Massively Parallel Algorithms and Hardness for Single-Linkage Clustering
under /,, Distances

Grigory Yaroslavtsev' Adithya Vadapalli

Abstract

We present first massively parallel (MPC) algo-
rithms and hardness of approximation results for
computing Single-Linkage Clustering of n input
d-dimensional vectors under Hamming, /¢, ¢
and /., distances. All our algorithms run in
O(logn) rounds of MPC for any fixed d and
achieve (1 4 €)-approximation for all distances
(except Hamming for which we show an exact
algorithm). We also show constant-factor in-
approximability results for o(logn)-round algo-
rithms under standard MPC hardness assump-
tions (for sufficiently large dimension depending
on the distance used). Efficiency of implementa-
tion of our algorithms in Apache Spark is demon-
strated through experiments on the largest avail-
able vector datasets from the UCI machine learn-
ing repository exhibiting speedups of several or-
ders of magnitude.

1. Introduction
1.1. Single-linkage clustering

Single-Linkage Clustering is one of the oldest methods for
clustering multi-dimensional vectors based on the nearest-
neighbor rule and has been studied since 1951, see e.g.
(Zahn, 1971). It can be used for hierarchical clustering and
is one of the cornerstone techniques in data mining (see
e.g. Chapter 17 of a classic text on information retrieval by
Manning, Raghavan and Schiitze (Manning et al., 2008)).
Applications of Single-Linkage Clustering include recon-
struction of semantic relationships from word embeddings
such as Word2Vec (Malak & East, 2016), phylogenetic tree
reconstruction (Gower & Ross, 1969), etc.

"Department of Computer Science, Indiana University,
Bloomington, Indiana, United States. Correspondence to:
Grigory Yaroslavstev <grigory @grigory.us>, Adithya Vadapalli
<avadapal @iu.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

We consider the problem of constructing a Single-Linkage
Clustering for large-scale data. Given a dataset consisting
of n real-valued d-dimensional vectors v1, . .., v, € R?the
goal of Single-Linkage Clustering is to construct a partition
of these vectors into k clusters C,...,C) such that the
smallest distance between two vectors in different clusters
is maximized. Formally, for ¢ # j let the single-linkage
distance between two clusters C; and C; under £, dis-
tance be d,(C;, Cj) = min,, cc, vec; |[Va — vbll, Where
lzll, = (&, |z:[?)!/? is the standard p-norm. Then in
the k-Single-Linkage Clustering (k-SLC) problem under £,
distance we aim to find a partition into k clusters that maxi-
mizes min;»; d,(C;, C;). It is well-known that k-SLC can
be constructed from the Minimum Spanning Tree (MST) of
the underlying metric by taking as clusters connected com-
ponents resulting from removal of k£ —1 longest MST edges
(see Figure 1 for an example).

a=dy(Cy, Cy)

&

Figure 1. 3-SLC objective is min(a, b, ¢), MST shown in solid.

Note that with this approach once the MST is constructed it
can be used to compute k-SLC for any value of k. Further-
more, it induces a hierarchical clustering structure that is
often desirable in practice. According to Manning, Ragha-
van and Schiitze (Manning et al., 2008) the main impedi-
ment to this approach in practice that motivates the use of
various heuristics is that for large-scale data no practically
feasible techniques are currently known for constructing an
exact MST. Our work overcomes this challenge by leverag-
ing two observations: 1) inexact but close to optimum solu-
tions can suffice in practice due to the fact that real-valued
data always contains rounding errors, 2) while exact MST
algorithms are very sequential, approximate solutions can
be computed in parallel on a distributed cluster.

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

< s bits sent/received

| 7 %
%

m machines
N

~"
R Rounds

Figure 2. MPC model of computation

1.2. Massively parallel computation

We present analysis of performance of our algorithms in the
Massively Parallel Computation model (MPC) which is the
most commonly used theoretical model of computation on
synchronous large-scale data processing platforms such as
MapReduce and Spark. As we demonstrate through exper-
iments in Spark this model accurately reflects performance
of our algorithms on real data. MPC model has attracted
a lot of interest recently. It has emerged through a se-
quence of papers (Feldman et al., 2008; Karloff et al., 2010;
Goodrich et al., 2011; Beame et al., 2013; Andoni et al.,
2014) and has been analyzed extensively (Fish et al., 2015;
Roughgarden et al., 2016). While several variations of this
basic model exist here we follow the strictest known ver-
sion of the model used in (Andoni et al., 2014) and hence
our algorithmic results hold in other versions as well.

In the MPC model we are given access to m identical
processors with local RAM space s on each. For an in-
put of size n the total space available to all processors is
m-s = O(n) The computation is performed in syn-
chronous rounds. In each round each machine: 1) performs
alocal computation on its data (under its local space restric-
tion of s), 2) sends and receives messages of total length
at most s to other machines which are received before the
next round begins' (see Figure 2). Furthermore, we assume
that the most time/space-efficient known algorithm for lo-
cal subproblems (in our case almost linear-time and space)
is used on each machine during the round.

In this setup the key complexity measure of performance
in such computation is the number of rounds it takes to
complete it as other characteristics such as time and com-
munication depend directly on it. The parameter s is
set to n® for some fixed constant « < 1, see (Karloff
et al., 2010; Andoni et al., 2014) for more details. In

"Note that restriction of s on the total length of received mes-
sages follows from the local space constraint assuming there is no
computation performed on the fly on incoming data.

this setting of parameters sorting can be done in O(1)
rounds (Goodrich et al., 2011) while sparse graph connec-
tivity takes O(logn)(Rastogi et al., 2013; Kiveris et al.,
2014) which is conjectured to be optimal (Karloff et al.,
2010; Beame et al., 2013; Rastogi et al., 2013; Roughgar-
den et al., 2016). It is folklore that an O(logn)-round al-
gorithm for MST in sparse graphs can be obtained via a
simulation of Boruvka’s algorithm in MPC. We use these
facts extensively in this paper.

1.3. Our results and previous work

While scalable algorithms with provable guarantees for
other popular clustering methods such as k-means and k-
median are known (Bahmani et al., 2012; Balcan et al.,
2013) we are not aware of any such algorithms for Single-
Linkage Clustering 2. Also despite the fact that scalable
heuristics exist for k-SLC and MST computation for vec-
tor data, e.g. (Jin et al., 2015), the only MPC algorithm
with provable guarantees in this area that we are aware of
is (Andoni et al., 2014)3. For other recent work on geo-
metric data structures and algorithms in the MPC model
see (Agarwal et al., 2016; Nath et al., 2016) and results on
distributed constructions of coresets (Agarwal et al., 2005;
Indyk et al., 2014; Bateni et al., 2014).

In (Andoni et al., 2014) it is shown that a (1 + €)-
approximate MST under ¢5 can be constructed in O(1)
rounds of MPC for constant dimension. However, while
the overall cost of the MST is a good approximation to the
optimum the length of any given edge can be arbitrarily
distorted. This makes it impossible to directly use this al-
gorithm of for the Single-Linkage Clustering problem. For
example, consider an input corresponding to a set of points
on the line shown in Figure 3 and & = 2. In this case a
(1 + €)-approximate MST would not necessarily lead to
a (1 + e)-approximate clustering as any such clustering
would have to have clusters {1,...,n — 1} and {n} which
are at distance 100 from each other. Moreover, the algo-
rithm of (Andoni et al., 2014) will indeed introduce edges
of length Q2(en) into its approximate MST between the first
n — 1 points if run on this example. Hence for the MST
constructed this way the basic approach of removing the
longest edge to obtain a 2-SLC will result in two clusters
which are at distance 1 with a very large probability.

With the exception of recent work of (Derakhshan et al.,
2017) who consider a more general graph metric setting and hence
get results which are inherently different from our work as repre-
sentation of the metric requires ©(n?) space

3For general graph metrics an MST algorithm in MPC is given
in (Karloff et al., 2010). In our case using this algorithm directly
would imply a quadratic increase in space since our graph is im-
plicitly given by n? distances between the vectors and hence con-
structing the graph explicitly is infeasible under the overall space
restriction.

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

o000 0 ¢ @
1 2 n-1 n

Figure 3.Vi <n —1: ||[vi—1 — vi]|l2 = 1, ||[vn—1 — vn||]2 = 100.

In this paper we show how to overcome this difficulty and
give a different family of algorithms which allow to com-
pute an approximate Single-Linkage Clustering under vari-
ous distance metrics. While in (Andoni et al., 2014) only /5
metric is considered here we further extend this framework
so that it also applies to /; and ¢, with similar performance
guarantees. Perhaps most interestingly, while an arbitrarily
good MST approximation can be computed in O(1) rounds
of MPC (for fixed dimension) our algorithms for k-SLC
run in O(logn) rounds. As it turns out, such an increase
is likely to be necessary. We justify it through a number of
hardness results. Our results show that even for k = 2 as-
suming two most popular conjectures in the MPC literature
regarding complexity of sparse connectivity no o(logn)-
round algorithm can compute k-SLC for sufficiently large
dimension of the data with better than some fixed constant-
factor approximation that depends on the distance metric
used. See Table 1 for a summary of these results*.

In order to complete the picture of approximability of k-
SLC under the most frequently used ¢, distances we also
give algorithms and hardness results under Hamming dis-
tance (commonly referred to as ¢y). In contrast to other
distances studied in this paper we are able to completely re-
solve approximability of the k-SLC problem for constant-
dimensional data in this case. As we show, there exists an
exact algorithm for d = O(1) that runs in O(logn) rounds
of MPC while under Conjecture 3.1 no algorithm running
in o(logn) rounds can obtain better than 2-approximation
even for d = 2. See Table 1 for details.

1.4. Our techniques

£1,05,0o, Our algorithms under ¢1, {5 and /., all share
the same high-level structure: we tackle the problem of the
input having O(n?) edges by first constructing a sparsifier
that only has O(nlogn) edges and then run an MST al-
gorithm on this sparsifier. In order to construct a sparsifier
we execute a (14 €)-approximate MST algorithm O(logn)
times and collect all edges of the MSTs constructed in these
executions. We then run an exact O(logn)-round exact
MST algorithm on this set of O(nlogn) edges and out-
put clusters resulting from removing k£ — 1 longest edges of

*While our algorithms work in the most restricted known ver-
sion of MPC model, our hardness results also hold in more relaxed
versions for which hardness of sparse connectivity is conjectured,
see (Roughgarden et al., 2016) for further details. Furthermore,
in hardness results for £y and ¢, that require dimension d = Q(n)
the result holds for O(1)-sparse vectors, i.e. the overall input size
is still O(n) words.

the resulting MST. Note that the executions of the (1 + ¢€)-
approximate MST algorithm can be done in parallel and
hence it is the second step that introduces O(logn) rounds
into the overall complexity of the algorithm. Our algo-
rithms under ¢, /5 and /., are given in Section 2. Assum-
ing the same high-level structure this approach is unlikely
to be improved as there are no known algorithms for solv-
ing MST in sparse graphs in o(log) rounds.

Hardness In fact, we make the above observation for-
mal by giving reductions from two most popular problems
conjectured to require 2(log n) rounds in the MPC model:
sparse connectivity (Conjecture 3.1) and a stronger “one
cycle vs. two cycles” problem (Conjecture 3.2). Our re-
ductions follow the same general strategy — we introduce
a vector v; € R"™ for each vertex in the input graph. This
vector is initially set to be e;, the i-th standard unit vec-
tor. Then for each edge (¢, j) adjacent to the vertex ¢ we
update the coordinate j of the vector by adding a carefully
chosen value £. This ensures that the for pairs of points
which are connected by an edge the distance between their
correponding vectors is different from the distance between
points which are not connected by an edge. The parameter
£ is then chosen to maximize the ratio of distances in these
two cases. Details are given in Section 3.

£o Under ¢, (Hamming distance) we can’t construct a
(1 + ¢)-approximate MST using (Andoni et al., 2014) and
hence our algorithms and hardness results are quite differ-
ent. Using sorting as a primitive we construct an auxiliary
graph and then run an O(logn)-round connectivity algo-
rithm on it d times. This way we obtain an exact MST
and hence an exact k-SLC for any value of k. Details are
given in Section A. Our hardness reduction in this case is
also quite different as we construct a hard instance by creat-
ing a set of points in 2D instead of using high-dimensional
vectors. Hence our result rules out an o(logn)-round 2-
approximation even for d = 2. See Section 3.2 for details.

1.5. Experimental results

We implemented our algorithm (for /5 distances) in Java
on Apache Spark and empirically evaluated the perfor-
mance. The largest datasets we used were the SIFT10M
and HIGGS datasets from the UCI ML repository which
has been used widely in literature (= 11 X 107). Note
that storage of the n? adjacency would take nearly 960TB
of memory and hence building a complete graph locally
is infeasible. We observed speedups of several orders of
magnitude compared to our benchmark sequential Prim’s
algorithm when using 200 reducers. We remark that the
speedup is not just due to the parallelism in our algorithm
but also due to the use of approximation which is helpful
even if the algorithm is executed locally. See Section 4.

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

Table 1. Approximation and hardness of k-Single Linkage Clustering in MPC under ¢,, distances.

Approximation in O(logn) rounds

Hardness of approximation in o(logn) rounds

4 Exact for d = O(1), Thm. A.1

2 for d = 2 under Conj. 3.1, Thm. 3.5
3 for d = Q(n) under Conj. 3.2, Thm. 3.3

4 (1+¢€)ford = 0O(1), Thm. 2.1

3 for d = Q(n) under Conj. 3.2, Thm. 3.3
2 for d = Q(n) under Conj. 3.1, Thm. 3.3

12 (1+¢€) ford = O(1), Thm. 2.1

1.84 — e for d = Q('°&™) under Conj. 3.2, Thm. 3.3
1.41 — € for d = Q(*°5™) under Conj. 3.1, Thm. 3.3

€

€2

l | (1+¢) ford=0O(1), Thm. 2.1

2 for d = Q(logn) under Conj. 3.1, Thm. 7.1 (Andoni et al., 2014)

2. Algorithms

At a high level our k-SLC algorithm for {5 is very simple
and can be described as follows:

Algorithm 1 Simplified k-SLC Algorithm for £
..,Up € R4

Input: vectors vy, .
E' =0
Repeat O(logn) times sequentially:
E = set of edges of a (1 + ¢)-approximate MST
E'=FEUFE
Run Boruvka’s MST algorithm on E’ and remove k — 1
longest edges to obtain the clustering.

In order for the above algorithm to produce an approximate
k-SLC it is important however that the MST constructed
during sequential repetitions obeys certain properties. As
we show below, for /5 these properties hold for the algo-
rithm of (Andoni et al., 2014). Furthermore, in order to
extend this approach to {1, /., a more detailed analysis is
required.

2.1. Partition-based algorithm for ¢, {5,/

Theorem 2.1. For each of the three metrics £1, s and
for any constants 0 < n < 3, 0 < a < 1/2 such that
n= Q(s%) there exists an O(logn)-round MPC algo-
rithm that computes (14 n)-approximate k-Single-Linkage
Clustering for any constant dimension d given as an input
set of vectors v, . . ., v, € RY. The algorithm works simul-
taneously for all values of k under these metrics. The algo-
rithm is randomized and produces correct result with high
probability. Given access to machines with RAM space s it
uses O(n,/s) machines and time at most O(s) per round on
each machine.

In this section we describe a generic partition-based algo-
rithm, Algorithm 2.1, that is used to prove the above theo-
rem. We also give analysis of its approximation guarantee.

Algorithm 2.1 relies on (a, b, ¢)-distance-preserving parti-
tions and uses Algorithm 3 which we describe in Section B.

We start by recalling standard definitions of distance pre-
serving hierarchical partitions. Let M (S, p) be a metric
space with distance function p. For S’ C S we denote
its diameter as A(S") = sup, ,cq p(7,y). A determin-
istic hierarchical partition P with L levels is defined as a
sequence P = (Py,...,Pr) where P, = {S} and each
level P, is a subdivision of P,y,. For a partition P; we
call its parts cells. The diameter at level i is defined as
A(P;) = maxcep, A(C). The degree of a cell C € P,
is deg(C) = [{C' € Py—1 : C" C C}|. The degree of a
hierarchical partition is the maximum degree of any of its
cells. The unique cell at level ¢ containing a point x is de-
noted as Cy(x). We say that a partition is indexable if this
cell can be computed based on x and ¢. A randomized hi-
erarchical partition is a distribution over deterministic hi-
erarchical partitions.

Definition 2.1 (Distance-preserving partition). For param-
eters a. € (0,1), b,c € RT and v > 1 a randomized
hierarchical partition P of a metric space with L lev-
els is (a,b,c)-distance-preserving with approximation ~y
if the degree of all deterministic partitions in its support

is at most ¢ and the following properties are satisfied for
Ay =vaF=tA(S):

1. (Bounded diameter) For every deterministic partition
P = (Py,...,Pr) in the support of P and for all
¢ e€H0,...,L} it holds that A(Py) < Ay.

2. (Probability of cutting an edge) For every x,y € S
and for all ¢ € {0,...,L}:

Cua) # Culy)] < 0222

¢
Let M (S, p) be a metric space and w: S x S — R* be
a weight function w(z,y) = p(z,y). We think of w as
representing weights of edges in a complete graph. Let
MST;(w) denote the weight of the i-th Minimum Span-
ning Tree edge of this graph sorted in non-decreasing order.

Pr
P~P

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

Algorithm 2 Partition-based Distributed k-SLC Algorithm

Input:
E=0
Seta = s~ b= poly(d),c = s*, L = O(logy /, 1)

Sete = min (5275, 3%)
Repeat O(log n) times sequentially:
Sample partition P with L levels from
(a, b, ¢)-distance-preserving family wp
Execute unit step Algorithm 3 for
each cell in P with parameter €
E’ = set of edges output in the previous step
E=EUF
Run Boruvka’s MST algorithm on E and remove k — 1
longest edges to obtain the clustering.

vectors v1,...,v, € R? parameters 7, a,p

Letw™: S xS — R* be arandom family of functions that
satisfies that for each z, y it holds that w(x,y) < w*(z,y)
and E[w™ (z,y)] < (1 + v)w(z,y) for some fixed v > 0.
Note that the weights given by this random family to dif-
ferent pairs might be correlated with each other.

Definition 2.2 (Crossing edge). For a partition
(C1,...,C4) of S we say that a pair of points (z,y)
crosses this partition if ¢ € C; and y € Cj for i # j.
Definition 2.3 (Cut-preserving spanning tree). We say that
T is an a-cut-preserving spanning tree for w : S x S —
R if for every partition (C1, Co) of S there exists an edge
in T that crosses this partition and is at most « times longer
than the shortest such edge with respect to w.

As we show below Algorithm 2.1 can be seen as perform-
ing the following experiment: draw k functions w1, . . ., wg
i.i.d at random from the family w™. Compute a (1 + §)-
cut-preserving spanning tree 7; for each w;. Then for each
(z,y) € S xS define wi(z,y) = w(z,y) if (x, y) is in this
spanning tree and w/(z,y) = 400 otherwise. Then for all
(z,y) € S x S define w*(z,y) = min®_, w!(z,y). The
nal run of Boruvka’s MST algorithm is then executed on
",
Indeed, random family of functions w™ satisfying the prop-
erties described above is constructed by Algoirthm 2.1 as
follows from a result (Andoni et al., 2014) given. It is im-
portant to note that cut-preserving spanning tree compu-
tations for random function samples from this family re-
quired above can be also performed as guaranteed by the
following lemma:
Lemma 2.2 ((Andoni et al., 2014), Lemmas 3.4 and 3.13).
Given access to an (a,b, c)-distance-preserving partition
with L levels and approximation ~y for M (S, p) there exists
an MPC algorithm that runs in O(1) rounds and constructs
a random family of weight functions wp which satisfies:

p(ivj) < wP(i’j) al’ld]E[’wp(’L,j)] < (1 + ClGLb) p(Z,j)

Furthermore, execution of unit step Algorithm 3 for all cells
in this partition for a random function w* sampled from
wp produces a (1 + cqe)-cut-preserving spanning tree T
for w*.

Let w(i,j) = ||vi — vjll2, w" = wp and let v = cyed and
0 = coe.

Lemma 2.3. Letn = |S|. There is a large enough constant
¢ > 0 such that if k = clogn then for all © it holds that:

Pr [MSTi(wy) > (1427)(14+0) M ST;(w)] < n~ %W,

Wy, Wh

Proof. Fix (z,y) € S x S and let A(z,y) = wh (x,y) —
w(z,y). Because A(x,y) > 0and E[A(z,y)] < yw(z,y)
with probability at least 1/2 it holds that A(z,y) <
2~vw(z,y) by Markov inequality. If ¥ = clogn then with
probability 1 — 1/n¢ there exists ¢ such that w;(x,y) —
w(z,y) < 2yw(z,y). By a union bound over all n? pairs
(x,y) with probability 1 — 1/n°~2 for each such pair a cor-
responding index exists. Below we refer to this event as £
and condition on it.

Proposition 2.4. Let (C1,...,C}) be an arbitrary parti-
tion of S. Let (z*,y*) € S x S be the closest w.r.t w
pair of points that belong to different parts of this parti-
tion. Then conditioned on the event £ there exists a pair of
points (', y') that crosses this partition and:

w(a®,y") < wt(a’y') < (1+29)(1+ dw(a”,y").

Proof. First, consider the case when ¢ = 2 and con-
sider any partition (Cy,C2) of S. Let (z*,y*) be the
shortest edge that crosses this partition, i.e. (z*,y*) :=
argmingec, yec, w(x,y). Conditioned on & there ex-
ists ¢ such that w;(z*,y*) < (1 4+ 2y)w(z*,y*). Fur-
thermore, there exists an edge (z/,y’) in the (1 + §)-cut-
preserving spanning tree 7; constructed for w; that has
length wi(2',y") = wi(z',y") < (1 + dw;(z*,y*) <
(I + 29)(1 4+ d)w(z*,y*). On the other hand, because
w; > w for every pair (x,y) that crosses the partition
(C1, Cs) it holds that w;(z,y) > w(z*,y*). Combining
these two facts we conclude that in 7; there exists some
edge (z',y’) that crosses the cut and satisfies w(z*, y*) <
wh(x',y") < (14+279)(1+8)w(x*, y*). By definition of w*
the same holds for it as well, i.e. w(z*,y*) < w*(2',y') <
(1+29)(1 + O)w(a*,y*).

Now suppose ¢ > 2. For i = 1,...,¢ define a fam-
ily of cuts (S;,T;) where S; = C; and T; = U,;-;C;.
Let (z7,y;) be the shortest pair crossing the cut (S;, T;).
If (z*,y*) is the shortest edge that crosses (Cy,...,C})
then we have w(z*,y*) = min; w(z},y}). Let i* =
argmin; w(z},y;). Then using the argument above for
t = 2 there exists (z,y’) such that 2’ € S;«,y € T~ and:

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

w(z®,y") = w(zg, yi-)

w* (', y')

(T+2y)1 4+ dHw(zh, yi)
(1+2y)(1 4 dw(z*,y*).0

IAIA

Given Proposition 2.4 the rest of the proof is the same
as analysis of approximate Kruskal’s algorithm in (Indyk,
2000), we give the proof here for completeness. Since
edges output by Kruskal’s algorithm are produced in the
order of non-decreasing weight M ST; is the i-th edge that
is output. Consider executions of Kruskal’s algorithm on
weights w and w". Let the edges output by the former ex-
ecution be ey, ...,e,_1 in order. Let the edges output by

the latter execution be e/, ..., el _;.

To prove Lemma 2.3 it suffices to show that conditioned
on £ it holds that w(e;) < w(e}) < (1 + 2y)w(e;) for
all 7. The first inequality here essentially follows from the
fact that the weight of the i-th MST edge is a monotone
function of the weights and w < w"*.

The i-th edge in Kruskal’s algorithm is constructed by join-
ing two closest clusters among n — ¢ + 1 clusters con-
structed so far. Let these clusters in the execution of
Kruskal’s algorithm on w* be denoted as C1, ..., Cp_i41.
The key observation is that there exists an index ¢* < ¢
such that endpoints of the edge e;- belong to different parts

of the partition C1, ...,Cp_;4+1. Indeed, edges eq, ..., e;
form a forest and thus having all such edges be inside
Ci,...,Ch_i+1 would be a contradiction.

Let (z*,y*) be the closest w.r.t to w pair of points in dif-
ferent parts of the partition C',...,Cp_;4+1. By applying
Proposition 2.4 to e;« there exists a pair of points (z',y’)
whose endpoints belong to different parts of the partition
Ciy.. ., Criyq and @*(z',y) < (1 + 2y)w(z*, y*).
Putting everything together we have:

w(e) < a*(e}) w < oF
<aw(@',y')
< (14 2v)(1 + §)w(x*,y*) Proposition 2.4
< (1+29)(1+ dw(es)
< (142v)(1+6w(e;) O

The second inequality follows because e is shortest edge
w.r.t w* that crosses (C1, ..., Cp_;+1). The last inequality
follows because ¢* < i, edge weights are non-decreasing.

Putting everything together we obtain analysis of approxi-
mation guaranteed by Algorithm 2.1.

Theorem 2.5. Forn < 3 and p = 1,2,00 Algorithm 2.1
constructs a spanning tree for w(i, j) = ||v;—v; ||pf0r each
t its t-th longest edge (x,y) has weight w(z,y) < (1 +

)M STy (w). This guarantee holds with high probability
over the randomness used in Algorithm 2.1.

Proof. Note that taking w™ = wp forw(i, j) = ||v;—v;||p
where p = 1,2, oo satisfies conditions of Lemma 2.3 by
Lemma 2.2. Hence our algorithm constructs a function wy
with properties required for Lemma 2.3. Since c;eLb <
7/6 and coe < 7)/3 we can set 6 = n/6 and v = 7/3 in
Lemma 2.3 and hence for n < 3:

1

poly(n)’

where &1 is the event that M ST;(wy) < (1 +n)MST;(w)
1

and &; is the event that MST;(w,) < (1 4+ 2v)(1 +
O MST;(w).

Pr [51] Z Pr [52] 2 1-—

After wy, is constructed by running Boruvka’s algorithm on
it we find an MST exactly and hence the approximation
guarantee for each of the MST edges follows. O

2.2. Solve-and-Sketch framework and unit step

We use Solve-and-Sketch (SAS) framework of (Andoni
et al., 2014) for computing an approximate minimum span-
ning tree. SAS framework works with a partition P =
(Po, ..., Pr) of the input M(S, p), sampled from a ran-
domized (a, b, ¢)-partition P. Then SAS algorithm pro-
ceeds through L levels, and in level ¢ a unit step algorithm
A, is executed in each cell C of the partition P, with input
the union of the outputs of the unit steps applied to the chil-
dren of C'. The unit step also outputs a subset of the edges
of a spanning tree in addition to the input for the next level.
Once the unit step has been executed for the root cell of
partition at level Pr, (and hence also for all other cells) the
computation is complete. We give the description of the
unit step algorithm below (Algorithm 3).

Definition 2.4 (6-covering). Let M = (S, p) be a metric
space and let 6 > 0. A set S’ C S is a §-covering if for any
point x € S, there is a point y € S’ such that p(z,y) < 6.

3. Hardness of £-SLC

3.1. Hardness under ¢; and /5

The following two conjectures are widely used in the MPC
literature (Karloff et al., 2010; Beame et al., 2013; Ras-
togi et al., 2013; Roughgarden et al., 2016). Note that the
second conjecture is stronger and hence can potentially be
used to get stronger hardness results.

Conjecture 3.1 (Sparse connectivity hardness). If s = n®
for a constant o < 1 then solving connectivity on an input

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

Algorithm 3 Unit Step at Level £,

Input: Cell C' € P, a collection V(C') of points in C,
and a partition Q = {Q1,...Qx} of V(C) into previ-
ously computed connected components.
Output: V' C V, an 62Ag-covering for C, the partition
Q(V’) induced by Q on V.
0:=0
while £ > 1 and 6 < €A, do

Let 7 = min ; ; min,eq, veq, P(u,v)

Find u € Q; ;;?ld v € @; for some ¢ and j such that
1 # jand p(u,v) < (1+€)7.
0 := p(u,v)
if 0 < ¢y then
Output tree edge (u,v).
Merge); and @); and update () and k.
end if
end while

graph with n vertices and O(n) edges requires Q(logn)
rounds of MPC.

Conjecture 3.2 (One cycle vs. two cycles hardness). Ifs =
n® for a constant o < 1 then distinguishing the following
two instances requires)(logn) rounds of MPC: 1) a cycle
on n vertices, 2) two cycles on n/2 vertices each.

Theorem 3.3. No o(logn)-round MPC algorithm can
achieve approximation for 2-SLC:

1. Better than (\/2++/2 — €) under {y for d =
Q(logn/e?) under Conjecture 3.2.

2. Better than 3 under ¢y for O(1)-sparse vectors and
d = Q(n) under Conjecture 3.2.

3. Better than (\/2 — €) under U5 for d = Q(logn/e?)
under Conjecture 3.1.

4. Better than 2 under {1 for O(1)-sparse vectors and
d = Q(n) under Conjecture 3.1.

Proof. We give proof of Part 1 here, other proofs are sim-
ilar and are deferred to Appendix E. Given an instance of
the “one cycle vs. two cycles problem” we reduce it to the
2-SLC problem as follows:

1. Create a vector v, € R"™ for each vertex where v, = e;
and e; is the i-th standard unit vector.

2. For each edge (a, b) in the input graph update the cor-
responding vectors as v, = v/, +Eep, and vy = v, +Ee,
where £ = %

3. Apply Johnson-Lindenstrauss transform to v, . .., v,

r n
to construct vy, . . . , v, € R? where d = O(logn/e?).

Note that the above reduction can be performed in only a
constant number of MPC rounds. Indeed, Step 1 can be
done locally by partitioning vectors between machines and
to perform Step 2 we can send each edge (a,b) to the ma-

chines holding vectors v, and v,. For Step 3 note that
for each ¢ we have v; = Mwv} where M is the Johnson-
Lindenstrauss matrix and each v} has at most 3 non-zero
entries. Hence, all v; can be computed in one round of
MPC with O(logn/e?) communication per vector.

Proposition 3.4. If (i, j) is an edge in the input graph then
[|vi — vill2 = V2(V/2 — /2), otherwise ||v} — vill2 = 2.

Proof. Indeed, if there is an edge (,7) in the input then
there exist two other edges (%,4') and (7, j') and hence, the
non-zero entries of v} and v/, are as follows: v}, = 1,v},, =
!/ ! ! _ o / / —
§ vy =& vy = 1,05, =& vy, = & Hence || —vj||2 =
V/2(1 — €)% + 2£2. On the other hand, if there is no edge
(i,7) then there exist four edges (¢,4'), (¢,4"), (j,7') and
(j,7") and non-zero entries of v; and v’; are: vj; = 1,v}; =
/ _ / _ / _ / _ /
§ v = vy = L, = § vl = € Hence [jv; —
o=/ 2 i o V2H1E .
V5|2 = /2 + 4£2. Maximum of the ratio e 1S

achieved when ¢ = 1/4/2 and equals /2 + /2. O

By Proposition 3.4, if the input graph is one cycle then the
cost of 2-SLC of v, ...,v/, equals v/21/2 — /2, other-
wise it is 2. As Johnson-Lindenstrauss transform preserves
all pairwise distances up to a multiplicative (1 + €) factor
with high probability the same is true for the cost of 2-SLC
of vy, ..., v, up to £e error. This completes the proof.

O

3.2. Hardness of Hamming k-SLC

Theorem 3.5. No algorithm for computing Hamming k-
SLC cost for d = 2 in o(logn) rounds of MPC can achieve
better than 2-approximation under Conjecture 3.1.

Proof. Let G(V, E) be an instance of sparse connectivity.
Our reduction to Hamming 2-SLC constructs an input set of
2-dimensional vectors as follows: 1) for each vertex i € V'
create a vector (i,1), 2) or each edge (i,j) € E create a
vector (i, j). Clearly this reduction can be performed in a
constant number of rounds of MPC and the resulting in-
stance has |V| + | E| = O(n) many vectors. We will show
that if the input graph is connected the cost of Hamming
2-SLC of the input equals 1 and the cost is 2 otherwise. In-
deed, note that the distances between resulting vectors are
always either 1 or 2. If G is connected then it is easy to
construct a connected spanning subgraph in the resulting
Hamming graph where each edge has cost 1. Indeed, con-
sider a subgraph that for each edge (4, j) in the input graph
contains two edges: one between vectors (4,4) and (i, j)
and another between vectors (7, 7) and (¢,j). Clearly, if
the input graph is connected then this is a connected span-
ning subgraph. Hence the Hamming MST cost of the con-

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

Table 2. Scalability experiments.

DATA SET n POINTS n?EDGES d TIME (s) €
SIFTIOM 1.1x107 1.2x10% 3 12x10° 3
HIGGS 1.1x10" 1.2x10" 3 84x10* 10

structed point set equals |V'|+ |E| — 1 and the Hamming 2-
SLC cost equals 1. On the other hand, if G is disconnected
then consider any partitioning (S, 7) of G into connected
components. Clearly, any two vectors representing vertices
belonging to different parts of this partition in our reduc-
tion are at distance 2 from each other. This implies that the
Hamming MST cost is at least | V| + | E| and the Hamming
2-SLC cost is 2. O

4. Experiments

Small datasets Four standard clustering datasets used
in the literature were taken for experimental evaluation:
1) Image dataset, d = 3, n = 34112 (house images,
https://cs. joensuu.fi/sipu/datasets/), 2)
KDDCUPO4Bio dataset , d = 10, n = 145751 (prepro-
cessed to select 10 numerical dimensions out of 74, ac-
cessed via the link above), 3) Shuttle data set from the UCI
ML repository, d = 9, n = 43500. 4) US Census dataset
from the UCI ML repository, d = 8, n = 2548285.

Due to page limitations here, we only show plots for the
largest Census dataset. Other plots are deferred to Ap-
pendix D. Figure 4 shows dependence of speedup as a
function of approximation. We observe a dramatic increase
in the speedup at around approximation 1.26 due to the fact
the local inputs start to fit in L2-cache. Figure 5 shows de-
pendence of approximation on & for the census data.

Large datasets In order to test scalability, we took the
largest real-valued vector datasets from the UCI ML repos-
itory: SIFT10M and HIGGS. Both the datasets have ap-
proximately 11 million entries. Thus, constructing the full
matrix of distances in memory is clearly infeasible as the
size of this matrix would be roughly 960TB in both cases>.
Dimension reduction for this data was done using PCA for
d = 3. Results are given in Table 2.

4.1. Experimental setup

We implemented Algorithm 2.1 in Java on Apache Spark
2.0.2 for Hadoop 2.7.3. Experiments were performed on
two different setups:

Google Cloud Dataproc (GCD) platform on two cluster

> Assuming 8-byte double-precision arithmetic.

3000

Census data ——
2500 | |

2000 1

1500 [|

Speedup

1000 [1

500 1

O | | | | | | | | |
1.241.261.28 1.3 1.321.341.361.38 1.4 1.421.44

Approximation

Figure 4. Speedup vs approximation

15
145 +
14
135
13 ¢
125 +
12
115 ¢

1.1 1 1
1 10 100 1000

of clusters

Census data ——

Approximation

Figure 5. Approximation vs number of clusters

configurations: 1) single-core 1 master / 7 worker (1m/7w)
cluster, 2) dual-core 1 master / 3 worker (1m/3w) cluster.
Each core had an Intel Xeon E5 processor at 2.2-2.6 GHz
and 3.75GB RAM + 10GB HDD space. Due to the limi-
tations of the free tier access on GCD the total number of
cores in a cluster is limited to 8, which is still sufficient to
demonstrate at least an order of magnitude speedup over
the benchmark sequential algorithm. This setup was used
for the small datasets.

Local Simulation with 200 reducers on a Dell XPS13 Lap-
top with an Intel core I5 processor and 8GB RAM. This
setup was used for the large datasets.

5. Acknowledgements

This research was supported by NSF Award 1657477. The
authors would like to thank Alexandr Andoni, Aleksan-
dar Nikolov and Krzysztof Onak for multiple discussions
of (Andoni et al., 2014) and its relationship to the single-
linkage clustering problem which led to this work.

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

References

Agarwal, Pankaj K., Har-Peled, Sariel, and Varadarajan,
Kasturi R. Geometric approximation via coresets. Com-
binatorial and Computational Geometry (MSRI publica-
tion), 52, 2005.

Agarwal, Pankaj K., Fox, Kyle, Munagala, Kamesh, and
Nath, Abhinandan. Parallel algorithms for constructing
range and nearest-neighbor searching data structures. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pp- 429-440, 2016.

Andoni, Alexandr, Nikolov, Aleksandar, Onak, Krzysztof,
and Yaroslavtsev, Grigory. Parallel algorithms for ge-
ometric graph problems. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31
- June 03, 2014, pp. 574-583, 2014. URL http:
//arxiv.org/abs/1401.0042.

Arya, Sunil, Mount, David M., Netanyahu, Nathan S., Sil-
verman, Ruth, and Wu, Angela Y. An optimal algorithm
for approximate nearest neighbor searching fixed dimen-
sions. J. ACM, 45(6):891-923, 1998.

Bahmani, Bahman, Moseley, Benjamin, Vattani, Andrea,
Kumar, Ravi, and Vassilvitskii, Sergei. Scalable k-
means++. PVLDB, 5(7):622-633, 2012.

Balcan, Maria-Florina, Ehrlich, Steven, and Liang, Yingyu.
Distributed k-means and k-median clustering on general
communication topologies. In Advances in Neural Infor-
mation Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pp. 1995-2003, 2013.

Bateni, Mohammadhossein, Bhaskara, Aditya, Lattanzi,
Silvio, and Mirrokni, Vahab. Distributed balanced clus-
tering via mapping coresets. In Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Sys-
tems 27, pp. 2591-2599. Curran Associates, Inc., 2014.

Beame, Paul, Koutris, Paraschos, and Suciu, Dan. Com-
munication steps for parallel query processing. In Pro-
ceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013, pp. 273—
284, 2013.

Derakhshan, Mahsa, Behnezhad, Soheil, Bateni, Moham-
madhossein, Mirrokni, Vahab, Hajiaghayi, Mohammad-
Taghi, Lattanzi, Silvio, and Kiveris, Raimondas. On dis-
tributed hierarchical clustering. In Advances in Neural

Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 2017.

Feldman, Jon, Muthukrishnan, S., Sidiropoulos, Anasta-
sios, Stein, Clifford, and Svitkina, Zoya. On distributing
symmetric streaming computations. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2008, San Francisco, Califor-
nia, USA, January 20-22, 2008, pp. 710-719, 2008.

Fish, Benjamin, Kun, Jeremy, Lelkes, Adam Daniel,
Reyzin, Lev, and Turdn, Gyorgy. On the computa-
tional complexity of mapreduce. In Distributed Comput-
ing - 29th International Symposium, DISC 2015, Tokyo,
Japan, October 7-9, 2015, Proceedings, pp. 1-15, 2015.

Goodrich, Michael T., Sitchinava, Nodari, and Zhang, Qin.
Sorting, searching, and simulation in the mapreduce
framework. In Algorithms and Computation - 22nd In-
ternational Symposium, ISAAC 2011, Yokohama, Japan,
December 5-8, 2011. Proceedings, pp. 374-383, 2011.

Gower, John C and Ross, GJS. Minimum spanning trees
and single linkage cluster analysis. Applied statistics,
pp. 54-64, 1969.

Indyk, Piotr. High-dimensional Computational Geometry.
PhD thesis, Stanford University, 2000.

Indyk, Piotr, Mahabadi, Sepideh, Mahdian, Mohammad,
and Mirrokni, Vahab S. Composable core-sets for di-
versity and coverage maximization. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’ 14, Snowbird,
UT, USA, June 22-27, 2014, pp. 100-108, 2014.

Jin, Chen, Liu, Ruoqgian, Chen, Zhengzhang, Hendrix,
William, Agrawal, Ankit, and Choudhary, Alok. A scal-
able hierarchical clustering algorithm using spark. In Big
Data Computing Service and Applications (BigDataSer-
vice), 2015 IEEFE First International Conference on, pp.
418-426. IEEE, 2015.

Karloff, Howard J., Suri, Siddharth, and Vassilvitskii,
Sergei. A model of computation for mapreduce. In Pro-
ceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pp. 938-948, 2010.

Kiveris, Raimondas, Lattanzi, Silvio, Mirrokni, Vahab S.,
Rastogi, Vibhor, and Vassilvitskii, Sergei. Connected
components in mapreduce and beyond. In Proceedings
of the ACM Symposium on Cloud Computing, Seattle,
WA, USA, November 03 - 05, 2014, pp. 18:1-18:13,
2014.

Malak, Michael S and East, Robin. Spark GraphX in ac-
tion. Manning Publ., 2016.

Massively Parallel Algorithms and Hardness for Single-Linkage Clustering under /,, Distances

Manning, Christopher D., Raghavan, Prabhakar, and
Schiitze, Hinrich. Introduction to information retrieval.
Cambridge University Press, 2008. ISBN 978-0-521-
86571-5.

Nath, Abhinandan, Fox, Kyle, Munagala, Kamesh, and
Agarwal, Pankaj K. Massively parallel algorithms for
computing TIN dems and contour trees for large terrains.
In Proceedings of the 24th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems, GIS 2016, Burlingame, California, USA,
October 31 - November 3, 2016, pp. 25:1-25:10, 2016.

Rastogi, Vibhor, Machanavajjhala, Ashwin, Chitnis,
Laukik, and Sarma, Anish Das. Finding connected com-
ponents in map-reduce in logarithmic rounds. In 29th
IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, pp.
50-61, 2013.

Roughgarden, Tim, Vassilvitskii, Sergei, and Wang,
Joshua R. Shuffles and circuits: (on lower bounds for
modern parallel computation). In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, July 11-13, 2016, pp. 1-12, 2016.

Zahn, Charles T. Graph-theoretical methods for detecting
and describing gestalt clusters. Computers, IEEE Trans-
actions on, 100(1):68-86, 1971.

