
Appendix to
Goodness-of-Fit Testing for Discrete Distributions via Stein Discrepancy

Proof of Theorem 1. Clearly, p = q implies that sp(x) = sq(x) for all x ∈ X d. It remains to be shown that the converse is
true. By Eq. (1), sp(x) = sq(x) for all x ∈ X d implies that p(¬ix)/p(x) = q(¬ix)/q(x) for all x ∈ X d and all i = 1, . . . , d. We
show that the latter implies that all the singleton conditional distributions of p and q must match, i.e., p(xi|x−i) = q(xi|x−i)
for all xi ∈ X and for all i = 1, . . . , d, where x−i := (x1, . . . , xi−1, xi+1, . . . , xd).

Specifically, using the fact that ¬ is a cyclic permutation on X , we can write
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where we adopted the convention that ¬(0)x = x and written yij := ¬
(j)
i x in the last term. By Eq. (1), all the terms on the

right-hand-side of Eq. (17) will be determined by the score function sp(x), and thus sp(x) = sq(x) for all x ∈ X d implies
that all the singleton conditional distributions must match: p(xi|x−i) = q(xi|x−i), ∀x ∈ X d. By Brook’s lemma (Brook,
1964; see Lemma 9 for a self-contained proof), the joint probability distribution is fully specified by the collection of
singleton conditional distributions, and thus we must have p(x) = q(x) for all x ∈ X d.

Lemma 9 (Brook, 1964). Assume that p(x) > 0 for all x ∈ X d. The joint distribution p(x) is completely determined by
the collection of singleton conditional distributions p(xi|x−i), where x−i := (x1, . . . , xi−1, xi+1, . . . , xd), i = 1, . . . , d.

Proof. Let p(x1, . . . , xd) and p(y1, . . . , yd) denote the joint densities (pmfs or pdfs) for (x1, . . . , xd) and (y1, . . . , yd),
respectively. We can write
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p(x1|x2, . . . , xd)

p(y1|x2, . . . , xd)
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Thus, the collection of all singleton conditional distributions completely determine the ratios of joint probability densities,
which in turn completely determine the joint densities themselves, since they have to sum to one.

The following result provides more convenient expressions for evaluating Ex∼p [Apf(x)] and Ex∼p [tr (Apf(x))].

Lemma 10 (See also Ley & Swan (2013)). For positive pmfs p, q and any function f : X d → Rd, we have

Ex∼q [Apf(x)] = Ex∼q
[
(sp(x)− sq(x)) f(x)T

]
,

Ex∼q [tr (Apf(x))] = Ex∼q
[
(sp(x)− sq(x))Tf(x)

]
.

Proof. Theorem 2 states that Ex∼q [Aqf(x)] = 0. Thus, writing Ex∼q [Apf(x)] = Ex∼q [Apf(x)−Aqf(x)] =
Ex∼q[(sp(x)− sq(x)) f(x)T] and taking the trace on both sides completes the proof.
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Proof of Theorem 3 (Continued). Necessity: Assume that a linear operator T satisfies Eq. (7); we show that it can be
written in the form of Eq. (8) for some linear operators L and L∗ of the forms (5) and (6). Recall that for a finite set X , any
function f : X d → R can be represented by a vector f ∈ R|X |d , and any linear operator T on the set of functions f can be
represented via a matrix T ∈ R|X |d×|X|d under the standard basis of R|X |d . Under these notations, T f can be represented
by Tf , and Eq. (7) can be rewritten in matrix form as

Ex∼p [Tpf(x)] =
∑

x∈Xd

p(x)Tpf(x) = pT(Tpf) = 0 ,

which holds for any function f (i.e., for any vector f ) if and only if pTTp = 0. We can always find a diagonal matrix D
and a matrix L such that Tp = D− L. Observe that pTTp = 0, i.e., pTD = pTL if and only if dii = pTL∗i/pi for all i,
where dii is the i-th diagonal element of D and L∗i is the i-th column of L. Thus, Eq. (7) holds if and only if

Tp = diag {p}−1
diag

{
LTp

}
− L

for some matrix L, where diag {p} denotes the diagonal matrix whose i-th diagonal entry equals pi. Rewriting, we have

diag {p}Tp = diag
{
LTp

}
− diag {p}L .

Right-multiplying both sides by an arbitrary vector f ∈ R|X |d , we obtain

p� (Tpf) = (LTp)� f − p� (LTf) , (18)

where � denotes the Hadamard product. Let L and L∗ be the linear operators with matrices LT and L under the standard
basis, Eq. (18) can be re-written as

p(x)Tpf(x) = Lp(x)f(x)− p(x)L∗f(x)

for all x ∈ X d. Finally, dividing by p(x) on both sides yields Eq. (8).

Proof of Theorem 6. Observe that

Ex∼q [tr (Apf(x))] =

d∑
`=1

Ex∼q
[
s`p(x) f`(x)−∆∗x`

f`(x)
]

=

d∑
`=1

Ex∼q
[
s`p(x) 〈f`, k(·,x)〉H −

〈
f`,∆

∗
x`
k(·,x)

〉
H

]
=

d∑
`=1

〈
f`,Ex∼q

[
s`p(x) k(·,x)−∆∗x`

k(·,x)
]〉
H ,

where we used the reproducing property 〈f`, k(·,x)〉H = f`(x) and the fact that

∆∗xj
fi(x) = fi(x)− fi(⨼jx) = 〈fi, k(·,x)〉 − 〈fi, k(·,⨼jx)〉 = 〈fi, k(·,x)− k(·,⨼jx)〉 =

〈
fj ,∆

∗
xj
k(·,x)

〉
.

Denoting β(·) := Ex∼q [sp(x)k(·,x)−∆∗k(·,x)] ∈ Hm, we have

Ex∼q [tr (Apf(x))] =

d∑
`=1

〈f`, β`〉H = 〈f ,β〉Hm .

Thus, we can rewrite the kernelized discrete Stein discrepancy as

D(q ‖ p) = sup
f∈Hm, ‖f‖Hm≤1

〈f ,β〉Hm ,

which immediately implies that D(q ‖ p) = ‖β‖Hm since the supremum will be attained by f = β/‖β‖Hm .
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By Lemma 10, we have

β(·) = Ex∼q [sp(x)k(·,x)−∆∗k(·,x)] = Ex∼q [(sp(x)− sq(x))k(·,x)] .

Writing δp,q(x) := sp(x)− sq(x), we have

D(q ‖ p)2 = ‖β‖2Hm =

d∑
`=1

〈β`, β`〉H =

d∑
`=1

〈
Ex∼q

[
δ`p,q(x) k(·,x)

]
,Ex′∼q

[
δ`p,q(x

′) k(·,x′)
]〉
H

=

d∑
`=1

Ex,x′∼q
[
δ`p,q(x) 〈k(·,x), k(·,x′)〉H δ

`
p,q(x

′)
]

= Ex,x′∼q
[
δp,q(x)T 〈k(·,x), k(·,x′)〉H δp,q(x

′)
]

= Ex,x′∼q
[
δp,q(x)Tk(x,x′) δp,q(x

′)
]
,

where we used the reproducing property, k(x,x′) = 〈k(·,x), k(·,x′)〉H. This concludes the proof.

Proof of Theorem 7. Expanding the expression for δp,q(x) and applying Lemma 10 twice, we obtain

D(q ‖ p)2 = Ex,x′∼q
[
δp,q(x)Tk(x,x′)δp,q(x

′)
]

= Ex∼q
[
δp,q(x)TEx′∼q [k(x,x′)δp,q(x

′)]
]

= Ex∼q
[
δp,q(x)TEx′∼q [k(x,x′)sp(x

′)−∆∗x′k(x,x′)]
]

= Ex,x′∼q
[
sp(x)Tk(x,x′) sp(x

′)− sp(x)T∆∗x′k(x,x′)−∆∗xk(x,x′)Tsp(x
′) + tr

(
∆∗x,x′k(x,x′)

)]
= Ex,x′∼q [κp(x,x

′)] ,

which completes the proof.

Theorem 11 (Adapted from Liu et al., 2016). Let k(x, x′) be a strictly positive definite kernel on X d, and assume that
Ex,x′∼q

[
κp(x,x

′)2
]
<∞. We have the following two cases:

(i) If q 6= p, then Ŝ(q ‖ p) is asymptotically Normal:
√
n
(
Ŝ(q ‖ p)− S(q ‖ p)

)
D→ N (0, σ2),

where σ2 = Varx∼q(Ex′∼q [κp(x,x
′)]) > 0.

(ii) If q = p, then σ2 = 0, and the U -statistic is degenerate:

n Ŝ(q ‖ p) D→
∑
j

cj(Z
2
j − 1),

where {Zj}
iid∼ N (0, 1) and {cj} are the eigenvalues of the kernel κp(·, ·) under q.

Lemma 12. The exponentiated Hamming kernel

k(x,x′) = exp{−H(x,x′)},

where H(x,x′) := 1
d

∑d
i=1 I{xi 6= x′i} is the normalized Hamming distance, is positive definite.

Proof. Without loss of generality, assume that X = {0, 1} is a binary set; the general case can be easily accommodated by
modifying the feature map to be described next. Define the feature map φ : X d → X 2d, x 7→ x̃, where x̃2i−1 = I{xi = 0}
and x̃2i = I{xi = 1} for i = 1, . . . , d. Then, the normalized Hamming distance can be expressed as

H(x,x′) = 1− 1

d

d∑
i=1

I{xi = x′i} = 1− 1

2d

2d∑
j=1

x̃j x̃
′
j = 1− 1

2d
x̃Tx̃′ = 1− 1

2d
φ(x)Tφ(x′).

Thus, 1−H(x,x′) is a positive definite kernel. By Taylor expansion, exp{1−H(x,x′)} (and hence exp{−H(x,x′)})
also constitutes a positive definite kernel on X d.


