
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions

A. Proofs from Section 3
A.1. Proofs from Section 3.2

The following lemma formalizes the claim that MI(G) as given in Definition 3.3 contains exactly the sets of interventional
distributions that can be generated from a causal model with DAG G by intervening on I.
Lemma A.1. {f (I)}I∈I ∈ MI(G) if and only if there exists f (∅) ∈ M(G) such that ∀I ∈ I, f (I) factorizes according to
Equation (1) in Definition 3.2.

Proof. Suppose there exists f (∅) ∈ M(G) such that ∀I ∈ I, f (I) factorizes according to Equation (1) in Definition 3.2.
Then f (I) ∈ M(G) is trivially satisfied for all I ∈ I. Also, we have f (I)(Xj |XpaG(j)) = f (∅)(Xj |XpaG(j)) ∀j /∈ I

and I ∈ I. It follows that f (∅)(Xj |XpaG(j)) = f (I)(Xj |XpaG(j)) = f (J)(Xj |XpaG(j)), ∀j /∈ I ∪ J and all I, J ∈ I.
Therefore, {f (I)}I∈I ∈ MI(G).
Conversely, suppose {f (I)}I∈I ∈ MI(G). We will prove that there exists f (∅) ∈ M(G) such that ∀I ∈ I, f (I) factorizes
according to Equation (1. Since f (∅) ∈ M(G), f (∅) must factorize as f (∅)(X) =

�
j∈[p] f

(∅)(Xj |XpaG(j)) For each
j ∈ [p], let f (∅)(Xj |XpaG(j)) = f (Ij)(Xj |XpaG(j)) for some Ij ∈ I s.t. j /∈ I . If such a choice of Ij does not exist, then
let f (∅)(Xj |XpaG(j)) be an arbitrary strictly positive density. Then note that for any I ∈ I, we have

f (I)(X) =
�

j∈[p]

f (I)(Xj |XpaG(j))

=
�

i∈I

f (I)(Xi|XpaG(j))
�

j /∈I

f (Ij)(Xj |XpaG(j))

=
�

i∈I

f (I)(Xi|XpaG(j))
�

j /∈I

f (∅)(Xj |XpaG(j)),

which completes the proof.

Proof of Proposition 3.8. To prove the “if” direction, choose any I ∈ I and use the chain rule to factorize f (I) accord-
ing to a topological ordering π consistent with G. Specifically, if we let aπ(i) denote the nodes that precede i in this
ordering, then f (I)(X) =

�
i f

(I)(Xi|Xaπ(i)). Since every node is d-separated from its non-descendents given its par-
ents, using condition (1) of the I-Markov property, we can reduce the factorizations to f (I)(X) =

�
i f

(I)(Xi|Xpa(i)).
Furthermore, since any node i /∈ I is d-separated from I given its parents, using condition (2) of the I-Markov prop-
erty, we can substitute the interventional conditional distributions with the observational ones, resulting in f I(X) =�

i∈I f
I(Xi|Xpa(i))

�
i/∈I f

∅(Xi|Xpa(i)). Since this factorization holds for every I ∈ I, {f I}I∈I ∈ MI(G) by Lemma
A.1.

To prove the “only if” part of the statement, suppose {f I}I∈I ∈ MI(G). By Lemma A.1, f (I) factorizes according to
Equation (1) and satisfies the Markov property with respect to G for all I ∈ I. It follows that f (I) must also satisfy the
Markov property based on d-separation with respect to G (Verma & Pearl, 1991). Therefore, condition (1) of the I-Markov
property is satisfied.

To prove the second condition, choose any disjoint A,C ⊂ [p] and any I ∈ I, and suppose C ∪ ζI\{I} d-separates A from
{ζI} in GI . Let VAn be the ancestral set of A and C with respect to G = (V,E). Let B� ⊂ VAn contain all nodes in VAn

that are d-connected to {ζI} in GI given C ∪ ζI\{I}, and let A� = VAn\(B� ∪ C). Since by Lemma A.1, f (I) factorizes
over G according to Equation (1) for every I ∈ I, then choosing Î ∈ {∅, I} yields

f (Î)(X) = f (Î)(XA� , XB� , XC , XV \VAn
)

=
�

i∈A�

f (Î)(Xi|Xpa(i),G)
�

i∈C,paG(i)∩A� �=∅
f (Î)(Xi|Xpa(i),G)

�

i∈C,paG(i)∩A�=∅
f (Î)(Xi|Xpa(i),G)

�

i∈B�

f (Î)(Xi|Xpa(i),G)
�

i∈V \VAn

f (Î)(Xi|Xpa(i),G)
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=
�

i∈A�

f (∅)(Xi|Xpa(i),G)
�

i∈C,paG(i)∩A� �=∅
f (∅)(Xi|Xpa(i),G)

�

i∈C,paG(i)∩A�=∅
f (Î)(Xi|Xpa(i),G)

�

i∈B�

f (Î)(Xi|Xpa(i),G)
�

i∈V \VAn

f (Î)(Xi|Xpa(i),G)

The second equality holds by the factorization of Equation (1) because either i ∈ A� or i ∈ C | paG(i)∩A� �= ∅ implies that i
is not targeted by the intervention on Î , i.e. i /∈ Î . To see this, recall that A� is separated from ζÎ in GI , which implies that A�

does not contain a child of ζÎ in GI and is therefore not targeted by the intervention on Î . Likewise, {i ∈ C|paG(i)∩A� �= ∅}
does not contain a child of ζÎ in GI because otherwise A� and ζÎ would be d-connected in GI by conditioning on this node.

Using similar reasoning, it is easy to see that the parent sets of A� and {i ∈ C|paG(i) ∩A� �= ∅} with respect to G are subsets
of A� ∪ C; and the parent sets of {i ∈ C|paG(i) ∩A� = ∅} and B� are subsets of B� ∪ C. Therefore, we can write

f (Î)(X) = g1(XA� , XC)g2(XB� , XC ; Î)
�

i∈V \VAn

f (Î)(Xi|Xpa(i),G)

where
g1(XA� , XC) =

�

i∈A�

f (∅)(Xi|Xpa(i),G)
�

i∈C,paG(i)∩A� �=∅
f (∅)(Xi|Xpa(i),G)

and
g2(XB� , XC ; Î) =

�

i∈C,paG(i)∩A�=∅
f (Î)(Xi|Xpa(i),G)

�

i∈B�

f (Î)(Xi|Xpa(i),G)

Marginalizing out XA�\A, XB� and XVAn
yields

f (Î)(XA, XC) = ĝ1(XA, XC)ĝ2(XC ; Î)

where ĝ1(XA, XC) =
�
XA�\A

g1(XA� , XC) and ĝ2(XC ; Î) =
�
XB� g2(XB� , XC ; Î). From here, it is easy to see that

f (Î)(XA|XC) =
g(∅)(XA,XC)�

XA
g(∅)(XA,XC)

is invariant to Î ∈ {∅, I}.

Proof of Lemma 3.10. Choose any disjoint A,C ⊂ [p] and any I ∈ I , and suppose C ∪ ζI\{I} does not d-separate A from
{ζI} in GI . To prove this lemma, it is sufficient to construct f (∅) and f (I) such that they satisfy the Î-Markov properties
with respect to GÎ , where Î = {∅, I}, and f (∅)(XA|XC) �= f (I)(XA|XC).

To do this, we construct a subgraph Gsub = (V,Esub) that consists of a d-connected path, P = {p1 ∈ I, p2, · · · , pk−1, pk ∈
A} with p2, · · · , pk−1 /∈ I ∪ A, as well as the directed paths from colliders in P to their nearest descendents in C. All
other nodes that are not part of these paths are part of the subgraph but have no edges. We parameterize the set of
conditional probability distributions, {f (∅)(Xi|XpaGsub

(i))}i∈V , using linear structural equations with non-zero coeffi-
cients and independent Gaussian noise. Consider f (∅)(Xp1

|XpaGsub
(p1)) = N (

�
j∈paGsub

(p1)
cj,p1

Xj ,σ
2
∅). To construct

f (I), let f (I)(Xp1 |XpaGsub
(p1)) = N (

�
j∈paGsub

(p1)
cj,p1

Xj ,σ
2
I ) for some σI �= σ∅, and let f (I)(Xi|XpaGsub

(i)) =

f (∅)(Xi|XpaGsub
(i)) for all i �= p1.

Note that these distributions factor over G according to Definition 3.2, so by Proposition 3.8, they satisfy the Î-Markov
properties with respect to GÎ . Furthermore, it is straightforward to show that we can write Xpk

= N(∅) + S(XC) under the
model corresponding to f (∅) and Xpk

= N(I) + S(XC) under the model corresponding to f (I), where N(∅) ∼ N (0, cσ2
∅)

and N(I) ∼ N (0, cσ2
I ) for some constant c, and S(XC) is a Gaussian random variable independent of N(∅) and N(I). Since

σ2
∅ �= σ2

I , it follows that we have f (∅)(XA|XC) �= f (I)(XA|XC), as desired.

Proof of Corollary 3.12. If G1 and G2 are in the same perfect-I-MEC, then G1 and G2 have the same skeleton and v-
structures. Since GI

1 and GI
2 are constructed from G1 and G2 by adding the same set of vertices and edges, they must have
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the same skeleta, so we just need to show that they also have the same v-structures to prove they belong to the same I-MEC.
Suppose this is not the case. The only v-structures that can differ between GI

1 and GI
2 must involve I-edges, since G1

and G2 have the same v-structures. Without loss of generality, suppose ζI → i is part of a v-structure in GI
1 but not in

GI
2 . This could only occur if there were a neighbor j /∈ I with orientation j → i in GI

1 and i → j in GI
2 . However, this

contradicts the assumption that G1 and G2 belong to the same perfect-I-MEC (Hauser & Bühlmann, 2012), since removing
the incoming edges of i from G1 and G2 would result in graphs with different skeleta. Therefore, GI

1 and GI
2 must have the

same v-structures.

Conversely, suppose that G1 and G2 are in the same I-MEC. Then they must have the same skeleta and v-structures, and
we just need to show that for any I ∈ I, G1 and G2 have the same skeleton after removing the incoming edges of i for all
i ∈ I (Hauser & Bühlmann, 2012). Suppose this is not the case. This implies that for some I ∈ I and some i ∈ I , there
is an edge between i and another vertex j /∈ I that is removed in G1 but not in G2. The orientation of this edge must be
j → i in G1 and i → j in G2. But this would mean that j → i and ζI → i form a v-structure in GI

1 but not in GI
2 , which is a

contradiction to Theorem 3.9. Therefore, G1 and G2 must belong to the same perfect-I-MEC.

A.2. Proofs from Section 3.3

The following definition formalizes the notion of relabeling the datasets and intervention targets:

Definition A.2. Let {f (I)}I∈I be a set of interventional distributions. Let J ∈ I be a particular intervention target. The
corresponding J-observation target set is defined as ĨJ := {∅, {I ∪ J}I∈I,I �=J}. The relabeled set of interventional
distributions is denoted {f̃ (I)

J }I∈ĨJ
, with f̃

(∅)
J := f (J) and f̃

(I∪J)
J := f (I), ∀I ∈ I, I �= J .

Notice that {f̃ (I)
J }I∈ĨJ

contains the same distributions as {f (I)}I∈I but is reindexed to treat f (J) as the observational
distribution and {f (I)}I �=J as distributions obtained under interventions on I∪J . This relabeling is justified by the following
lemma:

Lemma A.3. {f (I)}I∈I ∈ MI(G) if and only if {f̃ (I)
J }I∈ĨJ

∈ MĨJ
(G) for all J ∈ I.

Proof of Lemma A.3. To prove the “only if” direction, suppose {f (I)}I∈I ∈ MI(G). It follows straight from Definition
A.2 that f̃ (∅)

J = f (J) for every J ∈ I. Since f (J) is Markov with respect to G, so is f̃ (∅)
J , and hence f̃

(∅)
J can be factored

according to Equation (1) with the observational distribution set to f̃
(∅)
J . So it remains to show that for every J ∈ I and any

I �= J , f̃ (I∪J)
J factorizes according to Equation (1) with the observational distribution set to f̃

(∅)
J . Then we have

f̃
(I∪J)
J (X) = f (I)(X) (by Definition A.2)

=
�

i/∈I

f (∅)(Xi|Xpa(i))
�

i∈I

f (I)(Xi|Xpa(i)) (by Lemma A.1)

=
�

i/∈I,J

f (∅)(Xi|Xpa(i))
�

i/∈I,i∈J

f (∅)(Xi|Xpa(i))
�

i∈I

f (I)(Xi|Xpa(i))

=
�

i/∈I∪J

f̃
(∅)
J (Xi|Xpa(i))

�

i∈I∪J

f̃
(I∪J)
J (Xi|Xpa(i))

where the last equality holds because f̃ (∅)
J (Xi|Xpa(i)) = f (J)(Xi|Xpa(i)) = f (∅)(Xi|Xpa(i)) when i /∈ J , and by relabeling

the conditional distributions in the last two product terms as f̃ (I∪J)
J . By Lemma A.1, it follows that {f̃ (I)

J }I∈ĨJ
∈ MĨJ

(G).

To prove the converse, we show how to construct the observational distribution f (∅) such that f (I) can be factored over G
according to Equation (1) for all I ∈ I. For every i ∈ V , let f (∅)(Xi|XpaG(i)) = f̃

(∅)
I (Xi|XpaG(i)) for some I ∈ I such

that i /∈ I . The existence of such an I is guaranteed by the assumption that I is a conservative set of targets. Furthermore,
f̃
(∅)
I (Xi|XpaG(i)) is unique; if there are multiple targets that satisfy this requirement (i.e. ∃J ∈ I s.t. i /∈ J and J �= I), we

always have f̃
(∅)
I (Xi|XpaG(i)) = f̃

(∅)
J (Xi|XpaG(i)), since

f̃
(∅)
J (Xi|XpaG(i)) = f̃

(I∪J)
I (Xi|XpaG(i)) = f̃

(∅)
I (Xi|XpaG(i))
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for i /∈ I ∪ J . The first equality follows by Definition A.2, and the second equality follows since by Proposition 3.8,
{f̃ (K)

I }K∈ĨI
∈ MĨI

(G). Thus, we have defined f (∅) such that f (I) can be factored over G according to Equation (1) for all
I ∈ I. This proves by Lemma A.1 that {f (I)}I∈I ∈ MI(G).

Proof of Theorem 3.14. We first prove the “only if” direction. If G1 and G2 belong to the same I-MEC, then we have
MI(G1) = MI(G2). It follows from Lemma A.3 that MĨJ

(G1) = MĨJ
(G2) for all J ∈ I, and then directly from

Theorem 3.9 that GĨJ
1 and GĨJ

2 have the same skeleta and v-structures for all J ∈ I. The “if” direction follows by applying
these same results in reverse: first we apply Theorem 3.9 to GĨJ

1 and GĨJ
2 for every J ∈ I, followed by Lemma A.3.

B. Proofs from Section 4
B.1. Proof of Theorem 4.6

In this section, we work up to the proof of Theorem 4.6. To do this, we first cover some basic results on the consistency
of GSP. Let G be a DAG and let H be an independence map (I-map) of G, meaning that all independences implied by H
are satisfied by G (i.e. G ≤ H). Chickering (2002) showed that there exists a sequence of covered edge reversals and edge
additions resulting in a sequence of DAGs, G0,G1, · · · ,Gτ such that

G = G0 ≤ G1 ≤ · · · ≤ Gτ = H

Furthermore, Solus et al. (2017) showed that for any G and H, there exists such a Chickering sequence in which one sink
node of H is fixed at a time. The following lemma connects this sequence over DAGs to a sequence over the topological
orderings of the nodes.

Lemma B.1. Let Gi1 , · · · ,Gip be a subsequence of the Chickering sequence where one sink is fixed at a time, and let Gij be
the first DAG in which the jth sink node is fixed, i.e. the sequence of DAGs from Gij−1 to Gij involve covered edge reversals
and edge additions required to resolve sink node j. Furthermore, let Π(G) denote the set of topological orderings that are
consistent with G. Then for any πij−1

∈ Π(Gij−1
) in which the last j− 1 nodes correspond to the first j− 1 fixed sink nodes,

there exists a sequence of orderings πij−1
, · · · ,πij with πk ∈ Π(Gk) such that the jth sink node moves only to the right,

stopping in the jth position from the end, and the relative ordering of the other nodes remain unchanged.

Proof. The correctness of this lemma follows directly from Lemma 13 of Solus et al. (2017).

The following corollary is an immediate consequence of this lemma.

Corollary B.2. For any DAG G over vertex set [p] and any I-map H, there exists a sequence of topological orderings

π0 ∈ Π(G0),π1 ∈ Π(G1), · · · ,πτ ∈ Π(Gτ )

with G0 = G and Gτ = H corresponding to a Chickering sequence in which we fix the order of the nodes in reverse starting
from the last node in πτ . Specifically, the last node in πτ is moved to the right until it is in the p-th position, then the
second-last node in πτ to the right until it is in the (p− 1)-th position, etc. until all nodes are in the order given by πτ .

Using this result, we now state the following lemma, which is useful in the proof of consistency of the algorithm.

Lemma B.3. For any permutation π, there exists a list of covered arrow reversals from Gπ to the true DAG Gπ∗ such that
(1) the number of edges is weakly decreasing:

Gπ = Gπ0 ≥ Gπ1 ≥ · · · ≥ Gπm−1 ≥ Gπm ≥ · · · ≥ GπM−1 ≥ GπM = Gπ∗

and (2) if i → j is reversed from Gπm−1 to Gπm , then there is a directed path from j to i in Gπ∗ (i.e. j is an ancestor of i).

Proof. Suppose that j is not an ancestor of i in Gπ∗ . Then there exists an ordering π0 ∈ Π(Gpi∗) in which j comes after
i. By Corollary B.2, there exists a Chickering sequence from Gπ∗ to Gπ and a corresponding sequence of orderings such
that j never moves from the left of i to the right of i. Specifically, either j is fixed before i and their relative ordering never
changes, or i is fixed before j and moves from the left of j to the right of j once. It follows that j → i is never reversed
in the Chickering sequence from Gπ∗ to Gπ, and thus i → j is never reversed when working backwards from Gπ to Gπ∗ .
Therefore, if i → j is reversed from Gπm−1 to Gπm , then there must be a directed path from j to i in Gπ∗ .
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In turn, Lemma B.3 allows us to prove the existance of a greedy path from Gπ to the true DAG Gπ∗ by reversing I-covered
edges.

Lemma B.4. For any permutation π, there exists a list of I-covered arrow reversals from Gπ to the true DAG Gπ∗ such that
the number of edges is weakly decreasing and if i → j is reversed from Gπm−1 to Gπm , then there is a directed path from j
to i in Gπ∗ .

Proof. From Lemma B.3, we know that there exists a sequence of covered arrow reversals from Gπ to Gπ∗ in which the
number of edges is weakly decreasing; and that this sequence has the property that if arrow i → j is reversed from Gπm−1 to
Gπm , then there is a directed path from j to i in Gπ∗ . It remains to be shown that all covered arrow reversals in this sequence
are also I-covered arrow reversals.

Suppose Ij\i ∈ I and let G(I)
π∗ denote the I-DAG of Gπ∗ (Definition 3.5). Note that there is a directed path from {ζIj\i} to

i in G(I)
π∗ by the previous lemmas. Therefore, by Assumption 4.4, f(Xi) is not invariant to I ∈ Ij\i ∪ ∅. Suppose {i} ∈ I

and let G(I)
π∗ denote the I-DAG of Gπ∗ (Definition 3.5). Note that {ζ{i}} is d-separated from j in G(I)

π∗ . Therefore, f(Xj) is
invariant to I ∈ {∅, {i}} by the I-Markov property (Definition 3.6) and Proposition 3.8. It follows that i → j is I-covered
in Gπm−1 . If {i} /∈ I and Ij\i is empty, then the result is trivial as i → j is I-covered as long as it is covered.

The following lemma proves the correctness of using I-contradictory arrows as the secondary search criterion; essentially, it
states that when Gπ is in the same MEC but not the same I-MEC as Gπ∗ , then Gπ has more I-contradictory arrows than Gπ∗ .

Lemma B.5. For any permutation π such that Gπ and Gπ∗ are in the same MEC, there exists a list of I-covered arrow
reversals from Gπ to the true DAG Gπ∗

Gπ = Gπ0 ≥ Gπ1 ≥ · · · ≥ Gπm−1 ≥ Gπm ≥ · · · ≥ GπM−1 ≥ GπM = Gπ∗

such that the number of arrows is non-increasing and for all m, if Gπm−1 and Gπm are not in the same I-MEC, then Gπm is
produced from Gπm−1 by the reversal of an I-contradictory arrow.

Proof. From Lemma B.4, we know there exists a sequence of I-covered arrow reversals from Gπ to Gπ∗ in which the
number of edges is weakly decreasing, with the property that if i → j is reversed from Gπm−1 to Gπm , then there is a
directed path from j to i in Gπ∗ .

Suppose the arrow i → j is reversed from Gπm−1 to Gπm . Since Gπm−1 and Gπ∗ are in the same MEC, this implies that
j → i is in Gπ∗ . Since Gπm−1 , Gπm are not in the same I-MEC, then we must have Ii\j ∪ Ii\j �= ∅. Now, let G(I)

π∗ denote
the I-DAG of Gπ∗ (Definition 3.5), and consider the following cases:

(1) Ii\j �= ∅. Then there exists a subset S ⊂ neG(j)\{i} that d-separates ζIi\j from j in G(I)
π∗ . By the I-Markov property

(Definition 3.6) and Proposition 3.8, f (∅)(Xj |XS) = f (I)(Xj |XS) for all I ∈ Ii\j .

(2) Ij\i �= ∅. Then for any subset S ⊂ neG(i)\{j}, ζIj\i is d-connected to i in G(I)
π∗ . By Assumption 4.5, f (∅)(Xi|XS) �=

f (I)(Xi|XS) for some I ∈ Ij\i.

(3) {i} ∈ I . Then ζ{i} is d-separated from j in G(I)
π∗ . Therefore, f{i}(Xj) = f∅(Xj) by the I-Markov property (Definition

3.6) and Proposition 3.8.

(4) {j} ∈ I. Then ζ{j} is not d-separated from i in G(I)
π∗ . Therefore, f{j}(Xi) �= f∅(Xi) by Assumption 4.4.

These are the defining properties of I-contradictory edges. Therefore, the arrow i → j is I-contradictory in Gπm−1 .

Proof of Theorem 4.6. This follows directly from Lemmas B.4 and B.5.

B.2. Pooling Data for CI Testing

The following proposition gives sufficient conditions under which CI relations hold when the data come from a mixture of
interventional distributions:
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Proposition B.6. Let {f (I)}I∈I ∈ MI(G) for a DAG G = ([p], E) and intervention targets I s.t. ∅ ∈ I . For some Is ⊂ I
and some disjoint A,B,C ⊂ [p], suppose that C ∪ ζI\Is

d-separates A from B ∪ ζIs in GI . Then XA ⊥⊥XB | XC under
the distribution X ∼ �

I∈{∅}∪Is
αIf

(I), for any αI ∈ (0, 1) s.t.
�

I∈{∅}∪Is
αI = 1.

Proposition B.6 can be used to derive a set of checkable conditions on Gπ to determine whether each interventional dataset
I ∈ I can be pooled with observational data to test Xi ⊥⊥Xk | XanGπ (i)\{k} for k ∈ paGπ

(i).

Corollary B.7. Suppose we want to test Xi ⊥⊥ Xk | XanGπ (i)\{k} for some k ∈ paGπ
(i). Let Is ⊂ I be interventional

targets such that the following two conditions hold for every j ∈ I ∈ Is:

(1) j = i or j is neither a descendent nor an ancestor of i;

(2) π(k) > π(j) and k is not a parent of j; or π(j) > π(k) and j is not an ancestor of k,

where all relations are being considered with respect to Gπ , and π(i) denotes the index of i in π. Then under the faithfulness
assumption, Xi⊥⊥Xk | XanGπ (i)\{k} under X ∼ f∅ if and only if this CI relation also holds under X ∼ �

I∈{∅}∪Is
αIf

(I),
where αI ∈ (0, 1) and

�
I∈{∅}∪Is

αI = 1.

Proof. If Xi ⊥�⊥Xk | XanGπ (i)\{k} under X ∼ f∅, then this CI relation will clearly not hold under X ∼ �
I∈{∅}∪Is

αIf
(I),

thereby implying the “if” direction. It remains to prove the “only if” direction, i.e. that Xi ⊥⊥Xk | XanGπ (i)\{k} under
X ∼ f∅ implies conditional independence under X ∼ �

I∈{∅}∪Is
αIf

(I).

We first consider the case where j �= i and j is neither a descendent nor an ancestor of i. By the faithfulness assumption,
Xi ⊥⊥ Xk | XanGπ (i)\{k} implies that i and k are d-separated by anGπ

(i) \ {k} in the true DAG G∗. Since Gπ is an
independence map of G∗, it follows from condition (2) that for any j ∈ I ∈ Is, j and k are d-separated by anGπ (j) \ {k} in
G∗. In addition, since j is neither a descendent nor an ancestor of i, then j and k are also d-separated by anGπ (i) \ {k} in G∗.

If i = j ∈ I ∈ Is, then k and {i} ∪ ζIs
are d-separated in GI

∗ by ζI\Is
∪ anGπ

(i) \ {k}. It then follows from Proposition
B.6 that Xi ⊥⊥Xk | XanGπ (i)\{k} when X ∼ �

I∈{∅}∪Is
αIf

(I).

Proof of Proposition B.6. Similar to the proof of the second part of Proposition 3.8, it can be shown that for any disjoint
A,B,C ⊂ [p] and any I ∈ I such that C ∪ ζI\{I} d-separates A from {ζI} in GI , we have

f (I)(X) = g1(XA� , XC)g2(XB� , XC ; I)
�

i∈V \VAn

f (I)(Xi|Xpa(i),G)

where
g1(XA� , XC) =

�

i∈A�

f (∅)(Xi|Xpa(i),G)
�

i∈C,paG(i)∩A� �=∅
f (∅)(Xi|Xpa(i),G)

and
g2(XB� , XC ; I) =

�

i∈C,paG(i)∩A�=∅
f (I)(Xi|Xpa(i),G)

�

i∈B�

f (I)(Xi|Xpa(i),G)

where VAn is the ancestral set of A ∪B ∪ C, A� is the largest subset of VAn that is d-separated from B and ζI given C, and
B� = VAn \ (A� ∪ C). Noting that B ⊂ B�, we marginalize out XA�\A,XB�\B and XB�\B , which yields

f (I)(XA, XC) = ĝ1(XA, XC)ĝ2(XB , XC ; I)

The mixture of distributions over all I ∈ Is is therefore,
�

I∈Is

αIf
(I)(XA, XC) = ĝ1(XA, XC)

�

I∈Is

αI ĝ2(XB , XC ; I)

which factors into separate functions over XA and XB . Therefore, XA ⊥⊥XB |XC when X is sampled from this mixture of
distributions.
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Figure 8. Distributions of Hamming distances of recovered DAGs using IGSP and perfect-IGSP (p-IGSP) for 10-node graphs under
single-variable (a) perfect, (b) imperfect, and (c) inhibitory interventions and multi-variable (d) perfect, (e) imperfect, and (f) inhibitory
interventions

C. Additional simulation results
C.1. IGSP vs. perfect-IGSP

As described in the main text, for each simulation, we sampled 100 DAGs from an Erdös-Renyi random graph model with
an average neighborhood size of 1.5 and p ∈ {10, 20} nodes. The data for each DAG G∗ was generated using a linear
structural equation model with independent Gaussian noise: X = AX + �, where A is an upper-triangular matrix with edge
weights Aij �= 0 if and only if i → j, and � ∼ N (0, Id). For Aij �= 0, the edge weights were sampled uniformly from
[−1,−0.25] ∪ [0.25, 1] to ensure that they are bounded away from zero. We simulated perfect interventions on i by setting
the column A,i = 0; inhibiting interventions by decreasing A,i by a factor of 10; and imperfect interventions with a success
rate of α = 0.5. Here, the results are shown for 10-node graphs in which interventions were performed on all single-variable
targets (Figure 8), or all pairs of multiple-variable targets (Figure 8).

IGSP performed better on single-variable interventions than on multi-variable interventions (Figure 8). This is expected
based on the discussion on Definition 4.2; IGSP requires fewer invariance tests when the data come from single-variable
interventions. In contrast, perfect-IGSP (Wang et al., 2017) performs similarly between single-variable and multi-variable
interventions; by assuming perfect interventions, perfect-IGSP avoids multiple hypothesis testing when there are multi-
variable interventions.
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Figure 9. Distributions of Hamming distances of recovered DAGs using IGSP and a heuristic pooled-IGSP for 10-node graphs under (a)
perfect, (b) imperfect, and (c) inhibitory interventions and 20-node graphs under (d) perfect, (e) imperfect, and (f) inhibitory interventions

C.2. Pooling

Corollary B.7 described testable conditions under which CI tests can be performed over pooled observational and interven-
tional data in a provably correct way. Here we show that the simple heuristic of pooling all of the datasets for all the CI tests
is also effective for improving the performance of IGSP, particularly when the sample sizes are limited. The simulations of
Figure 9 compare IGSP to a heuristic version of IGSP, in which all of the data is pooled. However, the limitation of this
method is that it is obviously not consistent in the limit of n → ∞.


