
Supplimentary Material for Variable Selection via Penalized Neural Network:
a Drop-Out-One Loss Approach

Mao Ye * 1 Yan Sun * 1

1. Proof of Theorem 1
1.1. Irrelevant Weights

We use `η to represent `η(y,x) to simplify. ∀j ∈ Sc, by Taylor Theorem,

Pn(`η̂−j − `η̂)

= ∇Twj,∗Pn`η |η=η̂ (−ŵj,∗) +
1

2
ŵT
j,∗∇2

wj,∗Pn`η |η=η̂∗ ŵj,∗

= ∇Twj,∗

−λ1

p∑
j=1

Ωα(wj,∗)

 |η=η̂ (−ŵj,∗) +
1

2
ŵT
j,∗∇2

wj,∗Pn`η |η=η̂∗ ŵj,∗

=

sign (ŵj,∗)λ1(1− α) + λ1α
ŵj,∗√∑m
i=1 ŵ

2
j,i


T

ŵj,∗

+
1

2
ŵT
j,∗∇2

wj,∗∇
T
wj,∗Pn`η |η=η̂∗ ŵj,∗,

where η̂∗ = ξη̂ + (1− ξ)η̂−j for some ξ ∈ [0, 1]. By Assumption 2 and Assumption 3 and Theorem 1 and Theorem 2 in
(Feng & Simon, 2017), we have

{
sign (ŵj,∗)λ1(1− α) + λ1α

ŵj,∗√∑m
i=1 ŵ

2
j,i

}T
ŵj,∗ = Op

(
λ1

√
log p(logn)

3
2√

n

)
,

1
2ŵ

T
j,∗∇2

wj,∗Pn`η |η=η̂∗ ŵj,∗ = Op(
log p(logn)3

n).

Thus we conclude that
∣∣∣∆nL(η̂−j , η̂)

∣∣∣ = Op(
log3 n log p

n), ∀j ∈ Sc.

1.2. Relevant Weights

We first introduce the following claim and lemma.

Claim1: Let S−j = S − {j}, define

Eq0(S−j) = {η : η = arg min
η

P`η, s.t. supp(η) = S−j}.

*Equal contribution 1Department of Statistics, Purdue University, West Lafayette, IN, USA. Correspondence to: Mao Ye
<ye207@purdue.edu>.

Proceedings of the 35 th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the
author(s).

Supplimentary Material

Then min
j∈S

P(`η0(S−j) − `η0
) > 0, where η0(S−j) ∈ Eq0(S−j).

This claim can be easily obtained by Assumption 4. We denote

C ≡ min
j∈S

P(`η0(S−j) − `η0
).

Lemma1: LetX be a random variable such that P (|X| > t) ≤ 2 exp(− t2

2σ2
), then for any positive integer K ≥ 1 we have

E(|X|K) ≤ (2σ2)
K
2 KΓ(K2).

Use the property of sub-gaussian random variable, this lemma can be easily obtained.

∀j ∈ S, we have,

Pn(`η̂−j − `η̂)

= Pn`η̂−j − Pn`η(η̂)
0

+ Pn`η(η̂)
0
− Pn`η̂

= (Pn − P)(`η̂−j − `η̂) + P(`η̂−j − `
η

(η̂)
0

) + P(`
η

(η̂)
0
− `η̂)

≥ (Pn − P)(`η̂−j − `η̂) + P(`η0(S−{j}) − `η(η̂)
0

) + P(`
η

(η̂)
0
− `η̂)

≥ (Pn − P)(`η̂−j − `η̂) + P(`
η

(η̂)
0
− `η̂) + C.

Since
∣∣∣P(`

η
(η̂)
0
− `η̂)

∣∣∣ = Op(
log p(logn)

3
2

n) by Theorem 1 and Theorem 2 in (Feng & Simon, 2017), we then study the
converge rate of (Pn − P)(`η̂−j − `η̂). By the definition of the loss function, for any η1,η2 ∈ Θ, we have∣∣(Pn − P)(`η1

− `η2
)
∣∣

=
∣∣∣(Pn − P)

{
−2y(fη1

− fη2
) + (f2

η1
− f2

η2
)
}∣∣∣

=
∣∣∣(Pn − P)

{
−2(f∗ + ε)(fη1

− fη2
) + (f2

η1
− f2

η2
)
}∣∣∣

=
∣∣∣(Pn − P)

{
−2ε(fη1

− fη2
) +

(
f2
η1
− f2

η2
− 2f∗(fη1

− fη2
)
)}∣∣∣

≤
∣∣(Pn − P)

{
−2ε(fη1

− fη2
)
}∣∣+

∣∣∣(Pn − P)
{
f2
η1
− f2

η2
− 2f∗(fη1

− fη2
)
}∣∣∣ .

Using Chebyshev inequality and by the boundedness of fη on X we have,

sup
η1,η2∈Θ

P
(
(Pn − P)

{
−2ε(fη1

− fη2
)
}
≥ a

)
≤ sup

η1,η2∈Θ

V ar
{
−2ε(fη1

− fη2
)
}

na2

≤ sup
η1,η2∈Θ

E
{

4ε2(fη1
− fη2

)2
}

na2

≤ 4(mKλ0
c1)2E(ε2)

na2

≤ 16(mKλ0
c1)2σ2

na2
,

where the last inequality is obtained by Lemma1. Thus we have

(Pn − P)
{
−2ε(fη1

− fη2
)
}

= Op(
1√
n

).

Supplimentary Material

Similarly, use Chebyshev inequality again, we also have

(Pn − P)
{
f2
η1
− f2

η2
− 2f∗(fη1

− fη2
)
}

= Op(
1√
n

).

We conclude that ∆nL(η̂−j , η̂) ≥ C +Op(
1√
n
∨ log3 n log p

n), ∀j ∈ S.

2. Proof of Theorem 2
2.1. Irrelevant Weights

∀j ∈ Sc, By mean value theorem

(Pñ − Pn)(`η̂−j − `η̂)

= (Pñ − Pn)∇Twj,∗`η |η=η̂∗ (−ŵj,∗)

= (Pñ − Pn)(−2(y − fη)∇Twj,∗fη |η=η̂∗ (−ŵj,∗))

= (Pñ − Pn)(−2(y − fη)∇Twj,∗fη |η=η̂∗)(−ŵj,∗)

= (Pñ − P)(−2(y − fη)∇Twj,∗fη |η=η̂∗)(−ŵj,∗)

+(P− Pn)(−2(y − fη)∇Twj,∗fη |η=η̂∗)(−ŵj,∗)

where η̂∗ = ξη̂+ (1− ξ)η̂−j for some ξ ∈ [0, 1]. Recall that fη(x) = βTψ(wTx+ t) + b, ‖t‖22 + ||β||22 + b2 ≤ Kλ0 , by

Assumption 2 and chain rule, it is easy to show that sup
η1,η2∈Θ

∣∣∣∇Twj,∗fη∣∣∣ ≤ c2 for some constant c2. Using the condition

ñ = O(n), Chebyshev inequality and the same procedure in proof of Theorem 1, we have

(Pñ − P)(−2(y − fη)∇Twj,∗fη |η=η̂∗) = Op(
1√
n

),

(P− Pn)(−2(y − fη)∇Twj,∗fη |η=η̂∗) = Op(
1√
n

).

By Theorem 1 and Theorem 2 in (Feng & Simon, 2017), we have ‖ŵj,∗‖1 = Op(
√

log p(logn)
3
2√

n
). Hence

(Pñ − Pn)(`η̂−j − `η̂) = Op(
1√
n

)×Op(
√

log p(log n)
3
2

√
n

) = Op(

√
log p(log n)

3
2

n
).

By Theorem 1, we have Pn(`η̂−j − `η̂) = Op(
log3 n log p

n). Hence∣∣∣∆ñL(η̂−j , η̂)
∣∣∣ = |Pñ(`η̂−j − `η̂)|

= |(Pñ − Pn)(`η̂−j − `η̂) + Pn(`η̂−j − `η̂)|

= Op(
log3 n log p

n
), ∀j ∈ Sc.

2.1.1. RELEVANT WEIGHTS

∀j ∈ S

(Pñ − Pn)(`η̂−j − `η̂)

= (Pñ − Pn)(−2y(fη̂−j − fη̂) + (f2
η̂−j − f2

η̂))

= (Pñ − P)(−2y(fη̂−j − fη̂) + (f2
η̂−j − f2

η̂))

+(P− Pn)(−2y(fη̂−j − fη̂) + (f2
η̂−j − f2

η̂))

Supplimentary Material

Similar to the proof of Theorem 1, we have

(Pñ − P)(−2y(fη̂−j − fη̂) + (f2
η̂−j − f2

η̂)) = Op(
1√
n

),

(P− Pn)(−2y(fη̂−j − fη̂) + (f2
η̂−j − f2

η̂)) = Op(
1√
n

).

By Theorem 1,

Pn(`η̂−j − `η̂) = ∆nL(η̂−j , η̂) ≥ C +Op(
1√
n
∨ log3 n log p

n
), ∀j ∈ S.

Hence

∆ñL(η̂−j , η̂) = (Pñ − Pn)(`η̂−j − `η̂) + Pn(`η̂−j − `η̂) ≥ C +Op(
1√
n
∨ log3 n log p

n
), ∀j ∈ S.

As mentioned in the paper, Theorem 2 directly implies Corollary 3, thus we omit the proof of Corollary 3.

3. Proof of Corollary 4
3.1. Irrelevant groups

Recall that Sg = {i, gi ∩ S 6= ∅}. Therefore ∀j ∈ Scg, i ∈ gj , we have i /∈ S. By Theorem 1 and Theorem2 in (Feng &

Simon, 2017), we have
∑
i∈gj ‖ŵi,∗‖1 = Op(

√
log p(logn)

3
2√

n
). In the proof of Theorem 1 and Theorem 2, by replacing partial

derivative with respect to ŵj,∗ with partial derivative with respect to ŵgj ,∗(here we use ŵgj ,∗to represent {ŵi,∗, i ∈ gj}),
we can use the same procedure to prove that

∣∣∆ñL(η̂−gj , η̂)
∣∣ = Op(

log3 n log p
n), ∀j ∈ Scg .

3.2. Relevant groups

Recall that suppg(η) = {j :
∑
i∈gj ‖wi,∗‖2 6= 0}. ∀j ∈ Sg, by Assumption 4*, we have ∀η0 ∈ Eq0,

∑
i∈gj ‖wi,∗‖2 6= 0.

Similar to the proof of Theorem 1, we can have the following claim:

Claim 2: Let S−gjg = Sg − {j}, define

Eq0(S−gjg) = {η : η = arg min
η

P`η, s.t. suppg(η) = S−gjg }.

Then min
j∈Sg

P(`
η0(S

−gj
g)
− `η0

) > 0, where η0(S
−gj
g) ∈ Eq0(S

−gj
g).

We denote Cg ≡ min
j∈S

P(`η0(S−j) − `η0
), Cg is a positive constant.

Note that in the proof of Theorem 1, our proof for convergence properties like (Pn − P)
{
−2ε(fη1

− fη2
)
}

= Op(
1√
n

),

(Pn − P)
{
f2
η1
− f2

η2
− 2f∗(fη1

− fη2
)
}

= Op(
1√
n

), etc. is for all η1,η2 ∈ Θ. By replacing η̂−j with η̂−gj , we can use

the same procedure to prove that ∆ñL(η̂−gj , η̂) ≥ Cg +Op(
1√
n
∨ log3 n log p

n), ∀j ∈ Sg.

Therefore, when thre(t) is properly tuned, we have Ŝg = Sg with probability 1 as n→∞.

4. Implement and tuning
GAM, RF, BART, SIS-SCAD, LROGL, SGL and Knockoffs are implemented using R packages gamsel, randomForest,
bart, SIS, grpregOverlap, SGL and knockoff . We use default setting recommended by the authors for tuning and
running.

For GAM, SIS-SCAD, LROGL, SGL, we tune the regularization parameters by grid search in a sufficiently large set
generated by the packages, which is the recommended way. The chosen parameters fall into the inner part of the set (not
boundary). The sets contain 50, 100, 100 and 20 values respectively. e.g, in simulation1, for GAM, the set is {0.00345,

Supplimentary Material

0.00380...3.303, 3.542} (uniformly distributed in log sense). Similar to (Bleich et al., 2014; Liang et al., 2017), for BART
and RF, we select variable (group) with variable (group) importance greater than 1%. See (Bleich et al., 2014; Liang
et al., 2017) for the definition of variable importance. The definition of group importance is simply adding up the variable
importance in one group and normalizing to make the sum of group importances equal to 1. We use a 500-tree RF (default
setting in the package) and try BART with 25, 35 and 50 trees. The best structure of BART is chosen based on validation set.
In knockoff, we use FDR=0.1, 0.2 and 0.3. In simulations, we give it correct distribution of variables. For the real data,
we use default method to construct knockoff of variables. The W stat is based on random forest. We implement the Spinn
and l1-NN following (Feng & Simon, 2017). λ1 of Spinn, l1-NN and our method is chosen from the same set in every
experiment. All the other parameters (including the ones for optimization algorithm) for the 3 methods are set to be the same
in every experiment. In all the experiments, we set α = 0.8 and initial lr = 0.0005. The tuning strategy for the proposed
method is as follows: we set thre(t) to be

thre(t) = threreg ∧
(
the δ − th percentile of ∆ñL(η̂−gj , η̂)

)
, t ∈ {1, ..., t̄} ,

thre(t) =

(
ϑ1∑d

j=1

(
∆ñL(η̂−gj , η̂)

)
+

∨ threreg

)
∧ ϑ2∑d

j=1

(
∆ñL(η̂−gj , η̂)

)
+

, t > t̄.

Here, we use threreg , ϑ1 and ϑ2 to regularize the threshold to make the algorithm more robust. The choose of threreg , ϑ1

and ϑ2 is not sensitive. A recommended setting is ϑ1 = 0.01 and ϑ2 = 0.025. We use this setting in all the experiments in
this article. The choice of δ and threreg depends on the dataset but the choice of the two tuning parameters is not sensitive.
This proposed tuning strategy, which is alternative to the one mentioned in the main text, allows us to avoid tuning δ and
threreg . And as mentioned in the main text, we can also set thre(t) = ϑ∑d

j=1(∆ñL(η̂−gj ,η̂))
+

, t > t̄ and tune ϑ. Some more

advanced technique such as (Liang & Zhang, 2008) can also be easily applied to determine the thre(t).

In simulation case 1 and case 2, the number of hidden units is set to be 6, λ0 = 0.0001, t̄ = 2 and δ = 95. In
simulation 1, λ1 is chosen from {0.025, 0.05, 0.1, 0.15, 0.2, 0.25} and threreg = 0.01. In simulation 2, λ1 is chosen from
{0.035, 0.05, 0.1, 0.15, 0.20, 0.25} and threreg = 0.025. In CCLE, Airfoil, CCPP and Boston λ0 = 0.00001, t̄ = 3,
δ = 30. In CCLE, Airfoil and CCPP, threreg = 0.001 and the number of hidden units is 3. In Boston, threreg = 0.1
and the he number of hidden units is set to be 2 (since we introduce nonlinear features). In CCLE, λ1 is chosen from
{0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. In Airfoil, λ1 is chosen from {0.06, 0.07...0.34, 0.35}. In CCPP, λ1 is chosen from
{0.01, 0.02, ..., 0.15}. In Boston, λ1 is chosen from {0.8, 0.09, ..., 0.2}. The chosen parameters fall inside the boundary of
the candidate set in all experiments.

References
Bleich, J., Kapelner, A., George, E. I., and Jensen, S. T. Variable selection for bart: An application to gene regulation. The

Annals of Applied Statistics, pp. 1750–1781, 2014.

Feng, J. and Simon, N. Sparse-input neural networks for high-dimensional nonparametric regression and classification.
arXiv preprint arXiv:1711.07592, 2017.

Liang, F. and Zhang, J. Estimating fdr under general dependence using stochastic approximation. Biometrika, 95(4):
961–977, 2008.

Liang, F., Li, Q., and Zhou, L. Bayesian neural networks for selection of drug sensitive genes. Journal of the American
Statistical Association, (just-accepted), 2017.

