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Abstract
End-to-end models for goal-orientated dialogue
are challenging to train, because linguistic and
strategic aspects are entangled in latent state vec-
tors. We introduce an approach to learning rep-
resentations of messages in dialogues by max-
imizing the likelihood of subsequent sentences
and actions, which decouples the semantics of
the dialogue utterance from its linguistic realiza-
tion. We then use these latent sentence repre-
sentations for hierarchical language generation,
planning and reinforcement learning. Experi-
ments show that our approach increases the end-
task reward achieved by the model, improves the
effectiveness of long-term planning using roll-
outs, and allows self-play reinforcement learning
to improve decision making without diverging
from human language. Our hierarchical latent-
variable model outperforms previous work both
linguistically and strategically.

1. Introduction
Word-by-word approaches to text generation have been
successful in many tasks. However, they have limitations
in under-constrained generation settings, such as dialogue
response or summarization, where models have significant
freedom in the semantics of the text to generate. In such
cases, models are prone to overly generic responses that
may be valid but suboptimal (Li et al., 2015; 2016; Das
et al., 2017). Further, such models are uninterpretable and
somewhat intellectually dissatisfying because they do not
cleanly distinguish between the semantics of language and
its surface realization. Entangling form and meaning is
problematic for reinforcement learning, where backprop-
agating caused by semantic decisions can adversely affect
the linguistic quality of text (Lewis et al., 2017), and for
candidate generation for longterm planning, as linguisti-
cally diverse text may lack semantic diversity.
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We focus on negotiation dialogues, where the text gener-
ated by the model has consequences than can be easily
measured. Substitutions of similar words (for example sub-
stituting a ”one” for a ”two”) can have a large impact on
the end-task reward achieved by a dialogue agent. We use
a hierarchical generation approach for a strategic dialogue
agent, where the agent first samples a short-term plan in
the form of a latent sentence representation. The agent
then conditions on this plan during generation, allowing
precise and consistent generation of text to achieve a short-
term goal. Doing so, we aim to disentangle the concepts of
”what to say” and ”how to say it”. To do this, we intro-
duce a method for learning discrete latent representations
of sentences based on their effect on the continuation of
the dialogue.

Recent work has explored hierarchical generation of dia-
logue responses, where a latent variable zt is inferred to
maximize the likelihood of a message xt, given previous
messages x0:t−1 ≡ (x0, . . . , xt−1) (Serban et al., 2016a;c;
Wen et al., 2017; Cao & Clark, 2017), which has the effect
of clustering similar message strings. Our approach dif-
fers in that the latent variable zt is optimized to maximize
the likelihood of messages and actions of the continuation
of the dialogue, but not the message xt itself. Hence, zt
learns to represent xt’s effect on the dialogue, but not the
words of xt.The distinction is important because messages
with similar words can have very different semantics; and
conversely the same meaning can be conveyed with differ-
ent sentences. We show empirically and through human
evaluation that our method leads both to better perplexities
and end task rewards, and qualitatively that our representa-
tions group sentences that are more semantically coherent
but linguistically diverse.

We use our message representations to improve the strate-
gic decision making of our dialogue agent. We improve the
model’s ability to plan ahead by creating a set of seman-
tically diverse candidate messages by sampling distinct zt,
and then use rollouts to identify the an expected reward for
each. We also apply reinforcement learning based on the
end-task reward. Previous work has found that RL can ad-
versely effect the fluency of the language generated by the
model We instead show that simply fine-tuning the param-
eters for choosing zt allows the model to substantially im-
prove its rewards while maintaining human-like language.
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Experiments show that our approach to disentangling the
form and meaning of sentences leads to agents that use lan-
guage more fluently and intelligently to achieve their goals.

2. Background
2.1. Natural Language Negotiations

We focus on the negotiation task introduced by Lewis et al.
(2017), as it possess both linguistic and reasoning chal-
lenges. Lewis et al. collected a corpus of human dialogues
on a multi-issue bargaining task, where the agents must di-
vide a collection of items of 3 different types (books, hats
and balls) between them. Actions correspond to choosing
a particular subset of the items, and agents choose compat-
ible actions if each item is assigned to exactly one agent.

More formally, the agents X and Y are initially given a
space A of possible agreements, and value functions vX

and vY , which specify a non-negative reward for each
agreement a ∈ A. Agents cannot directly observe each
other’s value functions and can only infer it through a di-
alogue. The agents sequentially exchange turns of nat-
ural language xt, consisting of nt + 1 words x0:nt

t ≡
(x0t , . . . , x

nt
t ), until one agent enters a special turn that ends

the dialogue. Then, both agents independently enter agree-
ments aX , aY ∈ A respectively. If the agreements are
compatible, both agents receive a reward based on their ac-
tion and the value function. If the actions are incompatible,
neither agent receives any reward. Training dialogues from
an agent’s perspective consist of agreement space A, value
function v, messages x0:T and agreement a.

2.2. Challenges in Text Generation

We identify a number of challenges for end-to-end text gen-
eration for strategic dialogue. These problems have been
identified in other text generation settings, but strategic di-
alogue makes an interesting test case, where decisions have
measurable consequences.

• Lack of semantic diversity: Multiple samples from a
model are often paraphrases of the same intent. This
lack of a diversity is a problem if samples are later
re-ranked by a long-term planning model.

• Lack of linguistic diversity: Neural language models
often capture the head of the distribution, providing
less varied language than people (Li et al., 2015).

• Lack of internal coherence: Messages generated by
the model often lack self consistency—for example,
I’ll take one hat, and give you all the hats.

• Lack of contextual coherence: Utterances may also
lack coherence given the dialogue context so far. For
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Figure 1: Action classifier πa(a|A, x0:T ), which predicts
distribution over actions using a GRU with attention.

example, Lewis et al. (2017) identify cases where a
model starts a message by indicating agreement, but
then proposes a counter offer.

• Entanglement of linguistic and strategic parame-
ters: End-to-end approaches do not cleanly distin-
guish between what to say and how to say it. This is
problematic as reinforcement learning aiming to im-
prove decision making may adversely affect the qual-
ity of the generated language.

We argue that these limitations partly stem from the word-
by-word sampling approach to generation, with no explicit
plan in advance of generation for what the meaning of the
sentence is to be. In §9, we show our hierarchical approach
to generation helps with these problems.

3. Action Classifier
Initially, we train an action classifier πa(a|A, x0:T ) (Fig-
ure 1) that predicts the final action chosen at the end of
the dialogue. This classifier is used in all versions of our
model. We implement the action classifier as an RNN with
attention (Bahdanau et al., 2014). We first encode the set
of possible actions A as q = MLPA7→s(A), and each sen-
tence xt as et = GRUx 7→e(Ex

0:nt
t ). We then acquire a

fixed size representation h by applying the following trans-
formations: at = et ∗ q, ht = et � at, h =

∑T
t=0 ht.

Finally, we apply a softmax classifier:

πa(a|A, x0:T ) ∝ exp(MLPh7→a(h))

We train this network to minimize the negative log likeli-
hood of an action a given a set of possible actions A and a
dialogue x0:T :

L = −
∑

a,A,x0:T

log πa(a|A, x0:T )
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Figure 2: Baseline hierarchical model.

4. Baseline Hierarchical Model
As a baseline, we train a hierarchical encoder-decoder
model (Figure 2) to maximize the likelihood of training di-
alogue sentences, similarly to Serban et al. (2016b). The
model contains the action-value encoder to input the action
spaceA and the value function v as q = MLPAv 7→q(A, v);
a sentence encoder that embeds individual messages xt as
et = GRUx 7→e(Ex

0:nt
t ); a sentence level encoder that

reads sentence embeddings e0:t and the action space en-
coding q to produce dialogue state st = GRUeq 7→s(e0:t, q);
and a decoder GRUs7→x that produces message xt+1, con-
ditioning on st:

px(x
i
t+1|A, v, x0:i−1t+1 , x0:t) ∝ exp(E>GRUs7→x(x

0:i−1
t+1 ; st))

px(xt+1|A, v, x0:t) =
nt+1∏
i=0

px(x
i
t+1|A, v, x0:i−1t+1 , x0:t)

The encoder and decoder share a word embedding matrix
E. We minimize the following loss, over the training set:

L = −
∑

A,v,x0:T

T∑
t=0

log px(xt|A, v, x0:t−1)

5. Learning Latent Message Representations
The central part of our model is a method for encoding mes-
sages xt as discrete latent variables zt. The goal of this
model is to learn message representations that reflect the
message’s effect on the dialogue, but abstract over seman-
tically equivalent paraphrases. The discrete nature of the
latent variables zt allows us to efficiently make sequential
decisions by choosing zt at each step to govern the outcome
of the dialogue. We show that such approach is helpful for
planning and reinforcement learning.

Our representation learning model (Figure 3a) has a similar
structure to that of §4, except that message embedding et
is used as input to a stochastic node pz(zt|A, xt) formed

by a softmax with parameters Weq 7→z over latent states zt.
We use expectation maximization to learn how to assign
messages to clusters to maximize the likelihood of future
messages and actions.

After each message xt, GRUz 7→s is updated with repre-
sentation zt to give hidden state st. From st, we train the
model to predict the next message xt+1 and an action at.
In the training dialogues, there is only an action after the
final turn xT ; for other turns xt, we use a soft proxy ac-
tion by regressing to the distribution over actions predicted
by at = πa(a|A, x0:t). Therefore, at is a distribution over
what deal would be agreed if the dialogue stopped after
message xt. This action can be thought of as latent proxy
for a traditional annotated dialogue state (Williams et al.,
2013). When predicting xt+1 and at, the model only has
access to latent variables z0:t, so zt must contain useful in-
formation about the meaning of xt. We employ a hierarchi-
cal RNN, in which message et = GRUx7→e(Ex

0:nt
t ) and

the action space q = MLPA7→q(A) encodings are passed
through a discrete bottleneck:

pz(zt|A, xt) ∝ exp(Weq 7→z[et, q])

st = GRUz 7→s(z0:t)

px(x
i
t+1|A, x0:i−1t+1 , z0:t) ∝ exp(E>GRUs 7→x(x

0:i−1
t+1 ; st))

px(xt+1|A, z0:t) =
nt+1∏
i=0

px(x
i
t+1|A, x0:i−1t+1 , z0:t)

pa(at|A, z0:t) ∝ exp(MLPs7→a(st))

We minimize the following loss over the training set:

L =
∑
A,x0:T

T∑
t=0

− log px(xt+1|A, z0:t)

+DKL (pa(at|A, z0:t)||πa(a|A, x0:t))

We optimize latent variables z using minibatch Viterbi Ex-
pectation Maximization (Dempster et al., 1977). For each
minibatch, for each timestep t, we compute:

z∗t = argmax
z

log(p(xt+1, at|A, z, z0:t−1)pz(z|A, xt))

The argmax requires a separate forward pass for each z.
We then advance to the next timestep using z∗t to update
GRUz 7→s, and finally perform an update maximizing:

T∑
t=0

log(p(xt+1, at|A, z∗t , z0:t−1)pz(z∗t |A, xt))

At convergence, we extract message representations z∗t .

6. Hierarchical Text Generation
We then train a new hierarchical dialogue model (Figure
3b), which uses pre-trained representations z∗t to predict
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Figure 3: We pre-train a model to learn a discrete encoder for sentences, which bottlenecks the message xt through discrete
representation zt (Figure 3a; §5). This architecture forces zt to capture the most relevant aspects of xt for predicting future
messages and actions. We then extract the learned discrete representations zt (marked by orange ellipses) and train our
full model (Figure 3b): px is trained to translate representations z∗t into messages xt (§6.1), and p̂z is trained to predict a
distribution over zt given the dialogue history (§6.2).

messages xt. First, we train a recurrent neural network to
predict px(xt+1|z∗t+1, x0:t). px learns how to translate the
latent variables into fluent text in context. Then, we opti-
mize a model p̂z(zt+1|A, v, x0:t) to maximize the marginal
likelihood of training sentences.

6.1. Conditional Language Model

We train px to translate pretrained representation z∗t and
encodings of previous messages ht = GRUx 7→h(Ex0:t)
into a message xt:

px(x
i
t+1|z∗t+1, x0:t, x

0:i−1
t+1 )

∝ exp(E>GRUhz 7→x(x
0:i−1
t+1 ; z∗t+1, ht))

px(xt+1|z∗t+1, x0:t) =

nt+1∏
i=0

px(x
i
t+1|z∗t+1, x0:t, x

0:i−1
t+1 )

By minimizing the following loss:

Lx = −
∑
x0:T

T∑
t=0

log px(xt+1|z∗t+1, x0:t)

Unlike the baseline model, text generation does not condi-
tion explicitly on the agent’s value function v, or the action
space A – all knowledge of the goals and available actions
is bottlenecked through the dialogue state. This restriction
forces the text generation to depend strongly on zt.

6.2. Latent Variable Prediction Model

At test time, z∗t is not available, as it contains information
about the future dialogue. Instead, we train a model p̂z
to predict z∗t conditioned on the current dialogue context
st = GRUe 7→s(e0:t, q), where t = GRUx 7→e(Ex

0:nt
t ) and

q = MLPAv 7→q(A, v):

p̂z(zt+1|A, v, x0:t) ∝ exp(Ws7→zst)

We optimize p̂z to maximize the marginal likelihood of
training messages, without updating px. The model learns
to reconstruct the distribution over zt that best explains
message xt.

P (xt|A, v, x0:t−1) =
∑
z

px(xt|z, x0:t−1)p̂z(z|A, v, x0:t−1)

Lz = −
∑

A,v,x0:T

T∑
t=0

logP (xt|A, v, x0:t−1)

6.3. Decoding

To generate an utterance xt, the model first samples a pre-
dicted plan zt from p̂z:

zt ∼ p̂z(z|A, v, x0:t−1)

The model then sequentially generates tokens xit based on
plan zt and context x0:t:

xi+1
t ∼ px(x|zt, x0:t−1, x0:it )
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7. Hierarchial Reinforcement Learning
Lewis et al. (2017) experiment with end-to-end reinforce-
ment learning to fine-tune pre-trained supervised models.
The model engages in a dialogue with another model,
achieving reward V . This reward is then backpropagated
using policy gradients. One challenge is that because
model parameters govern both strategic and linguistic as-
pects of generation, backpropagating errors can adversely
affect the quality of the generated language. To avoid di-
vergence from human language, we experiment with fixing
all model parameters, except for the parameters of p̂z . This
allows reinforcement learning to improve decisions about
what to say, without affecting language generation param-
eters. A similar approach was taken in a different dialogue
setting by Wen et al. (2017).

8. Hierarchical Planning
Lewis et al. (2017) propose planning in dialogue us-
ing rollouts. First, a set of K unique candi-
date messages {x(1)t , x

(2)
t , . . . , x

(K)
t } are sampled from

px(xt|A, v, x0:t−1). Then, multiple rollouts of the future
dialogue are sampled from the model, and outcomes a are
scored according to the value function v, to estimate the
expected reward V (xt):

V (xt) = Ext+1:T∼px,a∼πa [r(a, v)πa(a|A, x0:T )] (1)

The expectation is approximated with N samples, and the
candidate x∗ with the highest expected score is returned.

x∗ = argmax
x

V (x) (2)

One challenge is that even though the candidates
{x(1)t , x

(2)
t , . . . , x

(K)
t } can be constrained to be different

strings, it is difficult to enforce semantic diversity. For ex-
ample, if all the candidates are paraphrases of the same in-
tent, then the choice makes little difference to the outcome
of the dialogue. In order to improve the diversity of can-
didate generation, we take a hierarchical approach of first
sampling K unique latent intents {z(1)t , z

(2)
t , . . . , z

(K)
t }

from p̂z(zt|A, v, x0:t−1). Then, for each z(i)t , we choose
a candidate turn conditioned on that state:

x
(i)
t = argmax

x
px(x|z(i)t , x0:t−1)

We then estimate the reward of the candidate message using
Equation 1, and finally choose a message as in Equation 2.

9. Experiments
9.1. Training Details

We used the following hyper-parameters:: embeddings and
hidden states have 256 dimensions; for each unique agree-

ment spaceAwe learn 50 discrete latent message represen-
tations. During training, we optimize the parameters using
RMSProp (Tieleman & Hinton, 2012) with initial learning
rate 0.0005 and momentum µ = 0.1, clipping of gradi-
ents whose L2 norm exceeds 1. We train the models for 15
epochs with mini-batch size of 16. We then pick the best
snapshot according to validation perplexity and anneal the
learning rate by a factor of 5 each epoch. For RL, we use
a smaller learning rate of 0.0001, and a discount factor γ
of 0.95. For supervised learning we tuned based on valida-
tion perplexity; for RL we measured the average reward in
self-play.

9.2. Baselines

We compare the following models:

• RNN A simple word-by-word approach to generation,
similar to Lewis et al. (2017).

• HIERARCHICAL Baseline model in which the two lev-
els of RNN are connected directly, with no discrete
bottleneck (§4), similarly to Serban et al. (2016b).

• BASELINE CLUSTERS Our model (Figure 3b) with-
out pretraining the sentence encoder. A latent rep-
resentation zt of message xt is inferred to maximize
the likelihood of p(xt+1, at|A, zt, z0:t−1)p(zt|A, xt).
This model is closely related to the LATENT INTENTS
DIALOGUE MODEL (Wen et al., 2017).

• FULL Our full model, where we first pre-train sen-
tence representations z∗t to maximize the likeli-
hood p(xt+1, at|A, z∗t , z0:t−1)pz(z∗t |A, xt), and then
we train models to predict px(xt|z∗t , x0:t−1) and
p̂z(zt|A, v, x0:t−1).

To focus the evaluation on the linguistic and strategic as-
pects of the dialogue, all systems use the same model for
predicting the final agreement represented by the dialogue,
which is implemented as a bidirectional GRU with atten-
tion over the words of the dialogue.

9.3. Likelihood Models

First, we experiment with models using no RL or rollouts.

9.3.1. PERPLEXITY

Models were developed to maximize the likelihood of hu-
man dialogues, which is an indicator of how human-like
the language is (we observed qualitatively that the two were
strongly correlated). Results are shown in Table 1.

The use of a hierarchical RNN model improves perfor-
mance over a strong baseline from previous work.
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Model
Validation
Perplexity

Test
Perplexity

RNN 5.62 5.47
HIERARCHICAL 5.37 5.21
BASELINE CLUSTERS 5.61 5.46
FULL 5.37 5.24

Table 1: Likelihood of human dialogues using different
models. Our model with discrete message representations
is able to achieve state-of-the-art performance, showing
that the representations capture relevant aspects of mes-
sages for predicting the future dialogue. The size of 95%
CI is within 0.03 for each entry.

Model
Score vs.
RNN

Score vs.
HIERARCHICAL

RNN 5.33 5.17
HIERARCHICAL 5.37 5.08
BASELINE CLUSTERS 4.68 4.66
FULL 6.75 6.57

Table 2: Comparison of different models based on their
end-task reward. Our clusters substantially improve re-
ward, indicating that they make it easier for supervised
learning to model strategic decision making. The size of
95% CI is within 0.14 for each entry.

Perhaps surprisingly, our hierarchical latent-variable model
is also able to achieve state-of-the-art performance. This
shows our model’s discrete encodings of messages are as
informative for predicting the future dialogue as the more-
expressive embeddings used by the hierarchical baseline.

9.3.2. COHERENCE OF CLUSTERS

Table 4 shows random samples of messages generated by
different clusters from our predicted state model, and the
BASELINE CLUSTERS model.

Qualitatively, the states from our model show a higher de-
gree of semantic coherence, and higher linguistic variabil-
ity. Compared to the BASELINE CLUSTERS , our approach
tends to generate more dissimilar surface strings, but with
more similar semantics. Our clusters appear to capture
meaning rather than form.

9.3.3. END TASK PERFORMANCE

We measure the performance of the different models on
their end-task reward over 1000 negotiations in self-play.
Results are shown in Table 2. We find that the use of our
latent representations leads to a large improvement in the
reward, indicating that our representations make it easier

Rollout Type
Score vs.
NO ROLLOUTS

Score vs.
BASELINE ROLLOUTS

NO ROLLOUTS 5.08 4.91
BASELINE 7.81 6.57
DIVERSE 8.41 7.36

Table 3: Comparison of different rollout strategies for the
FULL . DIVERSE rollouts use distinct latent variables to
create more semantic diversity in rollout candidates, sig-
nificantly improving performance. The size of 95% CI is
within 0.19 for each entry.

for the supervised model to learn the latent decision mak-
ing process in the human dialogues it was trained on.

9.4. Hierarchical Planning

Next, we evaluate different rollout strategies:

• BASELINE ROLLOUTS following Lewis et al. (2017),
where first K candidate sentences are sampled from
the model, and then tokens are sampled iteratively
from px until reaching the end of the dialogue.

• DIVERSE ROLLOUTS where we first choose the top
K unique zt from p̂z . By choosing unique zt we aim
to increase the semantic diversity of the candidates.

We evaluate compared to the baseline model and word-
level rollouts and record the average score. Results are
shown in Table 3, and that the DIVERSE ROLLOUTS that
use our message representations lead to a large improve-
ment over previous approaches.

9.5. Finetuning with Reinforcement Learning

A challenge in using RL for end-to-end text generation
models is that optimising for reward can adversely affect
language generation. In selfplay, the model can learn to
achieve a high reward by finding uninterpretable sequences
of tokens that the baseline model was not exposed to at
training time. We compare several RL approaches:

• ALL-RL Reinforcement learning after pre-training
with supervised learning.

• ALL-RL+SV Interleaved RL and supervised learning
updates, weighting supervised updates with a hyper-
parameter α, similarly to Lewis et al. (2017).

• PRED-RL Reinforcement learning only to fine-tune
the intent model p̂z , with all other parameters fixed.

We measure both the average reward of the model (a mea-
sure of its ability to achieve its goals) and the perplexity of
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Cluster BASELINE CLUSTERS FULL

1 i can give you the books but , i would need the hat and the balls i would like the hat and 1 book
i can do that . i need both balls and one book i can’t give up the hat , but i can offer you the book and 2 balls

2 i need both books and the hat i want the hat
how about you get the hat and 1 ball i need the hat . you can have all the books and the balls

3 i can not make that deal . i need the hat and one book i can give you the hat and 1 ball
i can give you the hat and 1 ball i would like the books and a ball

4 i need two books and the hat i need the books and the hat
i need the hat , you can have the rest i can give you the balls but i need the hat and books

5 i can give you the hat if i can have the rest could i have the books and a ball ?
i want one of each i would like the books and one ball

Table 4: Messages sampled from different clusters, where 2 books, 1 hat, and 2 balls are available. Our method’s clusters
are much more semantically coherent than the baseline, and correspond to different ways of proposing the same deal.

Model
Score vs.
HUMAN

Language
quality

Number
of turns

FULL + ROLLOUT 7.45 3.55 4.89
RNN + ROLLOUT 6.99 3.43 4.38

FULL + RL 6.26 3.60 6.52
RNN + RL 6.01 3.52 3.99

FULL 5.42 3.68 3.07
RNN 5.30 3.56 3.96

HUMAN 6.64 3.85 6.36

Table 5: Performance of our FULL model and the highly
optimized RNN model against humans. In all cases, our
FULL model achieves both higher scores and uses higher
quality language than RNN .

the model on human dialogues (a measure of how human-
like the language is). After hyper-parameter search, we plot
the reward of the best model whose perplexity is at most a.

Results are shown in Figure 4. Using RL on all parameters
allows high rewards at the price of poor quality language.
Only fine-tuning p̂z allows the model to improve its strate-
gic decision making, while retaining human-like language.

9.6. Human Evaluation

To confirm our empirical results, we evaluate our model in
dialogues with people. We ran 1415 dialogues on MTurk,
where humans were randomly paired with either one of the
models or another human. We then asked humans to rate
the language quality of their partner (from 1 to 5). Results
are shown in Table 5. We observe that our model consis-
tently outperforms the baseline model (Lewis et al., 2017)
both in the end-task reward and the language quality.

Figure 4: Plotting reward against language quality (lower
perplexity is better) during reinforcement learning training,
in dialogues with the HIERARCHICAL model. Our method
(green) achieves higher rewards while maintaining human-
like language (top left of graph).

10. Analysis
Results in section 9 show quantitatively that our hierarchi-
cal model improves the likelihood of human generated lan-
guage and the average score achieved by the agent. Here,
we investigate specific issues that the model improved on,
and identify remaining challenges. We analyzed 1000 di-
alogues between our FULL and the HIERARCHICAL base-
line. These models achieve similar perplexity on human
dialogues (Table 1).

10.1. Linguistic Diversity

First, we measure the diversity of the agents’ language.

RNN language models are known to prefer overly generic
messages. In our task, this often manifests itself as short
messages such as deal or ok. We measure the frequency of



Hierarchical Text Generation and Planning for Strategic Dialogue

simple variations on these messages, and find that the HI-
ERARCHICAL model uses generic messages far more often
than FULL (815 times vs. 245).

The messages sent by FULL are also longer on average (8.9
words vs. 6.7, ignoring the end-of-dialogue token), giving
further evidence of greater complexity.

We also find that the FULL is substantially more creative in
generating new messages beyond those seen in its training
data. In total, FULL sends 875 unique message strings, of
which 525 (60%) do not appear in the training data. In con-
trast, HIERARCHICAL sends fewer unique message strings
(751), and just 18% of these are not copied from the train-
ing data.

10.2. Self-consistency of Messages

Models can output inconsistent messages, such as I really
need the hat. I can give you the hat and one ball. We
searched for messages that mentioned the same item type
multiple times, and then manually evaluated whether it was
consistent. The FULL model was more prone to this er-
ror than HIERARCHICAL (23 times vs. 11), though this
fact may be a consequence of its greater creativity, and the
problem only occurred in roughly 1% of messages.

10.3. Consistency with Input

We also investigate whether messages are consistent with
the context—for example, models may emit messages such
as I’d like the hat and books; you keep the 3 balls when
there are not 3 balls available. We use simple pattern
matching for several such errors, and found that the FULL
performed slightly better (15 errors vs. 19).

10.4. Consistency with Dialogue Context

Lewis et al. (2017) describe cases where an agent indicates
it is simply re-stating an agreement, when it is actually
proposing a new deal (e.g. you get 2 hats / Okay deal, so
I get 3 hats). Interestingly, we found this behaviour only
happened with the models using rollouts. While this tactic
is effective against our models, it would be frustrating for
humans, and future work should address this issue.

10.5. Repetitiveness

Previous work noted that reinforcement learning models
were prone to an extortion tactic of simply repeating the
same demand until acceptance. We measured how often
agents repeated the same message in a dialogue, compar-
ing the ALL-RL+SV model based on previous work, with
our PRED-RL model. Our model was substantially less
repetitive: only 1% of dialogues contained a repetition of
the same message, compared to 12% for the baseline.

Input
DIVERSE ROLLOUTS 1xbook value=9 1xhat value=1 4xball value=0
BASELINE ROLLOUTS 1xbook value=0 1xhat value=6 4xball value=1
DIVERSE ROLLOUTS I will take the book and hat and you can have the balls.
BASELINE ROLLOUTS I need the hat and two balls
DIVERSE ROLLOUTS The balls are worthless, I need the hat and the book.
BASELINE ROLLOUTS I need the hat or no deal
DIVERSE ROLLOUTS Then no deal.
BASELINE ROLLOUTS What about the balls?
DIVERSE ROLLOUTS You can have the hat but I need the book.
BASELINE ROLLOUTS How about I get the balls and 1 hat?
DIVERSE ROLLOUTS Ok
Output Reward
DIVERSE ROLLOUTS 1xbook 9/10
BASELINE ROLLOUTS 1xhat 4xball 10/10

Figure 5: Dialogue between two models using different
types of rollouts. The DIVERSE ROLLOUTS model makes
several attempts to win the hat, before compromizing.

11. Related Work
Traditional goal-orientated dialogue models have first gen-
erated symbolic intents, capturing the meaning of the mes-
sage, and then generated text to match the intent (e.g.
Williams & Young (2007), Keizer et al. (2017)). Our ap-
proach can be seen as a latent model for generating in-
tents. Our model is most closely related to other recent
latent variable hierarchical dialogue models from Serban
et al. (2016c), Wen et al. (2017) and Cao & Clark (2017).
An important difference is that both these approaches op-
timize latent representations z to maximize the likelihood
of generating the next message—whereas our model pre-
train’s z to maximize the likelihood of the continuation of
the dialogue, to better capture the semantics of the message
rather than its surface form. While other ways of learn-
ing discrete latent representations were proposed recently
(van den Oord et al., 2017; Kaiser & Bengio, 2018), we
have shown that our approach leads to higher performance
on a strategic dialogue task.

Other work has explored generating sentence embeddings
for open domain text—for example, based on maximiz-
ing the likelihood of surrounding sentences (Kiros et al.,
2015), supervised entailment data (Conneau et al., 2017),
and auto-encoders (Bowman et al., 2015).

12. Conclusion
We have introduced a novel approach to creating sentence
representations, within the context of an end-to-end strate-
gic dialogue system, and have shown that our hierarchical
approach improves text generation and planning. We iden-
tified a number of challenges faced by previous work, and
show empirically that our model improves on these aspects.
Future work should apply our model to other dialogue set-
tings, such as cooperative strategic dialogue games (He
et al., 2017), or multi-sentence generation tasks, such as
long document language modelling (Merity et al., 2016).
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