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Appendix: Dependent Relational Gamma Process Models for Longitudinal Networks

A. Dependent Relational Gamma Process

Let G = > 7, ride, be a draw from a gamma process GaP(Gy, ¢), where ¢ is a scale parameter and G is a finite
and continuous base measure over a complete separable metric space © (Ferguson, 1973). A model based on the gamma
process has an inherent shrinkage mechanism since the number of atoms with weights greater than € > 0 follows
Poisson(yg [~ drer=te™c"), where 79 = Go(©) is the total mass under the base measure.

Given G drawn from a gamma process, we exploit the relational gamma process proposed by (Zhou, 2015),
A| G ~RGaP(G,¢&, 5),

a sample from which is expressed as

AG= Z Z Akk'0(0,,0,/)

k=1k'=1

where £ > 0 and § > 0,

) Gamma(ry, 8), ifk=F
H Gammal(rgrg , 3), otherwise

Given A drawn from a relational gamma process, we generate a set of independent binary variables {bg)}zozl. The new
process

wieg ~ NZG(0,1,1), ¢5, ~ Cat(¢],...,¢p),
T
b](f) ~ Bernoulli (o{ka + Zwm exp[—o(t — l>2]}> )

=1
=33 600 A b, 6,0
k=1k"'=1

is well-defined by the mapping theorem for the Poisson processes (Kingman, 1993); see (Foti et al., 2013) for a complete
proof.

B. MCMC Inference

Notation. When expressing the full conditionals for Gibbs sampling, we use the shorthand “~" to denote all other variables.
We use “-” as an index summation shorthand, e.g., z.; = Zz Tij.

The following definition and results are exploited to derive our closed-form Gibbs sampling update equations.

Negative-Binomial Distribution. A negative-binomial (NegBin) distributed random variable y ~ NegBin(r, p) can be
generated from a gamma mixed Poisson distribution as, y ~ Poisson(A) and A ~ Gamma(r, lfpp) by marginalizing over
A

Poisson-Logarithmic Bivariate Distribution. The Poisson-logarithmic bivariate distributed variable (y,l) with y ~

NegBin(y;r, p) and a Chinese restaurant table (CRT) distributed variable [ ~ CRT({;y, ) can equivalently be expressed

as a sum-logarithmic (SumLog) variable and a Poisson variable, i.e., y = le:1 us with ug ~ Logarithmic(p), and

[ ~ Poisson(—rIn(1 — p)) (Zhou et al., 2015).

(t (t)

Sampling latent count m; j): We sample the latent count m; ;" as

K K
( |—) A( Poisson (Z Z ®) )\,(flzlzjk) . (6)
k=1k'=1
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We note that we can re-express the latent Poisson count mz(;) as

K K )
_ (t
= Z Z MKk 5>
k=1k'=1
where m;,,., . ~ Poisson(z AN e de nem , ' 1a the Poisson additive property, we have
m{") ~ Poisson(z{"y ! ) Where wlk =24 2 j?,/\,(:k,

Sampling latent subcount m(,?k, To update the node-group memberships {zl(,? }i.k,+ and group-group interaction weights

{Ak 4 Y.k t» We need to partition the count m( ) into the sub counts {mgz)k/j} k,k’» Where mgz)k, ; measures the interaction
strength between nodes ¢ and j due to their associations to groups k and k', respectively. Via the Poisson-multinomial
equivalence, we sample the latent subcounts mg,?k, ;as

)\ B 20,
({mﬁ,?k/j} | =) ~ Multinomial ( ®), i jk ) (7

ij ! [ONO)
Zk 1Zk’ 1 k/zzk 2k

Sampling thinning variable b (IfD . mf,? > 0, we set b( ) =1, andif D m( ) =0, we sample b(t) by the following

(t)

process: we define fictitious latent counts @, ~ ~ Poisson(r;{py) disregarding b( " to determine whether > m( ) =0

because group k has been thinned or because group k has not been observed at time ¢. Hence, we sample b,i) when
Do m(f) =0as
1. If w,(:) = 0, we sample b,(:) as
(b(t) =1|lw (t) =0) x (bgf) 1)Poisson(0; rpéprr), (8)
(b(t =0|w kk =0) x p(bé) 0)Poisson(0; 7€ prk )-
2. If w,(ct) > 0, we sample b,it) as
p(bgf) =1|w, ) > 0) x p(b(t) 1) [1 — Poisson(0; rx€prk)] - )

Sampling kernel weights w: The normal-inverse-gamma prior placed over wy; can be equivalently generated from the
following process by introducing auxiliary variables {9, }:

1, ~ Gamma(1, 1),
Wi NN(O,Z@),

where WE = (wlk, e ,ka) and 219 = diag(ﬂok, . 719Lk)-

Let Ky = (1, K(t, t1, ¢k), - ., K(t,tn, ¢x))T be the vector of the kernels evaluated at time t. We sample {w;;, } exploiting
a Pdélya-gamma data augmentation technique (Polson et al., 2013) for logistic regression by introducing auxiliary variables
as

(Bkt | —) ~ PG(LICE;CW;C),

where PG(a, b) denotes the Pélya-gamma distribution with b € R and a > 0. Let €2(b;,) denote the T' x T' diagonal matrix
whose ¢-th diagonal element is by, and let 1, = (b,(gl) —1/2,... (T) —1/2)T. The conditional distribution of wy, is

(Wk | 7) ~ N(/u‘wkvzwk)a (10)

where ¥, = (251 4+ K Q(0p)Ker) ™" and pi,, = S, Kb fike-
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We sample ¥;;, from its conditional posterior via the gamma normal conjugacy as

3 1
W | —) ~ Gamma(§, 1+ wak>

Sampling kernel width ¢: We uniformly draw ¢, from a fixed dictionary {¢7, ..., ¢7,} of size D, and hence sample ¢y, as

1 (t) _p®)
p(on =03 | =) o 5 [T (P ()™ (1= Pyy(0)) (an

teT

where the thinning function is denoted as a function of ¢} since the values of all the other variables are fixed as

T
Py (t) = U{ka + szk exp[—¢y(t — 1)2]}-

=1

Augmenting and marginalizing the gamma Markov processes: We start from ¢t = 7" because none of the latent member-

ships {z(t)} ! at previous times depend on zg) in their prior specifications,
mfkT) ~ P01sson( ¢(T)) zl(kT) ~ Gamma(zi(kT*l),T).

Marginalizing over zl(kT) via the gamma Poisson conjugacy, we obtain

miy) ~ NegBin(z{; ", ni,),

T o
where nfk) = Tf;pk(,f)‘
To marginalize over zi(kT*l), we introduce an auxiliary variable mf,? ~ CRT(mZ(.kT.)., zl.(kT*l)). Then, we augment mg)
under its compound Poisson representation as

mil)
mg) = Z up, U~ Logarithmic(ng))7 mj? ~ Poisson[ - zi(kT*l) In(1 — ng))}
1=1
Since we already have mg:l) ~ P01sson( 1)1/J(T 2 ) we immediately obtain
~§g,1) = (T) +m(T 1) (12)
~ Pomson( [w(T 2 In(1 — n(g))} )
Combining the Poisson likelihood in Eq. (12) with the gamma prior placed on szT*l) , we can marginalize over zng*l) and
have
- (T— T-2) (T-1
Ek 2N NegBln( (k )7171(k )),

(T-1) _ wET_l)—ln(l—niT))
where Nk T—&-ngﬂil) —ln(l_:(T)) .
We then recursively introduce m(kT Voo CRT (1, (T v, 5572)>, and augment mg,f*” under its compound Poisson
representation as

(T
mg 2 Z ug, w ~ Logarithmic(n;, (r= 1)), mng*” ~ Poisson[ — zi(kT*Q) In(1 — ngfl)) .

=1
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Marginalizing over zg_z) as we did for zz(kT

mg,g) NNegBin(z(T ), Z(kT 2)>.

-b yields

Repeatedly exploiting the same procedure from ¢ = 7" to 1, we augment each latent membership zz(,? with an auxiliary

variable mg k), which backwardly propagates the summarized information from time ¢ to ¢ — 1. Via the augmented parameter

space, we can straightforwardly obtain closed-form conditional posteriors for {z () }t 1 using the gamma Poisson conjugacy.

Sampling node-group memberships Z1:7): We can sample the auxiliary variables m(k and update 771(1@) backwardly from

t=Ttolas

mly) ~ CRT(mG ™ +ml) | 247Y), (13)
t+1
o _ i = —ng") (14
ik = ® (t+1)y’
T4+ —In(1—n," ")
where we have 2! k =0, LT = 0 and nZ(TH) 0.
We then sample 6, and zgk) forwardly fromt = 1toT as
(O | =) ~ Gamma[l +mP 1 —In(1 - nﬁ,?)}, (15)
(zz(,? | =) ~ Gamma{ (t+1) 4 z(t Dy mgk)‘,r + wg,? —1In(1 — 775,2+1)) , teT. (16)
Marginalizing over A, r: We define the latent Poisson count
St
Mg, = 27T D i
t o)
where s = 1if kK = &/, and O = 0 otherwise. Via the Poisson additive property, we have
m.(,;)k,‘ ~ Poisson(Agx prk ),
t t
where pgr = Zt )t )Z > i zk J(k)/
As we have the prior specification A\gx ~ Gamma(rk£5kk’ Ok , B), marginalizing over A\ yields
m,(l'c)k,. ~ NegBin(rkf‘skk’ri,_ékk' s Xkk' ),
— Prik!
where xxp = 7ﬁ+];okw .
To marginalize over rj, we introduce an auxiliary variable:
kg ~ CRT (), i ), (17)

and then re-express the joint distribution over m_(,;)k,. and [y as

-
m_(,;)k/. = Zul, u; ~ Logarithmic(xgx ), ik ~ Poisson[—rkf‘skk’r,ifé’“’“' In(1 — xga)]-
=1

Via the Poisson additive property, we have

lp. = Zlkk’ ~ Poisson[—r, Zf‘skk/r}c,_é’“’“/ In(1 — xrx)]-
K K

Sampling group interaction weights A: Via the gamma Poisson conjugacy, we sample A\;x- from its conditional posterior
as

et | =) ~ Gamma|mG),, + i 17" 8+ pyo . (18)
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Algorithm 1 Gibbs sampling algorithm for DRGPM

Input: relational data { A()}7_,, iterations 7.
Initialize the maximum number of groups K, hyperparameters vy, 3, ¢, T.
for iter = 1to J do

Sample {ml(-;) }i,;,+ for non-zero edges (Eq. 6)

Sample {mg?klj}i7j,k,k/7t (Eq. 7) and update

m»(k)k’~ =2 X mﬁ?kj
miZ = Zj;éi,k’ mitkk/j
fort =1to 7T do
Sample {b,(f)};C (Egs. 8;9)
end for
Sample {wy }r (Eq. 10) and ¢ (Eq. 11)
fort =T to1ldo
Sample {mﬁ?}lk (Eq. 13) and update {ngl?}i,k (Eq. 14)
end for
Sample {0;1 }i 1 (Eq. 15)
fort =1to 7 do
Sample {2}, 1. (Eq. 16)
end for
Sample {lxx } k.1’ (Eq. 17) and update

_ )5 () () (t) Pk
Pk = Dy i Ok O3/ Zite Zjnrs Xoekt = en B

Sample { g ik (Eq. 18), {ry }+ (Eq. 19), and £ (Eq. 20)
end for

Output posterior means: {zi(;:T)}i,k, {0ik Yikeo {78 1100 & {kk Fiokr s {b,(::T)}k.

_ t),(t t t
where pi = 35, b6 3, 2t 20 ZJ('k)/'

Sampling group weight r;: Using the gamma-Poisson conjugacy, we sample r as

(T‘k | *) ~ Gamma[% + Z lkk’, c— Z §5m~,' r’if‘skk’ 111(1 _ ka/)]
k/

k/
Sampling &: Using the gamma-Poisson conjugacy, we sample

&l-)~ Gamma{l + Zlkk, 1- Zrk In(1 — ka)}
k k

The full procedure of our Gibbs sampling algorithm is summarized in Algorithm 1.

19)

(20)
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C. Additional Experimental Results
C.1. Simulation Study

We also compare DRGPM based on the thinned CRM framework against DPGM that only models time-evolving node
memberships to clarify the contributions by modelling group birth/death dynamics. To this end, we apply DPGM on the
same synthetic data used in Section 5.1. The inferred link probabilities and node-group associations zi(,?)\k r by DPGM are
depicted in columns (d) and (e) of Figure 6, respectively. The inferred link probabilities and node-group associations by
DRGPM are depicted in columns (b) and (c) of Figure 6, respectively. We note that both DPGM and DRGPM infer fewer
numbers of groups than D-GPPF because dynamic node-group connections are explicitly modelled by time-evolving node
memberships in the former two methods. In particular, we notice that DPGM unavoidably generates some redundant groups
that lack interpretability. This is due to that DPGM assumes the inferred group weights to be static throughout the whole
time period.
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Figure 6. Five selected snapshots of the simulated network as shown in column (a). The link probabilities inferred by DRGPM and DPGM
are shown in columns (b) and (d), respectively. The association weights of each node (row variable) to the groups (column variable),
as shown in columns (c) and (e), can be calculated as zfz) /\,(fk) for DRGPM and zl(,? Akk for DPGM, respectively. The pixel values are
displayed on log, scale.
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C.2. Additional Results for The MID Dataset
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Figure 7. The activity (mean of b,(f)) of the selected groups inferred by DRGPM from the MID network.

Table 5. The top 20 nodes associated to each of the selected groups as shown in Fig. 7 from the MID network. The highest node
memberships to the corresponding selected groups throughout the whole period are reported for each node in parentheses.
Group | Country

5 Taiwan (0.47), China (0.20), Thailand (0.13), Philippines (0.10), Cambodia (0.05), Vietnam (0.03), Turkey (0.01)
Togo (0.01)
Sierra Leone (0.90), Nigeria (0.04), Guinea (0.04), Ghana (0.02)
Norway (0.42), Canada (0.28), Portugal (0.14), Turkey (0.14), United States of America (0.02)
Uganda (0.57), Rwanda (0.41), Eritrea (0.01), Congo (0.01), Bahrain (0.01)
Yugoslavia (0.88), United States of America (0.03), Denmark (0.02), Russia (0.02), Canada (0.02), Haiti (0.01)
Bangladesh (0.01), Cuba (0.01)
10 Iraq (0.45), North Korea (0.22), Russia (0.17), Cyprus (0.10), Greece (0.06)
11 United States of America (0.34), Turkey (0.25), United Kingdom (0.21), South Korea (0.12), Denmark (0.02)
Trinidad and Tobago (0.02), Japan (0.02), Norway (0.01), Honduras (0.01)
12 Israel (0.98) , El Salvador (0.01) , United States of America (0.01)
13 Portugal (0.31), Turkey (0.17), United Kingdom (0.12), Denmark (0.11), Belgium (0.10), Norway (0.10),
Albania (0.08)
14 South Korea (0.30), United States of America (
Mongolia (0.05), Denmark (0.04), Peru (0.03)
15 Turkey (0.47), United States of America (0.29), South Korea (0.09), Iran (0.08), Georgia (0.06)
16 Albania (0.25), Portugal (0.23), Canada (0.21), Denmark (0.18), Norway (0.13)

Q| 00| | O

0.22), Vietnam (0.18), Afghanistan (0.11), Norway (0.07),




