
Communication-Computation Efficient Gradient Coding

Min Ye 1 Emmanuel Abbe 2

Abstract

This paper develops coding techniques to reduce
the running time of distributed learning tasks. It
characterizes the fundamental tradeoff to compute
gradients in terms of three parameters: computa-
tion load, straggler tolerance and communication
cost. It further gives an explicit coding scheme
that achieves the optimal tradeoff based on recur-
sive polynomial constructions, coding both across
data subsets and vector components. As a result,
the proposed scheme allows to minimize the run-
ning time for gradient computations. Implemen-
tations are made on Amazon EC2 clusters using
Python with mpi4py package. Results show that
the proposed scheme maintains the same gener-
alization error while reducing the running time
by 32% compared to uncoded schemes and 23%
compared to prior coded schemes focusing only
on stragglers (Tandon et al., ICML 2017).

1. Introduction
Distributed computation plays a key role in the computa-
tional challenges faced by machine learning for large data
sets (Dean et al., 2012; Abadi et al., 2016). This requires
overcoming a few obstacles: First the straggler effect, i.e.,
slow workers that hamper the computation time. Second, the
communication cost; gradients in deep learning typically
consist nowadays in millions of real-valued components,
and the transmission of these high-dimensional vectors can
amortize the savings of the computation time in large-scale
distributed systems (Recht et al., 2011; Li et al., 2014a;b).
This has driven researchers to use in particular gradient
sparsification and gradient quantization to reduce commu-

1Department of Electrical Engineering, Princeton University,
Princeton, NJ 08544, USA 2Program in Applied and Computa-
tional Mathematics and Department of Electrical Engineering,
Princeton University, and the School of Mathematics, Institute
for Advanced Study, Princeton, NJ 08544, USA. Correspon-
dence to: Min Ye <yeemmi@gmail.com>, Emmanuel Abbe
<eabbe@princeton.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

nication cost (Gupta et al., 2015; Alistarh et al., 2017; Wen
et al., 2017).

More recently, coding theory has found its way into dis-
tributed computing (Li et al., 2015; Lee et al., 2016; Dutta
et al., 2016; Tandon et al., 2017; Halbawi et al., 2017; Raviv
et al., 2017; Dutta et al., 2017; Yu et al., 2017a;b; Yang
et al., 2017; Li et al., 2017a; Karakus et al., 2017; Charles
et al., 2017; Zhu et al., 2017; Li et al., 2017b; Yu et al.,
2018), following the path of exporting coding techniques to
distributed storage (Dimakis et al., 2010; Ye & Barg, 2017),
caching (Maddah-Ali & Niesen, 2015) and queuing (Joshi
et al., 2015). A few works have also initiated the use of cod-
ing techniques in distributed learning (Li et al., 2015; Lee
et al., 2016; Tandon et al., 2017). Of particular interest to us
is (Tandon et al., 2017), which introduces coding techniques
to mitigate the effect of stragglers in gradient computation.
While this is a central task in machine learning, (Tandon
et al., 2017) does not take into account the communication
cost which is important in such applications as mentioned
above.

This paper takes a global view on the running time of dis-
tributed learning tasks by considering the three parameters,
namely, computation load, straggler tolerance and commu-
nication cost. We identify a three-fold fundamental tradeoff
between these parameters in order to efficiently compute
gradients (and more generally summations of vectors), ex-
ploiting distributivity both across data subsets and vector
components. The tradeoff reads

d

k
≥ s+m

n
, (1)

where n is the number of workers, k is the number of data
subsets, d is the number of data subsets assigned to each
worker, s is the number of stragglers, and m is the com-
munication reduction factor. This generalizes the results
in (Tandon et al., 2017) that correspond to m = 1. Note
that one cannot derive (1) from the results of (Tandon et al.,
2017), and we will explain this in more detail below.

We further give an explicit code construction based on re-
cursive polynomials that achieves the derived tradeoff. The
key steps in our coding scheme are as follows: In order to
reduce the dimension of transmitted vector for each worker,
we first partition the coordinates of the gradient vector into
m groups of equal size. Then we design two matrices B

Communication-Computation Efficient Gradient Coding

and V , where the (n − s) × n matrix V has the property
that any (n − s) × (n − s) submatrix is invertible. This
property corresponds to the requirement that our coding
scheme can tolerate any s stragglers, and it can be easily
satisfied by setting V to be a (non-square) Vandermonde
matrix. Furthermore, the (mn)× (n− s) matrix B satisfies
the following two property: (1) the last m columns of B
consisting of n identity matrices of size m × m; (2) for
every j ∈ [n], the product of the ith row of B and the jth
column of V must be 0 for a specific set of values of i, and
the cardinality of this set is (n− d)m. The first property of
B guarantees the recovery of the sum gradient vector, and
the second property ensures that each worker is assigned at
most d data subsets. We make use of the natural connec-
tion between the Vandermonde structure and polynomials to
construct our matrix B recursively: More precisely, we can
view each row of B as coefficients of some polynomial, and
the product of B and V simply consists of the evaluations
of these polynomials at certain points. We can then define
these polynomials by specifying their roots so that the two
properties of B are satisfied. We also mention that the con-
ditions in our construction are more restrictive than those in
(Dutta et al., 2016) and (Tandon et al., 2017; Halbawi et al.,
2017; Raviv et al., 2017): In our setting, the conditions in
(Dutta et al., 2016) only require that the last m columns
of B contain at most n nonzero entries, and no require-
ments are imposed on the positions of these nonzero entries;
as mentioned above, (Tandon et al., 2017; Halbawi et al.,
2017; Raviv et al., 2017) only deal with the special case of
m = 1 and do not allow for dimensionality reduction of the
gradient vectors. Due to these more relaxed conditions, the
constructions in (Dutta et al., 2016) and (Tandon et al., 2017;
Halbawi et al., 2017; Raviv et al., 2017) do not have the
recursive polynomial structure, which is the main technical
novelty in our paper.

We support our theoretical findings by implementing our
scheme on Amazon EC2 clusters using Python with mpi4py
package. Experimental results show that the proposed
scheme reduces the running time by 32% compared to un-
coded schemes and by 23% compared to prior work (Tandon
et al., 2017), while maintaining the same generalization er-
ror on the Amazon Employee Access dataset from Kaggle,
which was also used in (Tandon et al., 2017) for state-of-
the-art experiments.

1.1. Related Literature

Slow workers (processors) called “stragglers” can hamper
the computation time as the taskmaster needs to wait for
all workers to complete their processing. Recent literature
proposes adding redundancy in computation tasks of each
worker so that the taskmaster can compute the final result
using outputs from only a subset of workers and ignore the
stragglers. The most popular ways to introduce redundancy

in computation are based on either replication schemes or
coding theoretic techniques (Ananthanarayanan et al., 2013;
Wang et al., 2014; Shah et al., 2016; Lee et al., 2016). Lee
et al. (Lee et al., 2016) initialized the study of using erasure-
correcting codes to mitigate straggler effects for linear ma-
chine learning tasks such as linear regression and matrix
multiplication. Subsequently, Dutta et al. proposed new effi-
cient coding schemes to calculate convolutions (Dutta et al.,
2017) and the product of a matrix and a long vector (Dutta
et al., 2016), Yu et al. introduced optimal coding schemes to
compute high-dimensional matrix multiplication (Yu et al.,
2017a; 2018) and Fourier Transform (Yu et al., 2017b), and
Yang et al. developed coding methods for parallel iterative
linear solver (Yang et al., 2017). Tandon et al. (Tandon et al.,
2017) further used coding theoretic methods to avoid strag-
glers in nonlinear learning tasks. More specifically, (Tandon
et al., 2017) presented an optimal trade-off between the
computation load and straggler tolerance (the number of
tolerable stragglers) in synchronous gradient descent for
any loss function. Several code constructions achieving
this trade-off were given in (Tandon et al., 2017; Halbawi
et al., 2017; Raviv et al., 2017). Li et al. (Li et al., 2017a)
considered distributed gradient descent under a probabilis-
tic model and proposed the Batched Coupon’s Collector
scheme to alleviate straggler effect under this model. At
the same time, the schemes in (Tandon et al., 2017; Hal-
bawi et al., 2017; Raviv et al., 2017) are designed to combat
stragglers for the worst-case scenario. While most research
focused on recovering the exact results in the presence of
stragglers, (Karakus et al., 2017; Raviv et al., 2017; Charles
et al., 2017) suggested allowing some small deviations from
the exact gradient in each iteration of the gradient descent
and showed that one can obtain a good approximation of
the original solution by using coding theoretic methods.

As mentioned above, high network communication cost
for synchronizing gradients and parameters is also a well-
known bottleneck of distributed learning. In particular for
deep learning, gradient vectors typically consist of millions
of real numbers, and for large-scale distributed systems,
transmissions of high-dimensional gradient vectors might
even amortize the savings of computation time (Recht et al.,
2011; Li et al., 2014a;b). The most widely used methods
to reduce communication cost in the literature are based
on gradient sparsification and gradient quantization (Gupta
et al., 2015; Alistarh et al., 2017; Wen et al., 2017).

In this paper we directly incorporate the communication cost
into the framework of reducing running time for gradient
computation, in addition to computation load and straggler
tolerance. In particular, we take advantage of distributing
the computations over subsets of vector components in ad-
dition to subsets of data samples. The advantages of our
coding scheme over the uncoded schemes and the schemes
in (Tandon et al., 2017; Halbawi et al., 2017; Raviv et al.,

Communication-Computation Efficient Gradient Coding

Table 1: Main notation

n the number of workers
k the number of data subsets in total; in most part of the paper we assume n = k
d the number of data subsets assigned to each worker
s the number of stragglers
m the communication cost reduction factor
l the dimension of gradient vectors

gi, i ∈ [k] the partial gradient vector of data subset Di; gi = (gi(0), gi(1), . . . , gi(l − 1))
fi(gi1 , gi2 , . . . , gid) the transmitted vector of worker Wi, sometimes abbreviated as fi

2017) are demonstrated by both experimental results and nu-
merical analysis in Sections 4 and 5. We also strengthen the
numerical analyses by studying the behavior of the running
time using probabilistic models for the computation and
communication times, obtaining improvements that are con-
sistent with the outcome of the Amazon experiments (see
Section 5). Our results apply to both batch gradient descent
and mini-batch stochastic gradient descent (SGD), which is
the most popular algorithm in large-scale distributed learn-
ing.

As a final remark, (Li et al., 2015; 2017b) also studied
the trade-off between computation and communication in
distributed learning, but the problem setup in (Li et al.,
2015; 2017b) is different from our work in nature. We study
distributed gradient descent while (Li et al., 2015; 2017b)
focused on MapReduce framework. The communication
in our problem is from all the worker nodes to one master
node, while the communication in (Li et al., 2015; 2017b) is
from all workers to all workers, and there is no master node
in (Li et al., 2015; 2017b). This difference in problem setup
leads to completely different results and techniques.

2. Problem Formulation and Main Results
We begin with a brief introduction on distributed gradient
descent. Given a dataset D = {(xi, yi)}Ni=1, where xi ∈ Rl
and y ∈ R, we want to learn parameters β ∈ Rl by minimiz-
ing a generic loss function L(D;β) :=

∑N
i=1 L(xi, yi;β),

for which gradient descent is commonly used. More specif-
ically, we begin with some initial guess of β as β(0), and
then update the parameters according to the following rule:

β(t+1) = h(β(t), g(t)), (2)

where g(t) := ∇L(D;β(t)) =
∑N
i=1∇L(xi, yi;β(t)) is

the gradient of the loss at the current estimate of the
parameters and h is a gradient-based optimizer. As in
(Tandon et al., 2017), we assume that there are n work-
ers W1,W2, . . . ,Wn, and that the original dataset D
is partitioned into k subsets of equal size, denoted as
D1, D2, . . . , Dk. Define the partial gradient vector of
Di as g(t)i :=

∑
(x,y)∈Di

∇L(x, y;β(t)). Clearly g(t) =

g
(t)
1 + g

(t)
2 + · · · + g

(t)
k . Suppose that each worker is

assigned d data subsets, and there are s stragglers, i.e.,
we only wait for the results from the first n − s work-
ers. For i = 1, 2, . . . , n, we write the datasets assigned to
worker Wi as {Di1 , Di2 , . . . , Did}. Each worker computes
its partial gradient vectors g(t)i1 , g

(t)
i2
, . . . , g

(t)
id

and returns

fi(g
(t)
i1
, g

(t)
i2
, . . . , g

(t)
id

), a prespecified function of these par-
tial gradients. In order to update the parameters according
to (2), we require that the sum gradient vector g(t) can be
recovered from the results of the first n − s workers no
matter who the s stragglers will be. Due to complexity
consideration, we would further like fi, i ∈ [n] to be linear
functions. Lee et al. (Tandon et al., 2017) showed that
this is possible if and only if dk ≥

s+1
n . Since the functions

fi, i ∈ [n] are time invariant, in the rest of this paper we will
omit the superscript (t) for simplicity of notation. Recall
that in batch gradient descent, we use all the samples to
update parameters in each iteration, and in mini-batch SGD
we use a small portion of the whole dataset in each iteration.
Since we only focus on each iteration of the gradient descent
algorithm, our results apply to both batch gradient descent
and mini-batch SGD. For readers’ convenience, we list the
main notation in Table 1.

Let us write each partial gradient vector as gi =
(gi(0), gi(1), . . . , gi(l − 1)) for i = 1, 2, . . . , k. We will
show that when s ≤ d

kn − 1, each worker only needs to
transmit a vector1 of dimension l/(dkn− s). In other words,
we can reduce the communication cost by a factor of dkn−s.

Roughly speaking, (Tandon et al., 2017) showed the fol-
lowing two-dimensional tradeoff: if we assign more com-
putation load at each worker, then we can tolerate more
stragglers. In this paper we will show a three-dimensional
tradeoff between computation load at each worker, straggler
tolerance and the communication cost: for a fixed computa-
tion load, we can reduce the communication cost by waiting
for results from more workers. Fig. 1 uses a toy example
to illustrate this tradeoff as well as the basic idea of how
to reduce the communication cost. In Fig. 1 the gradient
vector has dimension l = 2, and it is clear that this idea

1Assume that k|(dn) and (d
k
n− s)|l.

Communication-Computation Efficient Gradient Coding

W1 W2 W3

D1 D2 D3

Master

[
g1(0)
g1(1)

] [
g2(0)
g2(1)

] [
g3(0)
g3(1)

]

[
g1(0) + g2(0) + g3(0)
g1(1) + g2(1) + g3(1)

]

(a) Naive Synchronous Gradient Descent: each worker trans-
mits two scalars, and Master needs to wait for the results from
all three workers.

W1 W2 W3

D2

D1

D3

D2

D1

D3

Master

[
g1(0) + 2g2(0)
g1(1) + 2g2(1)

] [
g2(0) − g3(0)
g2(1) − g3(1)

] [
g1(0) + 2g3(0)
g1(1) + 2g3(1)

]

[
g1(0) + g2(0) + g3(0)
g1(1) + g2(1) + g3(1)

]

(b) Straggler-efficient gradient coding (Tandon et al., 2017):
each worker transmits two scalars, and Master can calculate
the sum vector from the results of any two workers.

W1 W2 W3

D2

D1

D3

D2

D1

D3

Master

g1(0) + g2(0) − g2(1) g2(1) + g3(0) g1(1) + g3(1) − g3(0)

[
g1(0) + g2(0) + g3(0)
g1(1) + g2(1) + g3(1)

]

(c) Communication-efficient gradient coding (this paper): each
worker only transmits one scalar, and Master needs to wait for
the results from all three workers.

(d) Both straggler- and communication- efficient gradi-
ent coding (this paper): each worker transmits a lower
dimensional vector, and Master only needs to wait for
the results from a subset of workers. See Fig. 2 for an
example where we can simultaneously mitigate strag-
gler effects and reduce communication cost.

Figure 1: The idea of communication efficient gradient coding.

extends to gradient vectors of any dimension (by padding a
zero when l is odd). To quantify the tradeoff, we introduce
the following definition.

Definition 1. Given n and k, we say that a triple of nonneg-
ative integers (d, s,m) satisfying that 1 ≤ d ≤ k andm ≥ 1
is achievable2 if there is a distributed synchronous gradient
descent scheme such that: 1) Each worker is assigned d
data subsets; 2) There are n functions f1, f2, . . . , fn from
Rdl to Rl/m such that the gradient vector g1+g2+ · · ·+gk
can be recovered from any n − s out of the following n
vectors

fi(gi1 , gi2 , . . . , gid), i = 1, 2, . . . , n, (3)

where i1, i2, . . . , id are the indices of datasets assigned to
worker Wi; 3) f1, f2, . . . , fn are linear functions. In other
words, fi(gi1 , gi2 , . . . , gid) is a linear combination of the
coordinates of the partial gradient vectors gi1 , gi2 , . . . , gid .

Theorem 1. Let k, n be positive integers. A triple (d, s,m)
is achievable if and only if

d

k
≥ s+m

n
. (4)

2Throughout we assume that m|l. Since l is typically very
large and m is relatively small, the condition m|l can always be
satisfied by padding a few zeroes at the end of the gradient vectors.

The converse proof can be found in the full version (Ye
& Abbe, 2018), and the achievability scheme is given in
Section 3. Note that the special case m = 1 in Theorem 1
is the same as the case considered in (Tandon et al., 2017;
Halbawi et al., 2017; Raviv et al., 2017). We also remark
that although (4) looks very similar to Theorem 1 in (Dutta
et al., 2016), their coding scheme can not be used to achieve
(4) with equality when m > 1. In (Ye & Abbe, 2018), we
discuss the differences between our work and (Dutta et al.,
2016) in detail. In particular, we show that the constraint in
our problem is stronger than that in (Dutta et al., 2016).

Notice that the computation load at each worker is known by
d
k , not the value of k itself. We are interested in achieving
the optimal computation load in (4), and the value of k does
not matter. Therefore we will assume that k = n for the
remainder of this paper. Under this assumption, (4) has the
following simple form

d ≥ s+m. (5)

In Fig. 2 we take n = k = 5, d = 3, l = 2, and show the
implementation for two different choices of the pair (s,m).
The communication cost of Fig. 2b is half of that of Fig. 2a,
but the system in Fig. 2b can only tolerate one straggler
while the system in Fig. 2a can tolerate two stragglers. Table

Communication-Computation Efficient Gradient Coding

W1 W2 W3 W4 W5

D3

D2

D1

D4

D3

D2

D5

D4

D3

D1

D5

D4

D2

D1

D5

Master

[
g1(0) + 3g2(0) + 6g3(0)
g1(1) + 3g2(1) + 6g3(1)

] [
2g2(0) + 6g3(0) − 3g4(0)
2g2(1) + 6g3(1) − 3g4(1)

] [
g3(0) − 2g4(0) + g5(0)
g3(1) − 2g4(1) + g5(1)

] [
3g4(0) − 6g5(0) − 2g1(0)
3g4(1) − 6g5(1) − 2g1(1)

] [
6g5(0) + 3g1(0) + g2(0)
6g5(1) + 3g1(1) + g2(1)

]

[
g1(0) + g2(0) + g3(0) + g4(0) + g5(0)
g1(1) + g2(1) + g3(1) + g4(1) + g5(1)

]

(a) s = 2,m = 1: Each worker transmits two scalars, and Master can calculate the sum vector from the results of any 3 workers.
W1 W2 W3 W4 W5

D3

D2

D1

D4

D3

D2

D5

D4

D3

D1

D5

D4

D2

D1

D5

Master

g1(0) + 3g2(0) + 6g3(0)
−3g1(1) − 3g2(1) + 6g3(1)

2g2(0) + 6g3(0) − 3g4(0)
+12g3(1) + 3g4(1)

g3(0) − 2g4(0) + g5(0)
+3g3(1) − 3g5(1)

3g4(0) − 6g5(0) − 2g1(0)
+3g4(1) + 12g5(1)

6g5(0) + 3g1(0) + g2(0)
−6g5(1) + 3g1(1) + 3g2(1)

[
g1(0) + g2(0) + g3(0) + g4(0) + g5(0)
g1(1) + g2(1) + g3(1) + g4(1) + g5(1)

]

(b) s = 1,m = 2: Each worker only transmits one scalar, and Master can calculate the sum vector from the results of any 4 workers.
Table 2 shows how to do this calculation.

Figure 2: Tradeoff between communication cost and straggler tolerance

Table 2: Calculate the sum gradient vector in Fig. 2b when there is one straggler.

Straggler Calculate g1(0) + g2(0) + g3(0) + g4(0) + g5(0) Calculate g1(1) + g2(1) + g3(1) + g4(1) + g5(1)

W1
1
2f2 − 2f3 − 1

2f4 − 1
6f2 + f3 +

1
2f4 +

1
3f5

W2
1
4f1 −

1
2f3 +

1
4f5 − 1

12f1 +
1
2f3 +

1
3f4 +

1
4f5

W3
1
3f1 −

1
6f2 +

1
6f4 +

1
3f5 − 1

6f1 +
1
6f2 +

1
6f4 +

1
6f5

W4
1
4f1 −

1
2f3 +

1
4f5 − 1

4f1 +
1
3f2 −

1
2f3 +

1
12f5

W5
1
2f2 − 2f3 − 1

2f4 − 1
3f1 +

1
2f2 − f3 −

1
6f4

2 below shows how to calculate the sum gradient vector
in Fig. 2b when there is one straggler. In the table we
abbreviate fi(gi1 , gi2 , . . . , gid) in (3) as fi, i.e., fi is the
transmitted vector of Wi.

Numerical Stability: In the proof of Theorem 1, we use
Vandermonde matrices and assume that all the computations
have infinite precision, which is not possible in real world
applications. According to our experimental results, the
stability issue of Vandermonde matrices can be ignored up to
n = 20, which covers the regime considered in most related
works (Dutta et al., 2016; Tandon et al., 2017). However,
beyond that we need to design numerically stable coding
schemes and give up the optimal trade-off (5) between d, s
and m. In the full version (Ye & Abbe, 2018) we find an
achievable region for which the condition numbers of all
operations in the gradient reconstruction phase are upper
bounded by a given value κ, so that the numerical stability
can be guaranteed.

3. Coding Scheme
In this section, we present a coding scheme achieving (5)
with equality, i.e., the parameters in our scheme satisfy
d = s + m. First we introduce two binary operations
⊕ and 	 over the set [n]. For a, b ∈ [n], define a ⊕ b :=
((a+b−1) mod n)+1 and a	b := ((a−b−1) mod n)+1.
In our scheme, each worker Wi is assigned with d data
subsets Di, Di⊕1, Di⊕2, . . . , Di⊕(d−1). This is equivalent
to say that each data subset Di is assigned to d workers
Wi,Wi	1,Wi	2, . . . ,Wi	(d−1).

Let θ1, θ2, . . . , θn be n distinct real numbers. Define n
polynomials pi, i ∈ [n],

pi(x) =

n−d∏
j=1

(x− θi⊕j). (6)

Before proceeding further, let us explain the meaning of
θi and pi. Each θi is associated with the worker Wi, and
each pi is associated with the dataset Di. In our scheme,

Communication-Computation Efficient Gradient Coding

pj(θi) 6= 0 means that worker Wi needs the value of gj to
calculate fi(gi1 , gi2 , . . . , gid), and therefore Dj is assigned
to Wi. On the other hand, pj(θi) = 0 means that Dj is not
assigned to Wi. By (6), we can see that each dataset Di is
NOT assigned to Wi⊕1,Wi⊕2, . . . ,Wi⊕(n−d).

Next we construct an (mn) × (n − s) matrix B = (bij)
from the polynomials pi, i ∈ [n] defined in (6). Let pi,j , j =
0, 1, . . . , n− s− 1 be the coefficients of the polynomial pi,
i.e., pi(x) =

∑n−s−1
j=0 pi,jx

j . Since deg(pi) = n − d and
d = s +m ≥ s + 1, we have pi,n−d = 1 and pi,n−d+1 =
pi,n−d+2 = · · · = pi,n−s−1 = 0. For every i ∈ [n], we
define m polynomials p(1)i , p

(2)
i , . . . , p

(m)
i recursively:

p
(1)
i (x) := pi(x),

p
(u)
i (x) := xp

(u−1)
i (x)− p(u−1)i,n−d−1p

(1)
i (x),

u = 2, 3, . . . ,m,

(7)

where p(u)i,j , j = 0, 1, . . . , n − s − 1 are the coefficients

of p(u)i , i.e., p(u)i (x) =
∑n−s−1
j=0 p

(u)
i,j x

j . Clearly, p(u)i is a

polynomial of degree deg(p
(u)
i) = n − d + u − 1, and its

leading coefficient is 1, i.e.,

p
(u)
i,n−d+u−1 = 1 for u = 1, 2, . . . ,m,

p
(u)
i,n−d+u = p

(u)
i,n−d+u+1 = · · · = p

(u)
i,n−s−1 = 0

for u = 1, 2, . . . ,m− 1.

(8)

It is also clear that pi|p(u)i for all u ∈ [m] and all i ∈ [n],
so for all u ∈ [m] and all i ∈ [n], we have p(u)i (θi⊕1) =

p
(u)
i (θi⊕2) = · · · = p

(u)
i (θi⊕(n−d)) = 0, which is equiva-

lent to

p
(u)
i	1(θi) = p

(u)
i	2(θi) = · · · = p

(u)
i	(n−d)(θi) = 0 (9)

for all u ∈ [m] and all i ∈ [n]. By a simple induction on u,
one can further see that for u = 2, 3, . . . ,m,

p
(u)
i,n−d = p

(u)
i,n−d+1 = · · · = p

(u)
i,n−d+u−2 = 0. (10)

We can now specify the entries of B as follows: for all
i ∈ [n], u ∈ [m], j ∈ {1, 2, . . . , n− s}, let

b(i−1)m+u,j = p
(u)
i,j−1. (11)

By this definition, the following identity holds for every
x ∈ R:

B[1 x x2 . . . xn−s−1]T

=[P1(x) P2(x) . . . Pn(x)]T ,
(12)

where the m-dimensional row vectors Pi(x) :=

[p
(1)
i (x) p

(2)
i (x) . . . p

(m)
i (x)] for all i ∈ [n].

Moreover, according to (8) and (10), the submatrix

B[(n−d+1):(n−s)] consisting of the last m columns of B
is

B[(n−d+1):(n−s)] = [Im Im . . . Im]T , (13)

where Im is the m × m identity matrix, and there are n
identity matrix on the right-hand side of (13).

Recall that we assume m|l throughout the pa-
per. For every v = 0, 1, . . . , l/m − 1 and
j ∈ [n], define an m-dimensional vector y

(j)
v :=

[gj(vm) gj(vm+ 1) . . . gj(vm+m− 1)]. For
every v = 0, 1, . . . , l/m− 1, define an (mn)-dimensional
vector

zv := [y
(1)
v y

(2)
v . . . y

(n)
v]. (14)

According to (12),

zvB[1 θi θ2i . . . θn−s−1i]T

=

n∑
j=1

m∑
u=1

p
(u)
j (θi)gj(vm+ u− 1)

=

d−1∑
j=0

m∑
u=1

p
(u)
i⊕j(θi)gi⊕j(vm+ u− 1),

(15)

where the second equality follows from (9).

Now we are ready to define the transmitted vector
fi(gi, gi⊕1, . . . , gi⊕(d−1)) for each worker Wi, i ∈ [n]:

fi(gi, gi⊕1, . . . , gi⊕(d−1)) :=
z0
z1
...

zl/m−1

B[1 θi θ2i . . . θn−s−1i]T .
(16)

By (15), the value of fi(gi, gi⊕1, . . . , gi⊕(d−1)) indeed only
depends on the values of gi, gi⊕1, . . . , gi⊕(d−1).

To complete the description of our coding scheme, we only
need to show that for any subset F ⊆ [n] with cardinality
|F| = n − s, we can calculate g1 + g2 + · · · + gn from
{fi(gi, gi⊕1, . . . , gi⊕(d−1)) : i ∈ F}. Without loss of gen-
erality let us assume that F = {1, 2, . . . , n− s}. Define the
following (n− s)× (n− s) matrix

A :=


1 1 . . . 1
θ1 θ2 . . . θn−s
...

...
...

...
θn−s−11 θn−s−12 . . . θn−s−1n−s

 . (17)

Let the column vectors {e1, e2, . . . , en−s} be the standard
basis of Rn−s, i.e., all coordinates of ei are 0 except the ith
coordinate which is 1. By (13), for all 0 ≤ v ≤ l/m − 1
and all u ∈ [m],

zvBen−d+u =

n∑
j=1

gj(vm+ u− 1). (18)

Communication-Computation Efficient Gradient Coding

Figure 3: Avg. time per iteration for n = 10, 15, 20 workers, s∗ means that it is the optimal value of s for that choice of m

Figure 4: AUC vs. Time for n = 10, 15, 20 workers. The curves corresponding to m > 1 are always on the left side of the
curves corresponding to m = 1 and the naive scheme, which means that our schemes achieve the target generalization error
much faster than the other schemes.

According to (16), from {fi(gi, gi⊕1, . . . , gi⊕(d−1)) : i ∈
F} we can obtain the values of

zvBA for all 0 ≤ v ≤ l/m− 1. (19)

Since A is invertible, we can calculate zvBen−d+u for all
0 ≤ v ≤ l/m− 1 and all u ∈ [m] from the vectors in (19)
by multiplying A−1en−d+u to the right. By (18),

{zvBen−d+u : v ∈ {0, 1, . . . , l/m− 1}, u ∈ [m]}

={
n∑
j=1

gj(vm+ u− 1) : v ∈ {0, 1, . . . , l/m− 1}, u ∈ [m]}

={
n∑
j=1

gj(i) : i ∈ {0, 1, . . . , l − 1}}.

Therefore we conclude that the sum vector g1+g2+· · ·+gn
can be calculated from {fi(gi, gi⊕1, . . . , gi⊕(d−1)) : i ∈
F} whenever |F| = n − s. Thus we have shown that our
coding scheme satisfies all three conditions in Definition 1,
and this completes the proof of the achievability part of
Theorem 1. Efficient implementation and numerical stability
of this coding scheme are discussed in the full version (Ye
& Abbe, 2018).

4. Experiments on Amazon EC2 Clusters
In this section, we use our proposed gradient coding scheme
to train a logistic regression model on the Amazon Em-

ployee Access dataset from Kaggle3, and we compare the
running time and Generalization AUC4 between our method
and baseline approaches. More specifically, we compare our
scheme against: (1) the naive scheme, where the data is uni-
formly divided among all workers without replication and
the master node waits for all workers to send their results
before updating model parameters in each iteration, and (2)
the coding schemes in (Tandon et al., 2017; Halbawi et al.,
2017; Raviv et al., 2017), i.e., the special case of m = 1 in
our scheme. Note that in (Tandon et al., 2017) the authors
implemented their methods (which is the special case of
m = 1 in this paper) to train the same model over the same
dataset.

We used Python with mpi4py package to implement
our gradient coding schemes proposed in Section 3,
where we chose {θ1, θ2, . . . , θn} as {±(1 + i/2), i =
0, 1, 2, . . . , n/2 − 1} for even n and {0,±(1 + i/2), i =
0, 1, 2, . . . , (n− 1)/2− 1} for odd n. We used t2.micro
instances on Amazon EC2 as worker nodes and a single
c3.8xlarge instance as the master node.

As a common preprocessing step, we converted the cate-
gorical features in the Amazon Employee Access dataset to

3https://www.kaggle.com/c/amazon-employee-access-
challenge

4AUC is short for area under the ROC-curve. The
Generalization AUC can be efficiently calculated using the
“sklearn.metrics.auc” function in Python.

Communication-Computation Efficient Gradient Coding

Table 3: E[Ttot] for different choices of d and m

H
HHHHm

d
1 2 3 4 5 6 7 8

1 36.1138 29.2288 27.3351 26.7469 26.4574 26.0891 25.4172 24.1063
2 23.1036 21.3994 21.5369 21.9114 22.2099 22.3189 22.1405
3 22.2604 21.3697 21.5749 21.9095 22.1707 22.2772
4 24.8036 23.2793 23.1114 23.1862 23.2611
5 28.5800 25.9827 25.2862 25.0141
6 32.8664 29.0745 27.7904
7 37.3977 32.3759
8 42.0638

binary features by one-hot encoding, which can be easily
realized in Python. After one-hot encoding with interac-
tion terms, the dimension of parameters in our model is
l = 343474. For all three schemes (our proposed scheme,
the schemes in (Tandon et al., 2017; Halbawi et al., 2017; Ra-
viv et al., 2017) and the naive scheme), we usedN = 26220
training samples and adopted Nesterov’s Accelerated Gradi-
ent (NAG) descent (Bubeck, 2015) to train the model. These
experiments were run on n = 10, 15, 20 worker nodes.

In Fig. 3, we compare average running time per iteration
for different schemes. For coding schemes proposed in
(Tandon et al., 2017; Halbawi et al., 2017; Raviv et al.,
2017), i.e., coding schemes corresponding to m = 1 in our
paper, we choose the optimal value of s such that it has
the smallest running time among all possible choices of
(m = 1, s). For coding schemes proposed in this paper, i.e.,
schemes withm > 1, we choose two pairs of (m, s) with the
smallest running time among all possible choices. We can
see that for all three choices of n, our scheme outperforms
the schemes in (Tandon et al., 2017; Halbawi et al., 2017;
Raviv et al., 2017) by at least 23% and outperforms the
naive scheme by at least 32%. We then plot generalization
AUC vs. running time for these choices of (m, s) in Fig. 4.
The curves corresponding to m > 1 are always on the left
side of the curves corresponding to m = 1 and the naive
scheme, which means that our schemes achieve the target
generalization error much faster than the other two schemes.

5. Analysis of the Total Computation and
Communication Time

In this section we analyze the total runtime of our cod-
ing scheme for different choices of the design parameters
(d, s,m) based on a probabilistic model. Following the
probabilistic model of runtime in (Lee et al., 2016), we
assume that both computation time and communication
time have shifted exponential distribution, and the total
runtime is the sum of the computation time and the com-

munication time.5 Formally speaking, for i, j ∈ [n], let
T

(1)
i,j be the computation time of data subset Dj for worker

Wi. Similarly, for i ∈ [n], let T (2)
i be the communica-

tion time for worker Wi to send a vector of dimension
l. We make the following assumption: 1) For i ∈ [n],
T

(1)
i,1 = T

(1)
i,2 = · · · = T

(1)
i,n = T

(1)
i , where the random

variables T (1)
i , i ∈ [n] are i.i.d. with distribution

Pr(T
(1)
i ≤ t) = 1− e−λ1(t−t1),∀t ≥ t1;

2) The communication time for worker Wi to send a vector
of dimension l′ is (l′/l)T

(2)
i , where the random variables

T
(2)
i , i ∈ [n] are i.i.d. with distribution

Pr(T
(2)
i ≤ t) = 1− e−λ2(t−t2),∀t ≥ t2;

3) The random variables T (1)
i , i ∈ [n] and T (2)

i , i ∈ [n] are
mutually independent.

In the Table 3 we take n = k = 8, λ1 = 0.8, λ2 = 0.1, t1 =
1.6, t2 = 6, and we list E[Ttot] for all possible choices of
d and m. Recall that we take s = d−m to minimize Ttot.
We can see that d = 4,m = 3 is the optimal choice, whose
total runtime is 21.3697. The runtime for uncoded scheme
(d = m = 1) is 36.1138, and the best achievable runtime for
the coding schemes in (Tandon et al., 2017; Halbawi et al.,
2017; Raviv et al., 2017) is 24.1063 (d=8,m=1). Therefore
our coding scheme outperforms the uncoded scheme by
41% and outperforms the schemes in (Tandon et al., 2017;
Halbawi et al., 2017; Raviv et al., 2017) by 11%.

Acknowledgements
This work was partly supported by NSF CAREER Award
CCF-1552131, NSF Center for the Science of Information

5Since the total number of samples N in large-scale machine
learning tasks is of order hundreds of millions, we have N � n in
our problem. The computation time is of order Θ(Nl) while the
reconstruction time is of order O(nl). Therefore we can ignore
the reconstruction phase at the master node when estimating the
total runtime.

Communication-Computation Efficient Gradient Coding

CCF-0939370, and the Google Faculty Research Award.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
et al. Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. 2016. arXiv:1603.04467.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. In Advances in Neural Infor-
mation Processing Systems 30, pp. 1707–1718. 2017.

Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica,
I. Effective straggler mitigation: Attack of the clones. In
NSDI, volume 13, pp. 185–198, 2013.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Foundations and Trends R© in Machine Learning, 8
(3-4):231–357, 2015.

Charles, Z., Papailiopoulos, D., and Ellenberg, J. Approx-
imate gradient coding via sparse random graphs. 2017.
arXiv:1711.06771.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J.,
and Ramchandran, K. Network coding for distributed
storage systems. IEEE Trans. Inform. Theory, 56(9):
4539–4551, 2010.

Dutta, S., Cadambe, V., and Grover, P. Short-dot: Com-
puting large linear transforms distributedly using coded
short dot products. In Advances In Neural Information
Processing Systems, pp. 2100–2108, 2016.

Dutta, S., Cadambe, V., and Grover, P. Coded convolution
for parallel and distributed computing within a deadline.
In 2017 IEEE International Symposium on Information
Theory (ISIT), pp. 2403–2407. IEEE, 2017.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pp. 1737–1746, 2015.

Halbawi, W., Azizan-Ruhi, N., Salehi, F., and Hassibi,
B. Improving distributed gradient descent using Reed-
Solomon codes, 2017. arXiv:1706.05436.

Joshi, G., Soljanin, E., and Wornell, G. Queues with re-
dundancy: Latency-cost analysis. ACM SIGMETRICS
Performance Evaluation Review, 43(2):54–56, 2015.

Karakus, C., Sun, Y., Diggavi, S., and Yin, W. Straggler mit-
igation in distributed optimization through data encoding.
In Advances in Neural Information Processing Systems,
pp. 5440–5448. 2017.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding up distributed machine learn-
ing using codes. In 2016 IEEE International Sympo-
sium on Information Theory (ISIT), pp. 1143–1147. IEEE,
2016.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 1, pp. 3, 2014a.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-
munication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, pp. 19–27, 2014b.

Li, S., Maddah-Ali, M. A., and Avestimehr, A. S. Coded
mapreduce. In 53rd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), pp. 964–
971. IEEE, 2015.

Li, S., Kalan, S. M. M., Avestimehr, A. S., and
Soltanolkotabi, M. Near-optimal straggler mitigation for
distributed gradient methods. 2017a. arXiv:1710.09990.

Li, S., Maddah-Ali, M. A., Yu, Q., and Avestimehr, A. S. A
fundamental tradeoff between computation and commu-
nication in distributed computing. IEEE Transactions on
Information Theory, 2017b.

Maddah-Ali, M. A. and Niesen, U. Decentralized
coded caching attains order-optimal memory-rate trade-
off. IEEE/ACM Transactions On Networking, 23(4):1029–
1040, 2015.

Raviv, N., Tamo, I., Tandon, R., and Dimakis, A. G. Gradi-
ent coding from cyclic MDS codes and expander graphs,
2017. arXiv:1707.03858.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In Advances in neural information processing systems,
pp. 693–701, 2011.

Shah, N. B., Lee, K., and Ramchandran, K. When do
redundant requests reduce latency? IEEE Transactions
on Communications, 64(2):715–722, 2016.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N.
Gradient coding: Avoiding stragglers in distributed learn-
ing. In International Conference on Machine Learning,
pp. 3368–3376, 2017.

Communication-Computation Efficient Gradient Coding

Wang, D., Joshi, G., and Wornell, G. Efficient task repli-
cation for fast response times in parallel computation.
In ACM SIGMETRICS Performance Evaluation Review,
volume 42, pp. 599–600. ACM, 2014.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in Neural
Information Processing Systems, pp. 1508–1518. 2017.

Yang, Y., Grover, P., and Kar, S. Coding method for parallel
iterative linear solver. 2017. arXiv:1706.00163.

Ye, M. and Abbe, E. Communication-computation efficient
gradient coding. 2018. arXiv:1802.03475.

Ye, M. and Barg, A. Explicit constructions of high-rate
MDS array codes with optimal repair bandwidth. IEEE
Trans. Inform. Theory, 63(4):2001–2014, 2017.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Poly-
nomial codes: an optimal design for high-dimensional
coded matrix multiplication. In Advances in Neural In-
formation Processing Systems, pp. 4406–4416. 2017a.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. Coded
fourier transform. 2017b. arXiv:1710.06471.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S.
Straggler mitigation in distributed matrix multiplica-
tion: Fundamental limits and optimal coding. 2018.
arXiv:1801.07487.

Zhu, J., Pu, Y., Gupta, V., Tomlin, C., and Ramchandran,
K. A sequential approximation framework for coded
distributed optimization. 2017. arXiv:1710.09001.

	Introduction
	Related Literature

	Problem Formulation and Main Results
	Coding Scheme
	Experiments on Amazon EC2 Clusters
	Analysis of the Total Computation and Communication Time

