Dependent Relational Gamma Process Models for Longitudinal Networks

Sikun Yang' Heinz Koeppl '

Abstract

A probabilistic framework based on the covariate-
dependent relational gamma process is developed
to analyze relational data arising from longitu-
dinal networks. The proposed framework char-
acterizes networked nodes by nonnegative node-
group memberships, which allow each node to
belong to multiple latent groups simultaneously,
and encodes edge probabilities between each pair
of nodes using a Bernoulli Poisson link to the
embedded latent space. Within the latent space,
our framework models the birth and death dynam-
ics of individual groups via a thinning function.
Our framework also captures the evolution of indi-
vidual node-group memberships over time using
gamma Markov processes. Exploiting the recent
advances in data augmentation and marginaliza-
tion techniques, a simple and efficient Gibbs sam-
pler is proposed for posterior computation. Experi-
mental results on a simulation study and three real-
world temporal network data sets demonstrate the
model’s capability, competitive performance and
scalability compared to state-of-the-art methods.

1. Introduction

The study of relational data arising from various networks
including social, biological and physical networks is becom-
ing increasingly important due to the emergence of massive
relational data collected from these domains. Many efforts
have been dedicated to develop statistical models in terms of
community detection and missing link prediction for analyz-
ing relational data arising from static networks, where either
a single snapshot of the network of interest or an aggregated
network over time is presented; see (Goldenberg et al., 2010)
for a review of the literature. However, network data, such
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as friendships or interactions in a social network, is often
dynamic since the relations among the entities within the
network may appear or disappear over time (Mucha et al.,
2010). Accordingly, the latent groups composed of those
temporally connected entities also form and decay over time.
Hence, appropriate models are needed to enable a better
understanding of the formation and evolution of dynamic
networks (Phan & Airoldi, 2015).

A probabilistic framework is proposed to model such dy-
namic networks by assuming the network of interest is com-
posed of a set of latent groups. Each node of the observed
network is hence associated with a time-dependent member-
ships vector that governs its involvement in multiple groups
and interactions with other nodes. The node-group member-
ships are assumed to be gamma distributed, thus, naturally
nonnegative real-valued. Moreover, to capture time-evolving
interactions between groups of nodes, we model the birth
and death dynamics of individual groups explicitly via a
dependent relational gamma process (dRGaP). The ideal
number of latent groups can be adaptively learned from data
via the shrinkage mechanism of the dRGaP.

Explicitly modelling group birth/death dynamics can be use-
ful in many applications. For instance, latent groups in a
network of military disputes between countries could mean
alliances such as NATO coordinating collective defence
to attacks by external forces (Schein et al., 2016a). These
groups can be born and die afterwards. For example, the
Warsaw Pact was established during the Cold War and dis-
solved in later years. We demonstrate that our model can
discover interpretable latent structure on a real network of
military interstate disputes (Ghosn et al., 2004) that agrees
with our knowledge of international relations (Section 5).
Furthermore, it is reasonable to model the time-evolving
memberships of each individual node to interpret its joining
and withdrawing behavior to these groups. Hence, we cap-
ture the dynamics of individual node-group memberships
evolving over time via gamma Markov processes.

In contrast to dynamic network modelling using logistic
or probit mapping functions (Foulds et al., 2011; Heauku-
lani et al., 2013; Durante et al., 2014a), we leverage the
Bernoulli-Poisson link (BPL) function (Dunson & Herring,
2005; Zhou, 2015) to generate edges from the latent space
representation, which makes the computational cost of our
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model to scale linearly with the number of edges, rather
than quadratically with the number of nodes. In addition,
the Bernoulli-Poisson link is also a more appropriate model
for imbalanced binary data (Zhou, 2017; Hu et al., 2015),
which makes the proposed model appealing for analyzing
real-world relational data that are usually extremely sparse.
To perform inference, we present an efficient Gibbs sam-
pling algorithm exploiting the Pélya-gamma data augmenta-
tion technique (Polson et al., 2013) and the data augmenta-
tion and marginalization technique for discrete data (Zhou
etal., 2015).

The paper is organized as follows. In Section 2, we shortly
review the gamma process and the thinned completely ran-
dom measure framework. In Section 3, we present our gen-
erative model. In Section 4, we discuss some related work.
Experimental results are provided in Section 5. The com-
plete Gibbs sampling algorithm and additional experimental
results are presented in the supplementary material.

2. Covariate-Dependent Random Measures

Our dynamic network model is based on the thinned com-
pletely random measures (tCRMs) framework, originally
proposed in (Foti et al., 2013) for the construction of
covariate-dependent topic models and latent feature models.
We generalize this construction for longitudinal network
modelling. More specifically, a set of latent groups that con-
stitute the underlying structure of the observed dynamic
network is generated. Via the tCRMs framework, the gen-
erated groups are allowed to form and decay over time. To
facilitate understanding, we shortly review the gamma pro-
cess and the thinned CRMs.

2.1. Gamma Process

The gamma process (GaP) is a completely random mea-
sure (CRM) (Kingman, 1967) defined on the product space
© x Ryg as G ~ GaP(Gy,c), where c is a scale pa-
rameter, and (G is a finite and continuous base mea-
sure over a complete separable metric space ©, such that
G(Si) ~ Gamma(Go(Sk),c) are independent gamma
random variables for disjoint subsets {Sj}7> ; of ©. The
positive Lévy measure of the gamma process can be ex-
pressed as v(dr) = cr~le=°"dr. As a completely random
measure, the gamma process can be regarded as a Pois-
son process on © X R.( with mean measure v(df, dr).
A sample from this Poisson process consists of countably
infinite atoms because [ [o _ v(df,dr) = co. Thus,
a sample from the gamma process can be expressed as
G =Y 72, k0s, ~ GaP(Gy,c). More detailed informa-
tion about the gamma process can be found in (Wolpert
etal., 1998; 2011).

2.2. The Thinned CRMs Framework

Let IT = {(x, 0k, 1) }72, be generated by a Poisson pro-
cess on the augmented product space X x © x Ry with
mean measure v(dz,df, dr). Let G = 3_7, 7x0(4, 0,) be
aCRMon X x © x Ry, and let 7 denote the time set
as the coveriate. Our goal is to construct a family of ran-
dom measures {G")};c7 dependent on covariate values
t € T. To achieve this, we generate a set of binary ran-
dom variables bg) for each point (xg, rg, 0x) € I such that
p(bg) =1) = P,, (t), where P, : T — [0, 1] denotes the
thinning function which determines the probability that atom
k in the global measure G appears in the local measure G'*)
at covariate value ¢. Then, the set of covariate-dependent
CRMs {G®)} ;<7 can be specified as

G(t) = Zb,(f)rkégk, teT.
k=1

The new CRMs are well-defined by the mapping theorem
for the Poisson processes (Kingman, 1993), that is proved
in (Foti et al., 2013). As a concrete example, we exploit a
thinned gamma process (tGaP) to model the global atoms
and their activity/inactivity at multiple time points originally
developed for dynamic topic models. Let v(dx, df, dr) =
H(dz)Go(db)vo(dr), where vo(dr) = cr~te=<"dr is the
Lévy measure of the gamma process. We transform a Gaus-
sian basis kernel pointwise using a logistic function as the
thinning function:

T
P, (t) = o’{wok + Zwm expl—i(t — 1)2]},

=1

where o(z) = 1/(1 + exp(—x)) denotes the logistic func-
tion. We fix the centres of these kernels to the T dis-
crete time points in covariate space 7. We characterize
each location z;, € X by a set of T+ 1 kernel weights
wix € R, and a (shared) kernel width ¢, uniformly drawn
from a fixed dictionary {¢7,...,¢%} of size D. To en-
courage sparsity of the kernel weights, we place a normal-
inverse gamma prior over wyg, i.€., wir, ~ NZG(wiy;0,1,1).
Hence, the base measure H(dxz) can be expressed as
H(dz) = NIG(wik;0,1,1)Cat(dp; {97, ..., ¢h})- The
generative procedure can be expressed as

G =Y r4b 0 ~ CRM(v(dz,db,dr)), (1)
k=1
wik ~ NIG(0,1,1),

¢k ~ Cat((b}L ey (b*D)a

T
P, (t) = G{ka + ) wik exp[—¢r(t —1)°] },

=1

b;ct) ~ Bernoulli [ngk (t)} , G = Z b;(:)rk(SGk-
k=1
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3. Model Formulation

We represent a dynamic network by a sequence of adjacency
matrices A®) for each time t = 1,2, ..., T. For the sake of
clarity, we limit our focus to unweighted (binary) undirected
(symmetric) dynamic networks without self-links although
the proposed model can straightforwardly be generalized
to nonnegative real-weighted networks via the Poisson ran-
domized gamma distribution (Zhou et al., 2016). We denote
each snapshot of a dynamic network by A®) ¢ {0, 1}V*N
with N being the number of nodes. The binary symmetric

matrix A®) has entries AE;) = 1 if an edge between nodes @

and j is present at time ¢, and Al(-;) = 0 otherwise. Let HZ(-;-)
be the link probability between nodes ¢ and j. Our model
specifies

(t) (t) ()
A [ 1L ~ Bernoulli(IT;), teT

independently for each ¢ = 2,. ..,

with
— exp (

where 2z, k) € Ry characterizes the membership of node ¢
to group k at time ¢t € 7. In contrast to the latent feature
relational models (Foulds et al., 2011; Heaukulani et al.,
2013; Kim et al., 2013) that assume binary node-group
relationships, our nonnegative memberships capture how

strongly each node associates with multiple groups. The

group interaction weight Al ,2, modulates the probability

that there exists a link between a node affiliated to group
k and a second node affiliated to group &’ at time ¢. Our
framework exploits the dynamics of the underlying relations
between nodes on two levels: (1) The latent groups can be
active and inactive; and (2) the memberships of each node
to groups evolve over time. We now proceed to describe
each component of our framework in the following sections.

Nandj=1,...,1—1,

[ E[AY| H(t)]

DI

)@ _(#)
K Ak % ]k’>
k=1k'=1

3.1. Model of Active Groups

Many previous works (Kim et al., 2013; Xu, 2015) have
shown that explicitly modelling the dynamics of latent
groups using a distance-dependent Indian buffet process
(dd-IBP) (Gershman et al., 2015) or a linear dynamical sys-
tem discovers interpretable latent structures and achieves
good predictive performance. Here, we build the group in-
teraction weight Agx- on the relational gamma process con-
struction (Zhou, 2015). For implementation convenience,
we use a truncated version of the infinite capacity model by
fixing the maximum number of groups to K. That is, we first
generate a group weight rj, independently for each group k
as r ~ Gamma(vy /K, c), where o denotes the concen-
tration parameter and c denotes the rate parameters. Then,

the inter-group interaction weight A\;x and intra-group in-
teraction weight A\ can be generated as

{Gamma(fr;€7 B), ifk=F
Ak ~

2
otherwise @

Gamma(rgrg, 8),

where £ ~ Gamma(1, 1) and 5 € Rs.

For dynamic relational data, we exploit the thinned CRMs
framework to capture the birth/death dynamics of latent
groups assuming that the status of group k can be either
active or inactive at time t. More specifically, we use a

Bernoulli random variable b,(:) = 1 to indicate the presence

of group k at time ¢, and b,(f) = 0 otherwise. Accordingly,
the interaction weight between group k and &’ is active at
time ¢ only if the two groups are both active at that time, i.e.,
A = b0,

Given the group interaction weight matrix A defined in
Eq. (2), we generate the time-dependent group interaction
weights )\Ef,z, using the thinning function introduced in Sec-

tion 2.2 with the prior specification:

wik ~ NIG(0,1,1), ¢p ~ Cat(s], ...

7¢*D)’
T
P, (t) = U{WOk + Zwlk exp[—or(t — l)z]},

=1

where we fix the centres of the covariate-dependent kernel
functions to the 7" discrete time points of the considered
dynamic network. The probability of activity/inactivity of
group k at time ¢ can be determined by the thinning function.
A smooth thinning function can encourage the snapshots of
a dynamic network at nearby covariate values ¢ to share a
similar set of groups.

3.2. Dynamics of Node-Group Memberships

To capture the temporal dynamics of node-group member-
ships, we represent the individual memberships as indepen-
dently evolving gamma Markov chains. More specifically,

the individual membership zl(,? is assumed to be gamma

distributed with shape parameter 21(271)’ where zi(,ifl) corre-
sponds to the membership of the same node at the previous
time, and rate parameter 7 as
¢ t—1
zi(k) ~ Gamma(sz ), 7),

zz(,i) ~ Gamma(6;x, 7),

teT 3)

where we assume each membership starts off in a dummy
state (B, fori = 1,...,N,and k = 1,..., K). We place
a gamma prior over the dummy node membership 6, i.e.
92;C ~ Gamma(1, 1). Given the group interaction weights

{)\kk,} and node-group memberships {z )} generated by
our model, we generate an edge Al(-j) between two nodes %
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and 7 at time ¢ via the Bernoulli-Poisson link (BPL) function
as

(.. ~ Poisson (Z Z z(t))\(t),z](fc)) 4)

k=1k'=1

t t
A =1m{) > 1), teT
where m;; is a latent Poisson count that measures how often
nodes ¢ and j interact in the latent space representation.

Marginalizing out m( ) from Eq. (4) yields

Z Z zz(,i))\ kaf?,)] .

Az(-;) ~ Bernoulli [1 — exp <
k=1k'=1

The conditional distribution of the latent count mz(»;)

expressed as

can be

( (t) ‘A(t)

ij

K K
D )\ (t) _(t
—)~ Agj)P01sson+ <Z Z ())\(,3, j(k),>
k=1k'=1
where x ~ Poisson (o) is the zero-truncated Poisson dis-
tribution with support only on the positive integers, and
“~ denotes all other variables. We note that if AS) =0,
() _

then m;; = 0 almost surely (a.s.), and if A(t) = 1, then
mz('j> ~ POiSSOH+(ZkK 125 1 z(ltc))‘](:]z/z(k)/) Thus, the

latent count m( ) only needs to be sampled for A ® =1
with a rejection sampler (Zhou, 2015). This property makes
the proposed model appealing for modelling large sparse
dynamic networks because the computational cost of our
model scales linearly with the number of edges.

3.3. Bayesian Nonparametric Interpretation

As K — oo, the group weights and their corre-
sponding dummy node memberships vector constitute
a draw from a gamma process as G = ) .- 70g,,
where 0, = (01,...,0nk) € © is an atom sampled
from a N-dimensional base measure Go(d6y)/Go(©) =
Hij\il Gamma(1,1). Accordingly, the intra- and inter-
group interaction weights and their corresponding pair of
node memberships vector constitute a draw A | G =
> et Dopr—1 Meks (0,0, from a relational gamma pro-
cess (Zhou, 2015). Via the thinned CRMs framework, A |
A=3702 S 0 bg)bg))\kk/a(gk’gk,) can be viewed as a
draw from a covariate-dependent relational gamma process.
For brevity, the definitions of these processes are presented
in the supplementary material.

3.4. The Full Generative Model

The full generative model (truncated) for the observed dy-
namic network data {A®)};c+ along with the latent vari-

ables, parameters, and hyperparameters, is given by

ri ~ Gamma(vy /K, ¢), 0; ~ Gamma(l, 1),
& ~ Gamma(1,1),

(&)

N Gamma(&ry, f), ifk=F
w Gamma(rgrg, 8), otherwise
wlkNNIg 07171 ¢k~cat(¢la"'7¢*D)

work + Zwlk exp[—¢r(t —1) ]})

(1)

(1) 2

2, ~ Gammal(

bé ~ Bernoulh(
Z( ~ Gamma/(f;x, 7),

> -

kk'=1

7 7

t)>\(t

t t
= b ) Ak b( ) om Kk gk'

)\,(ck, 7 ~ Poisson

(t) _ (t)
A = 1(mij >1).

3.5. Inference via Gibbs Sampling

Let A1) denotes the sequence AV, ..., A®) and similarly
for Z(1t) and A" The model parameters that need to be
sampled include: latent node-group memberships {zz(,?},
{0;x}, individual group weights {ry}, scale parameter ¢,
groups interaction weights {\xy }, kernel weights {wiy},
kernel widths {¢4}, thinning variables {b(t)} and latent

counts {m( )} Exploiting the Pdlya-gamma data augmen-
tation technlque (Polson et al., 2013) and the data augmen-
tation and marginalization technique (Zhou et al., 2015), a
simple and efficient Gibbs sampling algorithm is developed
to perform the model inference. The details of our inference
algorithm are presented in the supplementary material.

4. Related Work

Prior works on dynamic networks modelling include the ex-
ponential random graph model (ERGM) (Guo et al., 2007),
matrix and tensor factorization based methods (Dunlavy
etal., 2011) and statistical models (Sarkar et al., 2007; 2014;
Ishiguro et al., 2010; Durante et al., 2014b; Schein et al.,
2016a; Palla et al., 2016). Statistical dynamic network mod-
els received considerable attention because these models
have favourable interpretability by providing uncertainty
estimates for the uncovered latent representations (Hoff
et al., 2001). Dynamic extensions of the mixed membership
stochastic blockmodel (MMSB) (Airoldi et al., 2008) have
been developed (Fu et al., 2009; Xing et al., 2010; Ho et al.,
2011) using linear state space models to capture the evolu-
tion of real-valued node-group memberships. Recently, an
extended Kalman filter (EKF) based algorithm (Xu et al.,
2014) was proposed to infer dynamic stochastic blockmod-
els (SBM) with competitive performance. Dynamic exten-
sions of the latent feature relational model (LFRM) (Miller
et al., 2009) using an infinite factorial hidden Markov pro-

)
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cess to capture the evolution of binary node-group member-
ships include the dynamic relational infinite feature model
(DRIFT) (Foulds et al., 2011), the latent feature propagation
model (LFP) (Heaukulani et al., 2013), and the dynamic
multi-group membership graph model (DMMG) (Kim et al.,
2013).

Our proposed model is a form of Poisson factorization
model (Zhou et al., 2015; Gopalan et al., 2015), and can
be considered as the dynamic extension of the hierarchical
gamma process edge partition model (HGPEPM) (Zhou,
2015). The dependent CRM framework (Foti et al., 2013)
has been exploited for dynamic topic models and dependent
latent feature models previously. To the best of our knowl-
edge, this is the first attempt to model activity and inactivity
of latent groups using a thinned CRMs framework in longi-
tudinal network modelling. Our Markov chain construction,
used to capture the evolution of node-group memberships,
is inspired by the data augmentation technique (Zhou et al.,
2015) that has been exploited for dynamic matrix factor-
ization (Acharya et al., 2015a; Schein et al., 2016b) and
deep gamma belief networks (Zhou et al., 2016). We note
that the dynamic gamma process Poisson factorization (D-
GPPF) (Acharya et al., 2015b) has been proposed using
gamma Markov chains to model the evolution of latent
groups while the D-GPPF assumes node memberships are
static over time. Yang & Koeppl (2018) directly generalized
the relational gamma process model to dynamic networks
using gamma Markov chains to model node-group evolving
behavior. For longitudinal networks, it is more reasonable
to explicitly model the birth and death dynamics of latent
groups by switching off redundant groups to avoid overfit-
ting the data and to strengthen the interpretability of the
latent network structure.

5. Experiments

We demonstrate that the proposed Dependent Relational
Gamma Process Model (DRGPM) infers more interpretable
latent structure compared with the related methods using
a synthetic example. Quantitive evaluations of our model,
compared with state-of-the-art methods as discussed in Sec-
tion 4, are performed in terms of missing link prediction
and future network forecasting on three real-world data
sets. The first baseline is the dynamic relational infinite fea-
ture model (DRIFT) for which we used the code provided
by Foulds et al. (2011)." Additionally, we implemented the
D-GPPF, where we set the hyperparameters and initialized
the model parameters with the values provided in (Acharya
et al., 2015b). The third baseline is the dynamic stochastic
blockmodel (DSBM) based on an extended Kalman filter
(EKF) augmented with a local search, for which we use

"http://jfoulds.informationsystems.umbc.
edu/code/DRIFT.tar.gz.

the released code” with the default settings. We also com-
pare DRGPM with the hierarchical gamma process edge
partition model (HGPEPM) (Zhou, 2015)* and the dynamic
Poisson gamma model (DPGM) (Yang & Koeppl, 2018)
that only models the evolving node memberships. More-
over, we demonstrate that our model can discover highly
interpretable latent structure on a military interstate disputes
dataset. In the experiments, we set the hyperparameters for
our model as 79 = 1,8 = 1,¢ = 1,7 = 1. Unless oth-
erwise stated, we use K = N/2 for initilization, where
N is the number of nodes. A sensitivity analysis revealed
that we obtain similar results when instead setting 79 = 0.1
or 79 = 10. All the experiments were run on a standard
desktop with 2.7 GHz CPU and 24 GB RAM.

5.1. Simulation Study

Following the procedure suggested by Durante et al. (2016),
we generate synthetic data to evaluate our proposed model in
estimating the formation and evolution of the latent network
sturcture. We consider a dynamic network with N = 50
nodes monitored for 7' = 70 equally spaced time snap-
shots. To generate a time-varying network, we first gen-
erate five regimes defining the true edge probabilities, as
shown in Figure 2. We then simulate the network edges
AS) | Hl(;) ~ Bernoulli(HS)) with each of the five regimes
according to Figure 1. To demonstrate that DRGPM can in-
fer interpretable latent structure while avoiding to overfit
the data, we compare DRGPM with D-GPPF and DPGM.
We initialize all methods setting K = 30.

RegIME 5 fveviversrsrrennnds

Regime 4 SRR H HT

Regime 3 Fee-ferererenne b b SOOVOOOO0D -+ : 4

Regime 2

Regime 1 -+ QOO0 ----++-----rer-- e ............ \ ............ AN S Q000D

(I1 (;0 (éO (:IiO 120 ‘iSO HiSO ‘I70
Figure 1. The graph showing which regime — i.e. true edge proba-
bilities — for each snapshot is used to simulate the data.
In Figure 3, we depict the inferred link probabilities by
DRGPM and D-GPPF in columns (b) and (d), respectively.

We also depict the time-evolving node-group connections
by computing the node-group association weights zf,?)\gfk)
for DRGPM, and r,(f) zir. for D-GPPF in columns (c) and (e),
respectively. We note that D-GPPF needs to generate many
redundant groups to capture the time-evolving behavior of
each node because of its unfavourable assumption that node
memberships z;;, are static while group weights r,(f) are
time-dependent. Without this restriction, DRGPM charac-
terizes the evolving node-group associations by explicitly
modelling time-dependent node-group memberships, and
hence generates an appropriate number of groups. In par-
ticular, using the thinned CRM framework, DRGPM can
effectively activate newly-formed groups and switch off

https://tinyurl.com/ydf29he9.
*https://github.com/mingyuanzhou/EPM.
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Figure 3. We select five snapshots of the simulated network as shown in column (a). The link probabilities inferred by DRGPM and
D-GPPF are shown in columns (b) and (d), respectively. The association weights of each node (row variable) to the groups (column

variable), as shown in columns (c) and (e), can be calculated as z

values are displayed on log,, scale.
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Figure 4. The thinning probabilities (mean of b,(:)) of six active
groups inferred by DRGPM.

redundant groups over time, which strengthens the model in-
terpretability for longitudinal network analysis. In Figure 4,
we depict the thinning probabilities (mean of b,(f)) over time
for six inferred active groups by DRGPM. We notice that

(®)
ik

)\,(:,3 for DRGPM and r,(:)zik for D-GPPF, respectively. The pixel

DRGPM infers three groups (4,11, 24) at t = 0, turns off
Group 4 and turns on Groups 3 and 7 at t = 10. Group 28 is
only active from ¢ = 30 to 40. The comparison of DRGPM
to DPGM is presented in the supplementary material.

5.2. Quantitative Results

For the quantitative evaluation, we consider the follow-
ing data sets: (1) Face-to-face dynamic contacts network
(FFDC): This dataset (Mastrandrea et al., 2015) records
timestamped face-to-face contacts among 180 students for
7 school days. We generated a dynamic network consid-
ering each school day as a snapshot, and created an edge
between each pair of students at time ¢ if they have at least
one contact recorded at that given time. (2) DBLP: The
DBLP co-authorship network data (Asur et al., 2009) con-
tains the co-authorship information among 958 authors over
ten years (1997-2006) in 28 conferences which spans three
related research topics-database, data mining, and artificial
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Table 1. Quantitive evalution. We highlight the performance of the best scoring model in bold.

Missing Link Prediction
FFDC DBLP Enron
Model AUROC PR AUROC PR AUROC PR
HGPEPM | 0.917+£0.006 | 0.354£0.018 | 0.979+0.004 | 0.791 +0.014 | 0.972+£0.001 | 0.443 £0.016
DSBM 0.878 £0.011 | 0.251 £0.017 | 0.913 +£0.006 | 0.256 +0.009 | 0.916 +0.007 | 0.225 £ 0.023
D-GPPF 0.908 +0.005 | 0.313+0.019 | 0.914£0.005 | 0.308 £0.018 | 0.977 £0.002 | 0.499 £ 0.022
DRIFT 0.933 £0.006 | 0.416 =0.020 | 0.970+0.019 | 0.491 +0.025 NA NA
DPGM 0.921 £0.004 | 0.359 £0.020 | 0.960 +£0.002 | 0.423 £0.032 | 0.979 £0.002 | 0.565 £ 0.014
DRGPM 0.924 £0.005 | 0.357 £0.018 | 0.963 £0.003 | 0.425+0.023 | 0.983 £0.002 | 0.597 £0.017
Future Network Forecasting
HGPEPM | 0.733£0.025 | 0.164£0.022 | 0.714£0.035 | 0.106 £0.027 | 0.828£0.073 | 0.246 £ 0.140
DSBM 0.825+0.085 | 0.181+0.039 | 0.704 £0.030 | 0.091£0.009 | 0.853+0.059 | 0.325+0.116
D-GPPF 0.842 +£0.028 | 0.203+0.046 | 0.734+0.080 | 0.109 £0.046 | 0.878 £0.057 | 0.360 £ 0.121
DRIFT 0.848 £ 0.056 | 0.224 £0.025 | 0.745+0.060 | 0.121 £ 0.054 NA NA
DPGM 0.846 £0.017 | 0.221 £0.036 | 0.744 £0.053 | 0.123 £0.064 | 0.883 £0.051 | 0.361 £0.131
DRGPM 0.852 +0.033 | 0.226 £0.040 | 0.753 £0.057 | 0.127 £0.053 | 0.886 £ 0.067 | 0.363 £ 0.130

intelligence. We focus on a subset of 324 most connected
authors over all time period. (3) Enron: The Enron data*
contains 517,431 emails among 151 users over 38 months
(from May 1999 to June 2002). We generated a dynamic
network aggregating the data into monthly snapshots, and
created an edge between each pair of users at time ¢ if they
have at least one email recorded at that given time. The
summary statistics are detailed in Table 2.
Table 2. Details of the data sets used in our experiments.

Dataset FFDC | DBLP Enron
# Nodes 180 324 151
# Slices 7 10 38
# Edges | 8,332 11,154 | 11,414

Task 1: Predicting missing links First, we perform miss-
ing link prediction on the real-world data sets, and show the
proposed model’s predictive performance compared to the
baseline models. We randomly hold out 20% of the network
entries (either links or non-links) for each snapshot as test
data, and use the remaining 80% to predict the held-out
entries. DRIFT was infeasible to run on the Enron dataset
in a reasonable amount of time given our computational
resource. For DSBM, we either set K to the true number
of classes provided by the data set or initialize it by exam-
ining the singular values of the first snapshot (Xu et al.,
2014). We apply HGPEPM to each snapshot of dynamic
networks independently. For all probabilistic methods, we
use 2000 burn-in iterations, and collect 1000 samples from
the model posterior distribution. We estimate the posterior
mean of the edge probability for each held-out edge in the
test data by averaging over the collected Gibbs samples. We
then use these edge probabilities to evaluate the predictive
performance of each model by calculating the area under
the curve of the receiver operating characteristic (AUROC)
and of the precision-recall (PR). In Table 1, we report the
average evaluation metrics for each model over 10 runs.
Overall, we found that DRIFT performs slightly better than

‘nttps://www.cs.cmu.edu/-enron/.

DRGPM, although DRGPM has a significant advantage in
terms of computational cost due to the Bernoulli-Poisson
link (see Section 5.3). HGPEPM performs better than the dy-
namic models on the DBLP dataset because co-authorship
links change dramatically from one year to the next one,
and hence, the static model is better at fitting each snapshot
independently. For the longitudinal Enron email network
that is recorded monthly, DRGPM performs better than the
baseline methods.

Task 2: Forecasting future networks Next, we consider
the task of forecasting an unseen network snapshot A(*)
given observed snapshots A(1*=1) Following previous
works (Foulds et al., 2011; Heaukulani et al., 2013; Kim
etal., 2013), we train the models on the first (¢—1) snapshots
of the considered network, and then estimate the predictive
distribution of the unseen snapshot A*) by running MCMC
sampling one time step into the future. We apply HGPEPM
to the most recent snapshot A~1) and then to perform pre-
diction on the unseen snapshot A® | For DRGPM, we set
A® = A=) assuming the snapshots at nearby time points
share a similar set of groups. We generated 10 samples of
Z® for each of the 1000 samples collected for Z“~". For
DSBM, we use the method detailed in (Xu et al., 2014) to
perform future network forecasting. Table 1 shows the av-
eraged performance for each model over different network
snapshots from 3 to 7. Overall, DRGPM shows competi-
tive performance on all three datasets. This confirms that
DRGPM can flexibly characterize temporally local links via
time-evolving node memberships and switch off redundant
groups to avoid overfitting the data.

5.3. Running Time

The probilistic models achieve higher accuracy although
these methods require more computation time to collect
MCMC samples. DSBM is much faster than the proba-
bilistc models because its inference is performed using the
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Figure 5. The activity (mean of bg)) of the four selected groups inferred from the MID network.

extended Kalman filter. Table 3 compares the per-iteration
computation time of the sampling-based models (all mod-
els are implemented in Matlab). The computational cost of
DRIFT scales in O(K2N?2T'), where K is the expected num-
ber of groups. The Bernoulli-Poisson link based models (D-
GPPF, DPGM, DRGPM) are much faster than the logistic
link based method (DRIFT) because the former models scale
linearly with the number of non-zero entries in network data.
For DRGPM, sampling {mx) }ij+ and {mz(,?k,j}i’jyk,k/’t
takes O(N°¢K?) with N° being the number of non-zero en-
tries. Sampling {21’} ., takes O(NKT) and sampling
{ /\,(:,2, Yt takes O(K2T). Overall, the computational
complexity of DRGPM is O(N°K? + NKT + K2T).
The computational complexity of D-GPPF and DPGM is
O(N°K + NK + KT) and O(N¢K? + NKT + K?), re-
spectively. DRGPM is slightly faster than DPGM because
DRGPM can effectively turn off redundant groups and hence
achieves a lower computational cost.

Table 3. Comparison of computation time (seconds per iteration).

FFDC DBLP Enron
DRIFT 164.342 | 382.119 -
D-GPPF 0.145 0.242 0.292
DPGM 0.748 1.676 1.705
DRGPM 0.623 1.217 1.234

5.4. Case Study: Military Interstate Disputes Dataset

We investigate the military interstate disputes (MID) dataset
that contains disputes events between 138 countries from
1992 to 2001 (Ghosn et al., 2004) to explore the latent struc-
ture discovered by DRGPM. A dynamic network was gener-
ated by aggregating the data into monthly snapshots and a
link was created between each pair of two countries if either
country has disputes with the other one at that given time.
We applied DRGPM to this dynamic network initializing
K = 30 groups. Most of the identified groups correspond to
some regional relations or conflicts. In Figure 5, we depict
four interesting groups inferred by DRGPM and show the
group activity by plotting the mean of the thinning function
bff). We normalized the node memberships to [0, 1] by divid-
ing them by the sum of memberships within the same group.
In Table 4, we report the top 20 nodes associated to each

of four groups with positive memberships. For instance, we
found that Group 1 corresponds to the second Congo war
(1998-2000). The first six nodes of the group are indeed the
belligerents of this war. Group 2 corresponds to the Bosnian
War (1992-1995), and its associated nodes are Yugoslavia
and some NATO members that are indeed the belligerents of
this war. Groups 3 and 4 are related to the regional disputes
between some African countries. Additional graphs of the
inferred groups, and tables showing the associated nodes
are presented in the supplementary material.

Table 4. The top 20 nodes associated with each of the four selected
groups as shown in Fig. 5 from the MID network. The highest node
memberships to the corresponding selected groups throughout the
whole period are reported for each node in parentheses.
Group | Country

1 Namibia (0.22), Chad (0.21), Zimbabwe (0.21),
Angola (0.20), Dem. Rep. Congo (0.10),
Sudan (0.05), Zambia (0.01)
2 Yugoslavia (0.60), Greece (0.13), Italy (0.04),
UK (0.04), France (0.04), Belgium (0.03),
Albania (0.03), Turkey (0.03), USA (0.02),
Spain (0.02), Netherlands (0.01), Germany (0.01)
Nigeria (0.45), Ghana (0.31), Guinea (0.24)
Liberia (0.98), Sierra Leone (0.02)

RN

6. Conclusion

We proposed a probabilistic framework for longitudinal net-
work modelling based on the covariate-dependent relational
gamma process. Our framework can characterize the group
birth/death dynamics using the thinned CRM, which en-
ables us to investigate the evolution of the inferred latent
structure. The inferred latent dynamic structure can be use-
ful for various qualitative analyses in practical applications.
We experimentally demonstrated the competitive predic-
tive performance and scalability of our framework on three
real-world datasets. Our generative model can be easily ex-
tended in many interesting ways. For instance, it can be
extended to dynamic multilayer networks (Durante et al.,
2017) with relational data arising from multiple-related con-
texts via multi-level hierarchical gamma processes (Zhou
et al., 2015). Additionally, network side information can be
flexibly leveraged via a regression model (Rai et al., 2015).
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