
Dependent Relational Gamma Process Models for Longitudinal Networks

Appendix: Dependent Relational Gamma Process Models for Longitudinal Networks

A. Dependent Relational Gamma Process
Let G =

∑∞
k=1 rkδθk

be a draw from a gamma process GaP(G0, c), where c is a scale parameter and G0 is a finite
and continuous base measure over a complete separable metric space Θ (Ferguson, 1973). A model based on the gamma
process has an inherent shrinkage mechanism since the number of atoms with weights greater than ε > 0 follows
Poisson(γ0

∫∞
ε

drcr−1e−cr), where γ0 ≡ G0(Θ) is the total mass under the base measure.

Given G drawn from a gamma process, we exploit the relational gamma process proposed by (Zhou, 2015),

Λ | G ∼ RGaP(G, ξ, β),

a sample from which is expressed as

Λ | G =

∞∑
k=1

∞∑
k′=1

λkk′δ(θk,θk′ )
,

where ξ > 0 and β > 0,

λkk′ ∼

{
Gamma(ξrk, β), if k = k′

Gamma(rkrk′ , β), otherwise

Given Λ drawn from a relational gamma process, we generate a set of independent binary variables {b(t)k }∞k=1. The new
process

ωlk ∼ NIG(0, 1, 1), φk ∼ Cat(φ∗1, . . . , φ
∗
D),

b
(t)
k ∼ Bernoulli

(
σ
{
ω0k +

T∑
l=1

ωlk exp[−φk(t− l)2]
})

,

Λ(t) =

∞∑
k=1

∞∑
k′=1

b
(t)
k b

(t)
k′ λkk′δ(θk,θk′ )

,

is well-defined by the mapping theorem for the Poisson processes (Kingman, 1993); see (Foti et al., 2013) for a complete
proof.

B. MCMC Inference
Notation. When expressing the full conditionals for Gibbs sampling, we use the shorthand “–” to denote all other variables.
We use “·” as an index summation shorthand, e.g., x·j =

∑
i xij .

The following definition and results are exploited to derive our closed-form Gibbs sampling update equations.

Negative-Binomial Distribution. A negative-binomial (NegBin) distributed random variable y ∼ NegBin(r, p) can be
generated from a gamma mixed Poisson distribution as, y ∼ Poisson(λ) and λ ∼ Gamma(r, p

1−p ) by marginalizing over
λ.

Poisson-Logarithmic Bivariate Distribution. The Poisson-logarithmic bivariate distributed variable (y, l) with y ∼
NegBin(y; r, p) and a Chinese restaurant table (CRT) distributed variable l ∼ CRT(l; y, r) can equivalently be expressed
as a sum-logarithmic (SumLog) variable and a Poisson variable, i.e., y =

∑l
s=1 us with us ∼ Logarithmic(p), and

l ∼ Poisson(−r ln(1− p)) (Zhou et al., 2015).
Sampling latent count m(t)

ij : We sample the latent count m(t)
ij as

(m
(t)
ij | −) ∼ A(t)

ij Poisson+

(
K∑
k=1

K∑
k′=1

z
(t)
ik λ

(t)
kk′z

(t)
jk′

)
. (6)
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We note that we can re-express the latent Poisson count m(t)
ij as

m
(t)
ij =

K∑
k=1

K∑
k′=1

m
(t)
ikk′j ,

where m(t)
ikk′j ∼ Poisson(z

(t)
ik λ

(t)
kk′z

(t)
jk′). We define m(t)

ik·· ≡
∑
j 6=i
∑
k′ m

(t)
ikk′j . Via the Poisson additive property, we have

m
(t)
ik·· ∼ Poisson(z

(t)
ik ψ

(t)
ik ), where ψ(t)

ik ≡
∑
j 6=i
∑
k′ z

(t)
jk′λ

(t)
kk′ .

Sampling latent subcount m(t)
ikk′j: To update the node-group memberships {z(t)

ik }i,k,t and group-group interaction weights

{λ(t)
kk′}k,k′,t, we need to partition the count m(t)

ij into the sub counts {m(t)
ikk′j}k,k′ , where m(t)

ikk′j measures the interaction
strength between nodes i and j due to their associations to groups k and k′, respectively. Via the Poisson-multinomial
equivalence, we sample the latent subcounts m(t)

ikk′j as

({m(t)
ikk′j} | −) ∼ Multinomial

(
m

(t)
ij ;

{λ(t)
kk′z

(t)
ik z

(t)
jk′}∑K

k=1

∑K
k′=1 λ

(t)
kk′z

(t)
ik z

(t)
jk′

)
. (7)

Sampling thinning variable b(t)k : If
∑
im

(t)
ik·· > 0, we set b(t)k = 1, and if

∑
im

(t)
ik·· = 0, we sample b(t)k by the following

process: we define fictitious latent counts $(t)
k ∼ Poisson(rkξρkk) disregarding b(t)k to determine whether

∑
im

(t)
ik·· = 0

because group k has been thinned or because group k has not been observed at time t. Hence, we sample b(t)k when∑
im

(t)
ik·· = 0 as

1. If $(t)
k = 0, we sample b(t)k as

p(b
(t)
k = 1 | $(t)

kk = 0) ∝ p(b(t)k = 1)Poisson(0; rkξρkk), (8)

p(b
(t)
k = 0 | $(t)

kk = 0) ∝ p(b(t)k = 0)Poisson(0; rkξρkk).

2. If $(t)
k > 0, we sample b(t)k as

p(b
(t)
k = 1 | $(t)

kk > 0) ∝ p(b(t)k = 1) [1− Poisson(0; rkξρkk)] . (9)

Sampling kernel weights ω: The normal-inverse-gamma prior placed over ωlk can be equivalently generated from the
following process by introducing auxiliary variables {ϑlk}:

ϑlk ∼ Gamma(1, 1),

ωk ∼ N (0,Σϑ),

where ωk = (ω1k, . . . , ωLk) and Σϑ = diag(ϑ0k, . . . , ϑLk).
Let Ktk = (1,K(t, t1, φk), . . . ,K(t, tL, φk))T be the vector of the kernels evaluated at time t. We sample {ωlk} exploiting
a Pólya-gamma data augmentation technique (Polson et al., 2013) for logistic regression by introducing auxiliary variables
as

(b̃kt | −) ∼ PG(1,KT
tkωk),

where PG(a, b) denotes the Pólya-gamma distribution with b ∈ R and a > 0. Let Ω(b̃k) denote the T × T diagonal matrix
whose t-th diagonal element is b̃kt, and let µk = (b

(1)
k − 1/2, . . . , b

(T )
k − 1/2)T. The conditional distribution of ωk is

(ωk | −) ∼ N (µωk
,Σωk

), (10)

where Σωk
= (Σ−1

ϑ +KT
tkΩ(b̃k)Ktk)−1 and µωk

= Σωk
KT
tkµk.
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We sample ϑlk from its conditional posterior via the gamma normal conjugacy as

(ϑlk | −) ∼ Gamma
(3

2
, 1 +

1

2
ω2
lk

)
.

Sampling kernel width φ: We uniformly draw φk from a fixed dictionary {φ∗1, . . . , φ∗D} of size D, and hence sample φk as

p(φk = φ∗d | −) ∝ 1

D

∏
t∈T

(
Pφ∗d(t)

)b(t)k
(
1− Pφ∗d(t)

)1−b(t)k (11)

where the thinning function is denoted as a function of φ∗d since the values of all the other variables are fixed as

Pφ∗d(t) = σ
{
ω0k +

T∑
l=1

ωlk exp[−φk(t− l)2]
}
.

Augmenting and marginalizing the gamma Markov processes: We start from t = T because none of the latent member-
ships {z(t)

ik }
T−1
t=1 at previous times depend on z(T )

ik in their prior specifications,

m
(T )
ik·· ∼ Poisson(z

(T )
ik ψ

(T )
ik ), z

(T )
ik ∼ Gamma(z

(T−1)
ik , τ).

Marginalizing over z(T )
ik via the gamma Poisson conjugacy, we obtain

m
(T )
ik·· ∼ NegBin(z

(T−1)
ik , η

(T )
ik ),

where η(T )
ik ≡

ψ
(T )
ik

τ+ψ
(T )
ik

.

To marginalize over z(T−1)
ik , we introduce an auxiliary variable m̂(T )

ik ∼ CRT(m
(T )
ik··, z

(T−1)
ik ). Then, we augment m(T )

ik··
under its compound Poisson representation as

m
(T )
ik·· =

m̂
(T )
ik∑
l=1

ul, ul ∼ Logarithmic(η
(T )
ik ), m̂

(T )
ik ∼ Poisson

[
− z(T−1)

ik ln(1− η(T )
ik )

]
.

Since we already have m(T−1)
ik·· ∼ Poisson(z

(T−1)
ik ψ

(T−1)
ik ), we immediately obtain

m̃
(T−1)
ik ≡ m̂(T )

ik +m
(T−1)
ik·· (12)

∼ Poisson
(
z

(T−1)
ik

[
ψ

(T−1)
ik − ln(1− η(T )

ik )
])
.

Combining the Poisson likelihood in Eq. (12) with the gamma prior placed on z(T−1)
ik , we can marginalize over z(T−1)

ik and
have

m̃
(T−1)
ik ∼ NegBin

(
z

(T−2)
ik , η

(T−1)
ik

)
,

where η(T−1)
ik ≡ ψ

(T−1)
ik −ln(1−η(T )

ik )

τ+ψ
(T−1)
ik −ln(1−η(T )

ik )
.

We then recursively introduce m̂(T−1)
ik ∼ CRT(m̃

(T−1)
ik , z

(T−2)
ik ), and augment m̃(T−1)

ik under its compound Poisson
representation as

m̃
(T−1)
ik =

m̂
(T−1)
ik∑
l=1

ul, ul ∼ Logarithmic(η
(T−1)
ik ), m̂

(T−1)
ik ∼ Poisson

[
− z(T−2)

ik ln(1− η(T−1)
ik )

]
.
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Marginalizing over z(T−2)
ik as we did for z(T−1)

ik yields

m̃
(T−2)
ik ∼ NegBin

(
z

(T−3)
ik , η

(T−2)
ik

)
.

Repeatedly exploiting the same procedure from t = T to 1, we augment each latent membership z(t)
ik with an auxiliary

variable m̂(t)
ik , which backwardly propagates the summarized information from time t to t− 1. Via the augmented parameter

space, we can straightforwardly obtain closed-form conditional posteriors for {z(t)
ik }Tt=1 using the gamma Poisson conjugacy.

Sampling node-group memberships Z(1:T ): We can sample the auxiliary variables m̂(t)
ik and update η(t)

ik backwardly from
t = T to 1 as

m̂
(t)
ik ∼ CRT(m̂

(t+1)
ik +m

(t)
ik··, z

(t−1)
ik ), (13)

η
(t)
ik =

ψ
(t)
ik − ln(1− η(t+1)

ik )

τ + ψ
(t)
ik − ln(1− η(t+1)

ik )
, (14)

where we have z(0)
ik ≡ θik, m̂(T+1)

ik = 0 and η(T+1)
ik = 0.

We then sample θik and z(t)
ik forwardly from t = 1 to T as

(θik | −) ∼ Gamma
[
1 + m̂

(1)
ik , 1− ln(1− η(1)

ik )
]
, (15)

(z
(t)
ik | −) ∼ Gamma

[
m̂

(t+1)
ik + z

(t−1)
ik +m

(t)
ik··, τ + ψ

(t)
ik − ln(1− η(t+1)

ik )
]
, t ∈ T . (16)

Marginalizing over Λ, r: We define the latent Poisson count

m
(·)
·kk′· ≡ 2−δkk′

∑
t

∑
i

∑
j 6=i

m
(t)
ikk′j ,

where δkk′ = 1 if k = k′, and δkk′ = 0 otherwise. Via the Poisson additive property, we have

m
(·)
·kk′· ∼ Poisson(λkk′ρkk′),

where ρkk′ ≡
∑
t b

(t)
k b

(t)
k′
∑
i

∑
j 6=i z

(t)
ik z

(t)
jk′ .

As we have the prior specification λkk′ ∼ Gamma(rkξ
δkk′ r

1−δkk′
k′ , β), marginalizing over λkk′ yields

m
(·)
·kk′· ∼ NegBin(rkξ

δkk′ r
1−δkk′
k′ , χkk′),

where χkk′ ≡ ρkk′
β+ρkk′

.

To marginalize over rk, we introduce an auxiliary variable:

lkk′ ∼ CRT(m
(·)
·kk′·, rkξ

δkk′ r
1−δkk′
k′ ), (17)

and then re-express the joint distribution over m(·)
·kk′· and lkk′ as

m
(·)
·kk′· =

lkk′∑
l=1

ul, ul ∼ Logarithmic(χkk′), lkk′ ∼ Poisson[−rkξδkk′ r
1−δkk′
k′ ln(1− χkk′)].

Via the Poisson additive property, we have

lk· ≡
∑
k′

lkk′ ∼ Poisson[−rk
∑
k′

ξδkk′ r
1−δkk′
k′ ln(1− χkk′)].

Sampling group interaction weights Λ: Via the gamma Poisson conjugacy, we sample λkk′ from its conditional posterior
as

(λkk′ | −) ∼ Gamma
[
m

(·)
·kk′· + rkξ

δkk′ r
1−δkk′
k′ , β + ρkk′

]
. (18)
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Algorithm 1 Gibbs sampling algorithm for DRGPM

Input: relational data {A(t)}Tt=1, iterations J .
Initialize the maximum number of groups K, hyperparameters γ0, β, c, τ .
for iter = 1 to J do

Sample {m(t)
ij }i,j,t for non-zero edges (Eq. 6)

Sample {m(t)
ikk′j}i,j,k,k′,t (Eq. 7) and update

m
(·)
·kk′· =

∑
t

∑
i,j 6=im

(t)
ikk′j

m(t)

ik·· =
∑
j 6=i,k′ m

(t)
ikk′j

for t = 1 to T do
Sample {b(t)k }k (Eqs. 8; 9)

end for
Sample {ωk}k (Eq. 10) and φ (Eq. 11)
for t = T to 1 do

Sample {m̂(t)
ik }i,k (Eq. 13) and update {η(t)

ik }i,k (Eq. 14)
end for
Sample {θik}i,k (Eq. 15)
for t = 1 to T do

Sample {z(t)
ik }i,k (Eq. 16)

end for
Sample {lkk′}k,k′ (Eq. 17) and update
ρkk′ =

∑
t,i,j 6=i b

(t)
k b

(t)
k′ z

(t)
ik z

(t)
jk′ , χkk′ = ρkk′

ρkk′+β

Sample {λkk′}k,k′ (Eq. 18), {rk}k (Eq. 19), and ξ (Eq. 20)
end for
Output posterior means: {z(1:T )

ik }i,k, {θik}i,k, {rk}k, ξ, {λkk′}k,k′ , {b(1:T )
k }k.

where ρkk′ ≡
∑
t b

(t)
k b

(t)
k′
∑
i

∑
j 6=i z

(t)
ik z

(t)
jk′ .

Sampling group weight rk: Using the gamma-Poisson conjugacy, we sample rk as

(rk | −) ∼ Gamma
[γ0

K
+
∑
k′

lkk′ , c−
∑
k′

ξδkk′ r
1−δkk′
k′ ln(1− χkk′)

]
. (19)

Sampling ξ: Using the gamma-Poisson conjugacy, we sample

(ξ | −) ∼ Gamma
[
1 +

∑
k

lkk, 1−
∑
k

rk ln(1− χkk)
]
. (20)

The full procedure of our Gibbs sampling algorithm is summarized in Algorithm 1.
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C. Additional Experimental Results
C.1. Simulation Study

We also compare DRGPM based on the thinned CRM framework against DPGM that only models time-evolving node
memberships to clarify the contributions by modelling group birth/death dynamics. To this end, we apply DPGM on the
same synthetic data used in Section 5.1. The inferred link probabilities and node-group associations z(t)

ik λkk by DPGM are
depicted in columns (d) and (e) of Figure 6, respectively. The inferred link probabilities and node-group associations by
DRGPM are depicted in columns (b) and (c) of Figure 6, respectively. We note that both DPGM and DRGPM infer fewer
numbers of groups than D-GPPF because dynamic node-group connections are explicitly modelled by time-evolving node
memberships in the former two methods. In particular, we notice that DPGM unavoidably generates some redundant groups
that lack interpretability. This is due to that DPGM assumes the inferred group weights to be static throughout the whole
time period.

t 5
t 1

5
t 2

5
t 3

5
t 6

0

(a) (b) (c) (d) (e)

Figure 6. Five selected snapshots of the simulated network as shown in column (a). The link probabilities inferred by DRGPM and DPGM
are shown in columns (b) and (d), respectively. The association weights of each node (row variable) to the groups (column variable),
as shown in columns (c) and (e), can be calculated as z(t)ik λ

(t)
kk for DRGPM and z(t)ik λkk for DPGM, respectively. The pixel values are

displayed on log10 scale.
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C.2. Additional Results for The MID Dataset

Figure 7. The activity (mean of b(t)k ) of the selected groups inferred by DRGPM from the MID network.

Table 5. The top 20 nodes associated to each of the selected groups as shown in Fig. 7 from the MID network. The highest node
memberships to the corresponding selected groups throughout the whole period are reported for each node in parentheses.

Group Country
5 Taiwan (0.47), China (0.20), Thailand (0.13), Philippines (0.10), Cambodia (0.05), Vietnam (0.03), Turkey (0.01)

Togo (0.01)
6 Sierra Leone (0.90), Nigeria (0.04), Guinea (0.04), Ghana (0.02)
7 Norway (0.42), Canada (0.28), Portugal (0.14), Turkey (0.14), United States of America (0.02)
8 Uganda (0.57), Rwanda (0.41), Eritrea (0.01), Congo (0.01), Bahrain (0.01)
9 Yugoslavia (0.88), United States of America (0.03), Denmark (0.02), Russia (0.02), Canada (0.02), Haiti (0.01)

Bangladesh (0.01), Cuba (0.01)
10 Iraq (0.45), North Korea (0.22), Russia (0.17), Cyprus (0.10), Greece (0.06)
11 United States of America (0.34), Turkey (0.25), United Kingdom (0.21), South Korea (0.12), Denmark (0.02)

Trinidad and Tobago (0.02), Japan (0.02), Norway (0.01), Honduras (0.01)
12 Israel (0.98) , El Salvador (0.01) , United States of America (0.01)
13 Portugal (0.31), Turkey (0.17), United Kingdom (0.12), Denmark (0.11), Belgium (0.10), Norway (0.10),

Albania (0.08)
14 South Korea (0.30), United States of America (0.22), Vietnam (0.18), Afghanistan (0.11), Norway (0.07),

Mongolia (0.05), Denmark (0.04), Peru (0.03)
15 Turkey (0.47), United States of America (0.29), South Korea (0.09), Iran (0.08), Georgia (0.06)
16 Albania (0.25), Portugal (0.23), Canada (0.21), Denmark (0.18), Norway (0.13)


