-measure (Nan et al., 2012; Joachims, 2005; Zhao
et al., 2013), with wide use in information retrieval and
related areas, and for which researchers have developed
tailored estimators (Nan et al., 2012; Joachims, 2005) as
well as risk bounds for these estimators (Zhao et al., 2013).
For instance, Busa-Fekete et al. (2015) propose a scalable
online F-measure estimator for large-scale datasets, with a
root finding algorithm for the threshold update which ex-
ploits special properties of the F-measure. Similarly, for the
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Arithmetic Mean (AM) measure, Menon et al. (2013) de-
sign a consistent optimization scheme, based on a balanced
classification-calibrated surrogate to AM. Unfortunately,
these techniques are not easily extended to general complex
performance metrics.

Algorithms for General Classification Measures.
Joachims (2005) poses the classification problem as a
structured prediction problem, and for linear classifiers,
propose a structural SVM solver, but for which neither
consistency nor explicit convergence rates are known. Kar
et al. (2014) proposes an online gradient descent algorithm
which requires function classes that satisfy a uniform
convergence property, which is difficult to verify apriori.
Along similar lines, Narasimhan et al. (2015a) propose a
stochastic gradient method, that involves a linearization of
classification metric. Their proposed approach depends
strongly on the assumption of a linear (or kernelized)
classifier, and it is not obvious that the procedure can be
extended to more complex non-linear function classes.

3. The Bayes Optimal Classifier Revisited
In this section, we characterize the Bayes-optimal classifier
for the broad class of Karmic performance measures, that
satisfy Assumption 1. We then show that with one additional
assumption, we call threshold-quasi-concavity, the optimal
threshold can be guaranteed to be unique. This result will be
crucial for the design and analysis of our computationally
efficient threshold finding procedure in Section 4.

Denote µ as the measure corresponding to the marginal dis-
tribution of X . The utility is Frechét differentiable, whose
Frechét derivative of U may be computed as:

[∇U(f)]x =∇G(C(f))T · [∇C(f)]x

=
1

2

(
∇G(C)T (1,−1,−1, 1)T η(x)

−∇G(C)T (0,−1, 0, 1)T
)
dµ(x)

From the Karmic measure Assumption 1, we know that
∇G(C)T (1,−1,−1, 1)T > 0. We define the “Bayes crit-
ical set” of G(f,P) for any f ∈ F as the set of instances
where the utility has zero derivative:

A3(f) =

{
x : η(x) =

∇G(C)T (0,−1, 0, 1)T

∇G(C)T (1,−1,−1, 1)T

}
.

For notational simplicity, we have omitted the dependency
of gi on C(f). Similarly, we will use A∗3 := A3(f∗) to
denote the Bayes critical set.

In this paper we focus on distributions where the critical set
of G(f, P ) satisfies P(A3(f)) = 0. For instance, this is true
for any distribution that satisfies the following assumption.

Assumption 2 (η-continuity). Let ν denote the proba-
bility measure that is associated with random variable
Z = η(X) = P (Y = 1|X), then ν is absolutely con-
tinuous with respect to µ. Furthermore, the density of η(X),
denoted by pη(·), has full support on [0, 1], and is bounded
everywhere.

Absolute-continuity guarantees the existence of the density
of Z. Armed with the above assumption on the conditional
probability of the response, we can then characterize the
Bayes optimal classifier as follows.

Theorem 3.1 (Bayes Optimal Classifier as a Thresholding
Function). Suppose that U is a performance measure that
satisfies Assumption 1, and that η(X) satisfies Assumption 2.
Let f∗ be the Bayes classifier with respect to U and C∗ be
its confusion matrix. Then, for all x ∈ (A∗3)c,

f∗(x) = sign
(
η(x)− ∇G(C∗)T (0,−1, 0, 1)T

∇G(C∗)T (1,−1,−1, 1)T

)
.

(3)

Threshold of Bayes optimal classifier For some perfor-
mance measures, the optimal threshold reduces to an abso-
lute constant; for instance it has the value of 1/2 for the
accuracy measure U(f,P) = TP + TN (see e.g. (Devroye
et al., 2013)). In the general case however, the optimal
threshold δ∗ is a solution of the fixed point equation:

(∇G(C∗)T (0,−1, 0, 1)T )/(∇G(C∗)T (1,−1,−1, 1)T ) = δ∗,

which is fixed point equation due to the dependency of C∗

on the threshold δ∗. Theorem 3.1 guarantees the existence
of a solution to the above fixed point equation, but not its
uniqueness. As we will show in Section 5, uniqueness can
be achieved with some additional regularity assumptions.

We note that Theorem 3.1 only imposes a weak Karmic
assumption on the performance measure, which as as stated
in Section 2, is more general than even a simple strictly
monotonicity assumption. In particular, it generalizes prior
work such as (Koyejo et al., 2014; Menon et al., 2013),
that impose more stringent assumptions (linear or linear
fractional form of the measures, or strong monotonicity
conditions).

We next briefly discuss why the critical set is crucial. Con-
sider for instance the example studied in Narasimhan et al.
(2014): with domain X = {x1, x2, x3}, a corresponding
probability mass function (0.25, 0.5, 0.25), and the condi-
tional probability η = (0.49, 0.5, 0.51). Narasimhan et al.
(2014) show that for this setting, and for the case of the H-
mean measure, there exist at least two deterministic Bayes
optima: (−1, 1,−1) and (1,−1, 1)}, which can be seen to
not have a thresholded form i.e. it cannot be expressed as
a (signed) thresholding of the conditional probability. Our
analysis reveals why this is the case.
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From the threshold expression in (3) from Theorem 3.1,
the optimal threshold can be computed explicitly as
∇G(C∗)T (0,−1,0,1)T

∇G(C∗)T (1,−1,−1,1)T
= 1

2 . Thus, the Bayes critical set
A∗3 = {x : η(x) = 1

2} = {x2} has measure P (X ∈
A3) = P (X = x2) = 1

2 > 0. It is clear that the Bayes
optimal classifier may not take a thresholded form on the
Bayes critical set.

3.1. Uniqueness of the Bayes Optimal Threshold.

We are interested in characterizing mild conditions on the
performance measure under which the fixed point equation
characterizing the Bayes optimal threshold has a unique
solution, under which case P (A∗3) = 0 (guaranteed by the
η-continuity Assumption 2).

The performance measure restricted to classifiers that are
threshold functions of the conditional probability, can be
rewritten as a function of the conditional probability η and
the threshold δ.

Definition 3.1. We define Vη(δ,P) := U(fη,δ,P) as the
performance measure of any threshold classifier fη,δ(x) =
sign (η(x)− δ). Its arguments are the threshold δ, and
distribution P, while the subscript η notes its dependence
on the conditional probability η.

We next introduce the definition of quasi-concavity, and the
assumption of V being strictly quasi-concave.

Definition 3.2. A function f : X → R is said to be quasi-
concave if ∀x, y ∈ X , such that f(x) ≤ f(y), it follows that
〈∇f(x), y − x〉 ≥ 0. We further say that f is strictly quasi-
concave if it is quasi-concave and its gradient only van-
ishes at the global optimum, i.e., f(y) < maxx∈X f(x)⇒
‖∇f(y)‖ > 0.

Quasi-concave functions have super level sets are convex
sets, and moreover by definition are unimodal i.e. have a
unique maximal point.

Assumption 3. (Threshold-Quasi-Concavity) The
threshold-classifier performance measure Vη(δ,P) is
strictly quasi-concave for δ ∈ [0, 1].

Assumption 3 seems abstract, but it entails that the perfor-
mance measure is well-behaved as a function of the thresh-
old. Moreover, it can be easily shown to hold for perfor-
mance measures in practical use. We provide a proposition
that shows that the assumption is satisfied for two important
classes of performance measures: linear-fractional functions
and concave functions.

Proposition 3.1. If Assumptions 1, 2 hold, and either: (a) G
is twice continuously differentiable and concave, or (b) G is
a linear fractional function G(C) = aTC

bTC
with |bTC| > 0.

Then Vη(δ,P) is strictly quasi-concave.

Theorem 3.2. Under Assumption 3, the fixed-point equa-

tion:

δ =
∇G(C(fδ),P)T (0,−1, 0, 1)T

∇G(C(fδ),P)T (1,−1,−1, 1)T
, (4)

where fδ(x) = sign (η(x)− δ), has a unique fixed point
δ∗ ∈ (0, 1). Hence the threshold in Theorem 3.1 is uniquely
defined.

Theorems 3.1 and 3.2 have two key consequences: first, we
can use the representation to design plugin-estimators of the
Bayes optimal classifier; second, it facilitates the statistical
analysis for rates of convergence. We will discuss each of
these two consequences in the following sections.

4. Algorithmic Consequence: Estimation of
the Threshold

Theorem 3.1 shows that for Karmic performance measures,
the Bayes optimal classifiers has the thresholded form as in
Eq. (3), and moreover under the threshold-quasi-concavity
Assumption 3, this threshold is unique. An immediate algo-
rithmic consequence of this is to focus on plug-in classifiers
that separately estimate the conditional probability, and the
threshold. We present this plugin-classifier template in Al-
gorithm 1. The template needs: (a) an estimator for condi-
tional probability density η(x), and (b) an estimator for the
threshold. For the convenience of analysis, we divide the
set of samples into two independent subsets: the conditional
probability estimator is estimated using one subset, and the
threshold is estimated using the other. In the coming subsec-

Algorithm 1 Two-step Plug-in Classifier for General Met-
rics

1: Input: Training sample {Xi, Yi}ni=1, utility measure
U , conditional probability estimator η̂, stepsize α.

2: Randomly split the training sample into two subsets
{X(1)

i , Y
(1)
i }

n1
i=1 and {X(2)

i , Y
(2)
i }

n2
i=1;

3: Estimate η̂ on {X(1)
i , Y

(1)
i }

n1
i=1;

4: Estimate δ̂ with {X(2)
i , Y

(2)
i };

5: Output: f̂(x) = sign
(
η̂ − δ̂

)
.

tions we discuss how to estimate the conditional probability
and the threshold respectively.

4.1. Estimation of Conditional Probability Function

The estimation of the conditional probability of the response
plays a crucial role in the success of Algorithm 1, but we
emphasize that it is not the focus of our paper. In particu-
lar, this is a well studied problem, and numerous methods
have been proposed for both parametric and non-parametric
model assumptions on the conditional probability function.
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In this section we briefly discuss some common estimators,
and defer additional details to Section 6.

Parametric methods. In a classical paper, Ng and Jordan
(2002) compares two models of classification: one can either
estimate P (Y ) and P (X|Y ) first, then get the conditional
probability by Bayes rule (generative model approach); or
directly estimate P (Y |X) (discriminative model approach).
The two approaches can also be related. In particular, if
PθY (X|Y ) belongs to exponential family, we have

PθY (X|Y ) = h(x) exp (〈θY , φ(X)〉 −A(θY )) ,

where φ(X) is the set of sufficient statistics, θY is the vec-
tor of the true canonical parameters, and A(θ) is the log-
partition function. Using Bayes rule, we then have:

P (Y = 1|X) =
1

1 + exp (−〈θ1 − θ0, φ(X)〉+ c∗)

where c∗ = A(θ0) − A(θ1). The conditional distribution
can be seen to follow a logistic regression model, with the
generative model sufficient statistics as the features, and the
difference of the generative model parameters serving as the
parameters of the discriminative model. A natural class of
estimators for either the generative or discriminative models
is based on Maximum likelihood Estimation (MLE). In
Section 6, we derive the rate of convergence for the special
case where the generative distributions are Gaussians with
same covariances for both classes.

Non-parametric methods. One can also estimate η(x) =
P (Y = 1|X) non-parametrically, where a common model
assumption is some form of smoothness on η(x). One
popular class of smooth functions is the following.

Definition 4.1 (β-Hölder class). Let β > 0, denote bβc the
maximal integer that is strictly less than β. For x ∈ X
and any bβc-times continuously differentiable real-valued
function η on X , we denote by ηx its Taylor polynomial of
degree bβc at point x,

ηx(x′) =
∑
s≤bβc

(x′ − x)s

s!
Dsη(x).

β-Hölder class is defined as the functions that satisfy, for
∀x, x′ ∈ X ,

|ηx(x)− ηx(x′)| ≤ Cβ‖x− x′‖β .

In particular, when 0 ≤ β < 1, we have |η(x)− η(x′)| ≤
Cβ‖x− x′‖β where β > 0.

We can then estimate η(x) from this family of smooth func-
tions via locally polynomial estimators (Audibert et al.,
2007), or kernel (conditional) density estimators (Jiang,
2017) with a properly chosen bandwidth.

4.2. Estimation of the Threshold

When Vη is quasi-concave, a key consequence is that its
gradient with respect to the threshold suffices to provide
ascent direction information. We leverage this consequence,
and summarize a simple binary search algorithm based on
the sign of V ′η(δ,P) in Algorithm 2.

Algorithm 2 Binary search for the optimal threshold

1: Input: Training sample {Xi, Yi}ni=1, utility measure
U , conditional probability estimator η̂, tolerance ε0.

2: δ` = 0; δr = 1;
3: while |δ` − δr| ≥ ε0 do
4: Evaluate s = sign

(
V ′η̂(δ,Pn)

)
;

5: if s ≥ 0 then
6: δ` = δ`+δr

2 ;
7: else
8: δr = δ`+δr

2 ;
9: end if

10: end while
11: Output: δ`+δr

2 .

In the next section, we then analyze the rates of convergence
for the excess generalization error of the plug-in classifier
learned from Algorithm 1, and with threshold estimated via
Algorithm 2.

5. Statistical Analysis Consequence: Rates of
Convergence

We next analyze the convergence rate of the excess utility.
As we will show, the rates of convergence depend on three
quantities: the noise level of the data distribution, the con-
vergence rate of the conditional probability function, and the
convergence rate of the threshold. We start by introducing
some assumptions.

We assume that the estimator of the conditional probability
of response satisfies the following condition.
Assumption 4. Let Sn denote a sample set of size n, and
ηSn denote the conditional probability estimator learnt from
Sn. Then, for some absolute constants c1, c2 > 0, the condi-
tional probability estimator satisfies the following condition:

sup
Sn

P (|ηSn(x)− η(x)| ≥ ε) ≤ c1 exp(−c2 an ε2) a.e.

The convergence rate also depends on the noise in the train-
ing labels, which is typically captured via the probability
mass near the Bayes optimal threshold. Here we generalize
the classical margin assumption (sometimes also called low
noise assumption) of Audibert et al. (2007), developed for
the accuracy metric, to the case where the optimal threshold
is not a fixed constant 1

2 :
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Assumption 5. For some functionC0(δ∗) > 0 that depends
on the threshold δ∗, there exists an α ≥ 0 such that

PX(0 < |η(X)− δ∗| ≤ t) ≤ C0(δ∗) tα.

The assumption characterizes the behavior of the regression
function in the vicinity of the optimal threshold δ∗. The
case α = 0 bounds the probability by a constant potentially
larger than one, and is trivially satisfied. The other extreme
case α =∞ is most advantageous for classification, since
in this case the regression function η is bounded away from
the threshold.

In cases where the threshold is not an absolute constant
(such as 1/2), it has to be estimated from data. We make
the following assumption on its convergence rate.

Assumption 6. Given a conditional probability estimate η̂
learned from an independent data source, the estimator δ̂n
of the threshold, from a sample set of size n, satisfies the
following condition, for some absolute constant c3 > 0:

P
(∣∣∣U(sign (η̂ − δ∗))− U(sign

(
η̂ − δ̂

)
)
∣∣∣ ≥ b−1

n

)
≤ n−c3 .

Note that Assumption 6 allows the rate bn to in turn depend
on η̂, or more specifically, EX |η(X)− η̂(X)|. Moreover, it
does not necessarily require that δ̂ converge to δ∗, only that
their corresponding utility function values be close.

Armed with these largely notational assumptions, we can
now provide the rate for the overall data-splitting two-step
plug-in classifier described in Algorithm 1:

Theorem 5.1. Suppose Assumption 1 and 2 hold, and fur-
ther that Assumptions 4 and 6 hold for some η̂ and δ̂. Let
U∗ = U(sign (η − δ∗) ,P) be the Bayes optimal utility. If
we split the data as n1 = n2 = n

2 , then with probability
greater than 1− n−c4 :

U∗ − U
(

sign
(
η̂ − δ̂

)
,P
)
≤ c5 max

{
a
− 1+α

2
n , b−1

n

}
.

where c4, c5 > 0 are absolute constants.

5.1. Key Lemmas

We provide a detailed proof of the theorem in the Appendix,
but provide brief vignettes via some key lemmas that also
provide some additional insight into the statistical analysis.
A key tool when analyzing traditional binary classification
is to turn the excess risk into an expectation of the absolute
deviation of conditional probability from the threshold 1

2 .
We show in the following lemma that a similar result holds
with general optimal threshold:

Lemma 5.1. Let Cn and C∗ be the vectorized con-
fusion matrices associated with fn = sign (ηn − δ∗)

and f∗ = sign (η − δ∗) respectively, where δ∗ is
the threshold for the Bayes optimal classifier. De-
note CG := ∇G(C∗)T (1,−1,−1, 1), and CH :=
maxf ‖∇2G(C(f))‖op, where ‖ · ‖op refers to the oper-
ator norm of a matrix. If for some constant c6, an ≥
c6

(
CH

CG min{δ∗,1−δ∗}

)2

, then

G(C∗)− G(Cn) ≥ 1

2
CGE[|η − δ∗|1(fn 6= f∗)],

G(C∗)− G(Cn) ≤ 3

2
CGE[|η − δ∗|1(fn 6= f∗)].

This lemma thus helps us control the excess utility via the
error of the conditional probability estimator η̂ − η. Armed
with this result, and additionally using Assumption 4 on the
convergence rate of the conditional probability estimator,
we can then show that the excess utility converges at the

rate O(a
− 1+α

2
n ):

Lemma 5.2. Suppose that Assumptions 4 and 5 are satisfied,
and that the Bayes optimal classifier is f∗ = sign (η − δ∗).
Then there exists a constant c7 > 0 which depend on G and
C(f∗), such that U(sign (η − δ∗))− U(sign (ηn − δ∗)) ≤
c7a
− 1+α

2
n .

Lemma 5.2 describes the classification error rate when the
optimal threshold is known. Stitching this together with As-
sumption 6 on the convergence rate of the threshold estima-
tor can then be shown to yield the statement of Theorem 5.1.

5.2. Risk Bound for the Plugin Classifier from
Algorithm 2

Prior work on threshold estimation for plug-in classi-
fiers have ranged over brute-force search (Koyejo et al.,
2014) with no rates of convergence, level-set based meth-
ods (Parambath et al., 2015) for the specific class of
linear fractional metrics, and Frank-Wolfe based meth-
ods (Narasimhan et al., 2015b) for the specific class of
concave performance metrics. However these estimators, in
addition to focus on specific performance metrics, are only
able to achieve a convergence rate of O(max{E‖η̂(X) −
η(X)‖1, 1/

√
n}). This entails that even if when the con-

ditional probability estimator has a fast convergence rate,
the final convergence rate for these estimators will still be
bounded by O(1/

√
n). In this section we show that our sim-

ple threshold search procedure in Algorithm 2 achieves a
fast O(1/n) or O(1/an) rate of convergence by leveraging
our analysis from Section 3.

Lemma 5.3. Assume that Assumptions 1, 2, 5 hold, and
that the confusion-matrix function G corresponding to the
performance measure U satisfies the same conditions as
in Proposition 3.1. Let δ̂ denote the output of Algorithm 2
with sample size n and tolerance τ = logn

n , and η̂ denote
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a conditional probability estimator satisfying Assumption
4 obtained on an independent sample set of size n. De-
noting ñ = min{n, an}, we then have that the rate bn in
Assumption 6 satisfies: bn = log ñ

ñ .

An immediate corollary then gives the excess risk for the
plug-in classifier.

Corollary 5.1. Suppose Assumption 3 holds. If τ =
logn
n , n1 = n2 = n

2 , then there exist constants c8, c9 > 0,
such that with probability at least 1−min{n, an}−c8 ,

U(f∗,P)− U(f̂ ,P) ≤ c9 max

{
log n

n
,

log an
an

, a
− 1+α

2
n

}
.

6. Explicit Rates for Specific Conditional
Probability Models

In this section, we analyze two special cases where we can
achieve explicit rate of convergence for the conditional prob-
ability estimation. For the first example, we consider the
Gaussian generative model. We will show that the rate of
convergence for the excess utility obtained in Theorem 5.1
is O( logn

n ) in this case. The second example is for non-
parametric kernel estimators when the conditional probabil-
ity function satisfies certain smoothness assumption.

6.1. Gaussian Generative Model

Consider two Gaussian distributions with the same variance,
without loss of generality we assume the covariance matrix
is identity Id for both classes. We define an asymmetric
mixture of two Gaussians indexed by the centers and mixing
weights.

Pµ,κ : P (Y = 1) = κ, P (Y = 0) = 1− κ,

X|Y = 1 ∼ N
(µ

2
, Id

)
, X|Y = 0 ∼ N

(
−µ

2
, Id

)
. (5)

As stated in Section 4, we can compute the conditional
probability and show that it can be fitted with a logistic
regression model. Next we present results related to the key
quantities in Theorem 5.1: an and α.

Lemma 6.1. Model defined in Eq. (5) with maximum likeli-
hood estimator satisfies Assumption 4 with an = n.

The following lemma specifies the margin assumption pa-
rameter for the above model.

Lemma 6.2. The Gaussian generative model defined as in
Eq. (5), satisfies Assumption 5 with α = 1.

Combining this result with Theorem 5.1 gives us the follow-
ing corollary.

Corollary 6.1. Assume Assumptions 1-5 hold, P is gener-
ated from Eq. (5). Let f̂ be the output of Algorithm 1 with

η̂ estimated by MLE of logistic regression. We have with
probability tending to 1, U(f∗,P)−U(f̂ ,P) = O

(
logn
n

)
.

For Gaussian generative models, fast rates of O( 1
n ) are only

known for 0-1 loss (Li et al., 2015). The logarithm factor
can be further removed under 0-1 loss, or other cases when
the threshold is known, as one can apply Lemma 5.2 with
α = 1 and get exactly the same rate as in Li et al. (2015).
Corollary 6.1 generalizes this result for a much broader
class of utility functions, when the threshold is unknown
and estimated from data.

6.2. β-Hölder Densities

When the conditional probability function belongs to the
β-Hölder class as defined in Definition 4.1, we have the
following lemma on the convergence rates of ηn.

Lemma 6.3. For β-Hölder conditional probability func-
tions, there exists estimators such that Assumption 4 holds
with an = n

2β
2β+d .

Examples of such estimators include locally polynomial es-
timators (Audibert et al., 2007), or kernel (conditional) den-
sity estimators (Jiang, 2017). Combined with Theorem 5.1
we have the following corollary.

Corollary 6.2. Assume Assumptions 1-5 hold and P be a
distribution where P (Y = 1|X) belongs to β-Hölder class.
With locally polynomial estimators (Audibert et al., 2007)
or kernel (conditional) density estimators (Jiang, 2017), we
have: U(f∗,P)− U(f̂) = O

(
n−

(min{α,1}+1)β
2β+d

)
.

The convergence rate obtained in Corollary 6.2 is faster than
O( 1√

n
) if β > max{ d2α ,

d
2}. It is worth pointing out that the

fast rate is obtained via a trade-off between the parameter
α and β: to have a very smooth conditional probability
function η, i.e., a large value of β, it cannot deviate from
the critical level very abruptly, hence α has to be small.

7. Conclusion
We study Bayes optimal classification for general perfor-
mance metrics. We derive the form of the Bayes optimal
classifier, provide practical algorithms to estimate this Bayes
optimal classifier, and provide novel analysis of classifica-
tion error with respect to general performance metrics, and
in particular show our estimators are not only consistent but
have fast rates of convergence. We also provide corollaries
of our general results for some special cases, such as when
the inputs are drawn from a Gaussian mixture generative
models, or when the conditional probability function lies
in a Hölder space, explicitly proving fast rates under mild
regularity conditions.
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