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Abstract
We propose a variable selection method for high
dimensional regression models, which allows for
complex, nonlinear, and high-order interactions
among variables. The proposed method approxi-
mates this complex system using a penalized neu-
ral network and selects explanatory variables by
measuring their utility in explaining the variance
of the response variable. This measurement is
based on a novel statistic called Drop-Out-One
Loss. The proposed method also allows (over-
lapping) group variable selection. We prove that
the proposed method can select relevant variables
and exclude irrelevant variables with probability
one as the sample size goes to infinity, which is
referred to as the Oracle Property. Experimental
results on simulated and real world datasets show
the efficiency of our method in terms of variable
selection and prediction accuracy.

1. Introduction
Variable selection is an important task in high dimensional
statistics and plays a critical role in many areas such as
genomics, genetics and machine learning. Most previous
topics on variable selection in high dimensional regression
assume that the regression function has some restricted struc-
tures such as linearity (Tibshirani, 1996; Fan & Li, 2001;
Yuan & Lin, 2006; Fan & Lv, 2008), additivity (Ravikumar
et al., 2007; Huang et al., 2010; Fan et al., 2011; Choulde-
chova & Hastie, 2015), or limited order of interaction among
explanatory variables (Lin et al., 2006; Bien et al., 2013).
However, recent literature (Jönsson et al., 2010; Curtis et al.,
2012) suggests that in real world data, unknown, complex,
and nonlinear relationships may exist among response and
explanatory variables. Thus, the assumptions of these meth-
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ods may be too restricted. It is therefore of interest to de-
velop a variable selection technique that can accommodate
more flexible regression models.

Our method is motivated by a fundamental idea in a vari-
able selection theory called feature screening (Fan et al.,
2011; He et al., 2013; Chang et al., 2013; Cui et al., 2015).
It selects variables according to the utility of a single ex-
planatory variable in explaining the response variable. For
example, (Fan et al., 2011) selects explanatory variable xj
if E(f2

j (xj)) is relatively large, where fj(xj) = E(y | xj),
the projection of y onto xj . However, the success of this
method relies on whether the utility of an explanatory vari-
able can be correctly measured using a marginal regression
(which is why additional assumptions such as additivity
are often required). In the situation where the regression
function is complex, and high-order interactions among vari-
ables exist, marginal regression becomes inappropriate to
measure the utility. To address the aforementioned problem,
we propose a novel approach to measure the utility of an
explanatory variable based on the “drop-out-one difference
of empirical loss” or Drop-Out-One Loss for simplification.
Our method first fits a lower bound model using all explana-
tory variables and then drops out one explanatory variable
without refitting. This variable is eliminated if the change in
empirical loss is small. We choose neural network as a tool
to approximate the system for its universal approximation
property (Raghu et al., 2017). The neural network is penal-
ized to avoid overfitting. Additionally, our method allows
us to incorporate grouping information of variables into the
selection procedure.

2. Problem Formulation
Consider the following nonparametric regression model
y = f∗(x) + ε, where y ∈ R, x ∈ Rp, ε is ran-
dom noise independent of x and has mean zero. The
aim is to recover the mapping f∗, given n i.i.d. train-
ing samples (x(i), y(i))i=1,...,n. In this paper, we allow
p = O(exp (nl)), where l ∈ (0, 1). Let xj be the j-th
feature or variable of x. For this small n large p prob-
lem, a sparsity assumption is usually required. That is,
f∗(x) depends on x only through {xj : j ∈ S}, where
S ⊂ {1, 2, ..., p} is an index set of variables and |S|, the



Variable Selection via Penalized Neural Network

cardinality of S, is smaller than n. Our target is to identify S
and to train a good model to make prediction. In many real
world problems such as gene expression analysis, a natural
grouping structure exists within the explanatory variables.
In this article, we also allow incorporating this prior infor-
mation that x can be divided into d different (overlapping)
groups. Let g1, ..., gd denote the index sets of variables in
group 1, 2, . . . , d, respectively. For example, if group 1 con-
sists of x1, x2 and x4, then g1 = {1, 2, 4}. We denote the
variables in group gj as xgj . Let Sg = {j, gj ∩ S 6= ∅} be
the index set of groups that contain relevant variables. Let
Sc = {1, 2, ..., p} − S and Scg = {1, 2, ..., d} − Sg. In this
group variable selection case, our target is to identify Sg
and to train a good model. We call variables with indexes in
S relevant variables, variables with indexes in Sc irrelevant
variables, groups with indexes in Sg relevant groups and
groups with indexes in Scg irrelevant groups.

3. The Proposed Method
Our method first uses neural network to fit the data using
all variables. Then, for each variable or variable group,
our method drops out the weights tied to this variable or
variable group and records how the loss function changes.
The variable or variable group is eliminated if the change
in the loss is small. Then we refit the data using the rest of
the variables and repeat the above procedure until no vari-
able or variable group can be eliminated. In this way, our
method iteratively and greedily eliminates irrelevant vari-
ables or variable groups. The neural network is penalized to
avoid overfitting. We call our method Greedy Elimination
Penalized Neural Network (GEPNN).

3.1. Penalized Neural Network

We consider a neural network with a single hidden layer
with p input units, m hidden units and 1 output unit. As is
suggested in (Liang et al., 2017; Feng & Simon, 2017), a
network with one hidden layer is usually large enough to
approximate the system. The mapping is

fη(x) = βTψ(wTx+ t) + b,

where w ∈ Rp×m, t ∈ Rm, β ∈ Rm×1 and b ∈ R1. ψ :
Rm → Rm is the activation function of the output of the hid-
den layer. In this article, we use tanh as the activation func-
tion. Let η = (w,θ) where θ = (tT ,βT , b)T . The network
is trained by minimizing 1

n

∑n
i=1 `

(
y(i) − fη(x(i))

)
+

pen(η),where `(u) is the loss function and pen(η) is
penalty for parameters. In this article, we consider the
squared error loss `(u) = u2 and sparse group lasso penalty
defined as pen(η) = λ0 ‖θ‖22 +λ1

∑p
j=1 Ωα(wj,∗), where

Ωα(wj,∗) = (1−α) ‖wj,∗‖1+α ‖wj,∗‖2 andwj,∗ is the j-
th row of w. We use the same network and penalty settings
as that in (Feng & Simon, 2017), however, other settings

can also be considered. We call the weights tied to the ir-
relevant variables, i.e. wj,∗, j ∈ Sc, irrelevant weights and
the weights tied to the relevant variables, i.e. wj,∗, j ∈ S,
relevant weights.

3.2. Greedy Elimination Algorithm

Without loss of generality, we propose the greedy elim-
ination algorithm for (overlapping) group variable selec-
tion. Note that individual variable selection is a special
case of group variable selection. Given η, let supp(η) =
{j : ‖wj,∗‖2 6= 0}. Here we abuse the conventional
notation of support. Let γ ⊂ {1, 2, ..., p} be an index
set of variables and let η̂(γ) be the estimated parame-
ters under the constraint that supp(η) ⊂ γ, i.e. η̂(γ) =
arg min 1

n

∑n
i=1 `

(
y(i) − fη(x(i))

)
+ pen(η) subject to

supp(η) ⊂ γ. Given η = (w,θ), define η−gj =
(w−gj ,θ), where w−gj is w with rows corresponding to
group gj set to be 0, i.e. w

−gj
i,∗ = wi,∗ for i /∈ gj

and w−gji,∗ = 0 ∈ R1×m for i ∈ gj . We also define
η−j = (w−j ,θ), where w−j is w with j-th row set to
be 0, i.e. w−ji,∗ = wi,∗ for i 6= j and w−jj,∗ = 0 ∈ R1×m.
Suppose we have ñ validation samples (ỹ(i), x̃(i))i=1,...,ñ,
given η1 and η2, we define the difference of empirical loss
based on validation set as follows:

∆ñL(η1,η2)

=
1

ñ

ñ∑
i=1

{
`
(
ỹ(i) − fη1

(x̃(i))
)
− `
(
ỹ(i) − fη2

(x̃(i))
)}

.

Group j is eliminated by the algorithm if ∆ñL(η̂−gj , η̂) is
small. We call ∆ñL(η̂−gj , η̂) the drop-out-one difference
of empirical loss of group gj or drop-out-one loss of group
gj for simplification. The Greedy Elimination algorithm is
summarized in Algorithm [2]. Note that, if eliminating one
group lowers the loss, that group will be eliminated. γ(t−1)

and G(t−1) returned by the Greedy Elimination algorithm
are the index sets of selected variables and selected variable
groups respectively. The training algorithm for penalized
neural network is summarized in Algorithm [1], in which lr
is the learning rate. The line search criterion in Algorithm
[1] is

1

n

n∑
i=1

(
y(i) − fη(t)(x(i))

)2

+ pen(η(t))

≤ max
r=max(0,t−5),...,t−1

{ 1

n

n∑
i=1

(
y(i) − fη(r)(x(i))

)2 }
+ pen(η(t−1))− lr

2

∥∥∥η(t) − η(t−1)
∥∥∥2

2
.

Algorithm [1] is a combination of the GIST algorithm (Gong
et al., 2013) and block-wise descent algorithm. Note that in
Algorithm [1], we only updatewj,∗, j ∈ γ and θ. wj,∗, j ∈
{1, 2, ..., p} − γ are set to be 0.
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Algorithm 1 Training Penalized Neural Network

Initialization: Obtain the initial value η(0) by Xavier’s
method (Glorot & Bengio, 2010).
for t = 1, 2, ... do
η(t,1) = η(t−1) − lr∇η[ 1

n

∑n
i=1(y(i) − fη(x(i)))2 +

λ0 ‖θ‖22]
w(t,2) = sign(w(t,1))

(∣∣w(t,1)
∣∣− lr(1− α)λ1

)
+

for j ∈ γ do

w
(t,3)
j,∗ =

(
1− lrλ1α∥∥∥w(t,2)

j,∗

∥∥∥
2

)
+

w
(t,2)
j,∗

end for
if line search criterion is satisfied then
η(t) = η(t,3)

else
η(t) = η(t−1)

lr = 9
10 lr

end if
if iteration converges then

Return η(t)

end if
end for

We need to tune λ0, α, λ1 and thre(t) for the algorithm. In
practice, similar to (Feng & Simon, 2017), we can simply fix
λ0 and α and use the validation set to tune λ1 and thre(t).
Tuning thre(t) does not require choosing a good value for
each iteration. One practical method is to set thre(t), t ∈
{1, ..., t̄} be the δ-th percentile of ∆ñL(η̂−gj , η̂) and set
thre(t)(t >t̄) be thre(t) = ϑ∑d

j=1(∆ñL(η̂−gj ,η̂))
+

, where η̂

is the estimated parameter in t-th iteration. We can fix δ to
be a certain number and then tune ϑ. Our method is not very
sensitive to the choice of λ1 and thre(t). Tuning settings
for the experiments in this paper are given in supplementary
material.

4. Theory
In this section, we study the asymptotic property of the
proposed method. All the proofs are in the supplementary
material. Suppose λ0 is fixed, then we represent the penal-
ized optimization problem using its dual form, that is

η̂ = arg min
1

n

n∑
i=1

l(y(i), fη(x(i))) + λ1

p∑
j=1

Ωα(wj,∗) (1)

s.t. η ∈ Θ = {η ∈ RP : ||t||22 + ||β||22 + b2 ≤ Kλ0},

where Kλ0
> 0 is a constant that depends on λ0 and

P = mp+2m+1. Similar to (Feng & Simon, 2017), we as-
sume the estimator is a global minimizer of this non-convex
objective function. We first study the theoretic performance
of the proposed method when variables are not grouped and
then give the result for group variable selection.

Algorithm 2 Greedy Elimination Method

Initialization: Let γ(0) = {1, 2, 3, . . . , p},G(0) =
{1, . . . , d}
for t = 1, 2, ... do

Re-estimate: Obtain η̂(γ(t−1)) by Algorithm [1]
for j in G(t−1) do

if ∆ñL(η̂−gj (γ(t−1)), η̂(γ(t−1))) < thre(t) then
G(t−1) = G(t−1) − {j}

end if
end for
γ(t−1) = ∪i∈G(t−1)gi
if t > 1 and G(t−1) == G(t−2) then

Return γ(t−1) and G(t−1)

else
γ(t) = γ(t−1)

G(t) = G(t−1)

end if
end for

4.1. Result when variables are not grouped

Define P as the underlining joint-distribution of X and
Y , so that Pg(x, y) =

∫
X×Y g(x, y)dF (x, y), where g :

X × Y → R and X , Y is the support of X and Y . Let
Pn be the empirical joint-distribution of X and Y based
on training set and then Png(x, y) = 1

n

∑n
i=1 g(x(i), y(i)).

Similarly, let Pñ be the empirical joint-distribution based on
validation set and then Pñg(x, y) = 1

ñ

∑ñ
i=1 g(x̃(i), ỹ(i)).

We denote ` (y − fη(x)) as `η(y,x) for simplification.
Now we introduce equivalent class to classify the net-
works that have different parameterization but form
same mapping. Given parameter η, the set of its
equivalent parameterization is defined as: Eq(η) ={
η
′ ∈ Θ : fη′ (x) = fη(x), a.e. x ∈ X

}
. Given the loss

function, the set of optimal networks is Eq0 = {η :
η = arg min

η∈Θ
P`η(y,x)}. We assume Eq0 is com-

posed of Q equivalent classes, where Q is a finite num-
ber. Similar to the definition of ∆ñL(η1,η2), we also
define ∆nL(η1,η2) = Pn

{
`η1

(x, y)− `η2
(x, y)

}
and

∆L(η1,η2) = P
{
`η1

(x, y)− `η2
(x, y)

}
. Given η, let

η
(η)
0 = arg min

η0∈Eq0
‖η − η0‖2. We introduce the follow-

ing assumptions:

Assumption 1: y = f∗(x) + ε, ε is a sub-gaussian noise,
i.e., P (|ε| > t) ≤ 2 exp (− t2

2σ2 ) independent of x and has
mean zero. X ⊆ [Xmin, Xmax]p and |Xmin| ∨ |Xmax| ≤
M1 <∞ for some constant M1, where a ∨ b = max(a, b).
|f∗(x)| < M0 ≤ ∞, a.e. x ∈ X for some constant M0.

Assumption 2: The number of hidden units is a constant
m < ∞. The activation function ψ : RK1 → RK2 in the
network satisfies ‖ψ(z)‖∞ ≤ M2 < ∞, ‖∇ψ(z)‖∞ ≤
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M3 < ∞ and
∥∥∇2ψ(z)

∥∥
∞ ≤ M4, ∀z ∈ RK1 for some

constant M2, M3 and M4. Note that both sigmoid and
tanh satisfy our assumption.

Assumption 3: Θ is large enough such that ∀η0 ∈ Eq0,
∇ηP`η(y,x) |η=η0

= 0 and sup
η∈Θ

max
j1,j2,j3

∣∣∣ ∂3P`η(y,x)
∂ηj1∂ηj2∂ηj3

∣∣∣ ≤
M5 <∞ for some constant M5.

Assumption 4: ∀η0,η
′

0 ∈ Eq0, supp(η0) = supp(η
′

0) =
S.

Assumption 5: Suppose η can be reordered as η =
(wS ,θ,wSc), where wS is the weights tied to the in-
put nodes with indexes in S and wSc is the weights
tied to the input nodes with indexes in Sc. Denote
A � B when A − B is semi-positive definite. We have

∇2
ηP`η(y,x) |η=η0

� H
[
I 0
0 0

]
, where I is an identity

matrix inR{(|S|+2)m+1}×{(|S|+2)m+1}, 0 are zero matrices
with appropriate dimension and H is a positive constant that
is independent of p.

Assumption 6: (Identifiability condition) ∀ε > 0, ∃αε > 0
independent of p such that

αε < inf
η∈Θ

{
P
{
`η(y,x)− `η0

(y,x)
}

:
∥∥∥η − η(η)

0

∥∥∥ ≥ ε,
‖wSc‖1 ≤ 3

∑
j∈S

Ωα(wj,∗ −w(η)
0j,∗) +

∥∥∥θ − θ(η)
0

∥∥∥
2

}
.

Remark: Assumption 1, 2, 3 and 5 are just some mild con-
ditions that regularize the property of distribution, network
structure and loss function. Assumption 4 implies that rele-
vant variables can’t be represented by irrelevant variables.
This assumption mimics the restricted isometry condition
in (Zhao & Yu, 2006; Zhang, 2009). Assumption 6 sets a
lower bound that distinguishes the optimal network from
the network that is not optimal.

Let Ŝ be the set of selected variables when the algorithm
converges and let Ŝ(t) be the set of selected variables at
the t-th iteration of the proposed method. In the first two
theorems, we show that the set of selected variables in the
first iteration, i.e. Ŝ(1), is equal to S asymptotically.

Theorem 1: Denote η̂ be the solution of (1) in
the first iteration of the proposed method. Sup-
pose assumption 1 to assumption 6 hold and λ1 =[√

m logn
n

{√
logQ+

√
m log p log(nm)

1−α+ α√
m

}]
(c0 + o(1)), for

a constant c0, we have∣∣∣∆nL(η̂−j , η̂)
∣∣∣ = Op(

log3 n log p

n
), ∀j ∈ Sc,

∆nL(η̂−j , η̂) ≥ C +Op(
1√
n
∨ log3 n log p

n
), ∀j ∈ S,

where C > 0 is a constant.

Theorem 2: (Oracle Property) Denote η̂ be the solu-
tion of (1) in the first iteration of the proposed method.
Suppose assumption 1 to assumption 6 hold, λ1 =[√

m logn
n

{√
logQ+

√
m log p log(nm)

1−α+ α√
m

}]
(c0 + o(1)), for

a constant c0, and ñ = O(n), we have

∣∣∣∆ñL(η̂−j , η̂)
∣∣∣ = Op(

log3 n log p

n
), ∀j ∈ Sc,

∆ñL(η̂−j , η̂) ≥ C +Op(
1√
n
∨ log3 n log p

n
), ∀j ∈ S

where C > 0 is a constant.

Thus, when thre(1) is properly tuned, we have the oracle
property that Ŝ(1) = S with probability 1 as n → ∞.
Notice that theorem 1 implies that we can also use the
empirical loss based on training set to select variables but in
practice, our experiment implies that it is more efficient to
use empirical loss based on validation set. Since our result
shows that ∆ñL(η̂−j , η̂) ≥ C+Op(

1√
n
∨ log3 n log p

n ), ∀j ∈
S, we have the following corollary.

Corollary 3: Suppose the assumptions in Theorem 2 hold,
when thre(t) is properly tuned, we have Ŝ = S with proba-
bility 1 as n→∞.

We successfully show that our method has oracle property
in selecting variables, which is not established in (Feng
& Simon, 2017). To the best of our knowledge, we are
the first to give a frequentist variable selection method that
has oracle property for high dimensional nonparametric
regression problem that does not assume rigorous regression
structure, such as, additivity and limited order of interaction.

4.2. Result for group variable selection

When variables are grouped, define suppg(η) = {j :∑
i∈gj ‖wi,∗‖2 6= 0}. Recall that Sg = {i, gi ∩ S 6= ∅} is

the index set of groups that contain relevant variables. We
can change Assumption 4 to the following assumption:

Assumption 4* ∀η0,η
′

0 ∈ Eq0, suppg(η0) =

suppg(η
′

0) = Sg .

Note that Assumption 4* is actually weaker than Assump-
tion 4 since supp(η) = S implies supp(η)g = Sg. Let Ŝg
be the set of selected groups of variables when the algorithm
ends. We have the following Corollary:

Corollary 4: Suppose the assumptions in Theorem 2 hold
(replace Assumption 4 with Assumption 4*), when thre(t)

is properly tuned, we have Ŝg = Sg with probability 1 as
n→∞.
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5. Experiment
5.1. Simulation study

5.1.1. CASE 1: INDIVIDUAL VARIABLE SELECTION

In this example, we generate 10 datasets from the following
model,

y =
10 sin(x1 ∨ x2) + (x3 ∨ x4 ∨ x5)3

1 + (x1 + x5)2

+ sin(0.5x3)(1 + expx4−0.5x3)

+ x2
3 + 2 sin(x4) + 2x5 + ε,

where ε ∼ N(0, 1). Each dataset consists of 600 observa-
tions, with 200 for training, 100 for validation and 300 for
testing. Variables x1, ...., x5 with other 495 additional vari-

ables are generated by x(i)
j =

e(i)+z
(i)
j

2 , j = 1, ..., 500, i =

1, ..., 600, where e(i) and z(i)
j are independently generated

from N(0, 1). In this way, all variables are mutually corre-
lated with a correlation of 0.5. We use the false selection
rates (FSR) and negative selection rates (NSR) to measure
the performance of variable selection. Let S denote the
set of true relevant variables and let Ŝi denote the set of

selected variables of dataset i. Define FSR =
∑10
i=1|Ŝi−S|∑10
i=1|Ŝi|

,

NSR =
∑10
i=1|S−Ŝi|∑10
i=1|S|

. The method performs well when
both FSR and NSR are small. We calculate the mean
square prediction error (MSPE) and mean square fitting
error (MSFE) to measure the predictive and fitting per-
formance. For comparison, we apply Sparse input neural
network (Spinn) and l1 penalized neural network (l1-NN)
(Feng & Simon, 2017), generalized additive model selec-
tion (GAM) (Chouldechova & Hastie, 2015), random forest
(RF) (Breiman, 2001), Bayesian adaptive regression trees
(BART) (Bleich et al., 2014), Model-X knockoffs (Knock-
offs) (Candes et al., 2018) and Sure Independence Screening
using SCAD penalty (SIS-SCAD) (Fan & Lv, 2008; Fan
& Li, 2001). Spinn and l1-NN are also penalized neural
network based variable selection methods. GAM is a penal-
ized likelihood approach for fitting sparse high dimensional
generalized additive model. It can be viewed as a general-
ized version of sparse additive model (Spam) (Ravikumar
et al., 2007). Both RF and BART are regression tree-based
methods, which are flexible in capturing nonlinearities and
interaction effects in the unknown regression function. For
RF and BART, similar setting as (Liang et al., 2017; Bleich
et al., 2014) is applied. We select the variables with variable
importance percentage greater than 1% and use a 500-tree
RF and try BART with 20, 35 and 50 trees in all the numeri-
cal experiments. Knockoffs is a nonparametric controlled
variable selection method but it assumes the distributions of
variables are known. In all experiment, we try Knockoffs
with FDR = 0.1, 0.2 and 0.3. SIS-SCAD is a screening
based method for linear model. In all the experiments, we

use the same network structure for Spinn and GEPNN. We
also try different structures and the results are similar. In
this case, the network structure of Spinn and GEPNN are set
to have 6 hidden units. The result is summarized in Table
[1]. Details on implementation for all experiments are in
the supplementary material.

5.1.2. CASE 2: GROUP VARIABLE SELECTION

In this example, we generate 10 datasets from the following
model,

y =
4(x1 ∨ x2)3

1 + 2x2
3

sin(x4) + expx3−x4(1 + x5 + x6) + ε,

where ε ∼ N(0, 1). Each dataset consists of 600 obser-
vations, with 200 for training, 100 for validation and 300
for testing. Variables x1, ...., x5 with other 497 additional
variables are generated using the same method in case 1.
Overlapped groups are predefined such that {x1, ..., x4}
forms the first group, {x3, ..., x6} forms the second group,
{x5, ..., x8} forms the third group,.... Each group over-
laps half of the previous group. We use the group false
selection rates (gFSR) and group negative selection rates
(gNSR) to measure the performance in group variable se-
lection. Let Sg denote the set of true relevant groups and
let Ŝgi denote the set of selected groups of dataset i. Define

gFSR =
∑10
i=1|Ŝgi\Sg|∑10
i=1|Ŝgi|

and gNSR =
∑10
i=1|Sg\Ŝgi|∑10
i=1|Sg|

. The

network structures of Spinn and GEPNN are set to have 6
hidden units. We use overlapping group lasso linear model
(LR-OGL) instead of SIS-SCAD since the variables are
grouped. The result is summarized in Table [1].

5.2. Real Data

We use 4 real datasets, CCLE, CCPP (Combined Cycle
Power Plant), Airfoil and Boston Housing to evaluate the
performance. For each dataset, we run 10 runs, where for
each run, the dataset is randomly split into a training set,
a validation set and a test set. CCLE is taken from (Liang
et al., 2017) and the other 3 datasets are from UCI machine
learning repository. CCLE consists of 490 instances with
81 attributes. Training set, validation set and test set consist
of 245, 122 and 123 instances respectively. The Airfoil
consists of 1503 instances with 5 variables and the CCPP
has 9568 instances with 4 variables. The variables in these
two datasets are normalized to have means 0 and variance
1. We add 500 additional irrelevant variables which are
independently drawn from N(0, 1) to Airfoil and CCPP.
For these two datasets, we use 200 instances for training,
100 instances for validating and the rest for testing. CCLE,
CCPP and Airfoil are datasets for individual variable selec-
tion. The Boston Housing contains 506 instances with 2
discrete variables and 11 continuous variables. Similar as
(Swirszcz et al., 2009), we consider third-polynomial expan-
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Table 1. Result of simulation case1 and case2.
∣∣∣Ŝi

∣∣∣ denotes the number of selected variables in each run.
∣∣∣Ŝgi

∣∣∣ denotes the number of
selected variable groups in each run. FSR and NSR denote the False Selection Rate and Negative Selection Rate respectively. gFSR
and gNSR denote the group False Selection Rate and group Negative Selection Rate respectively. MSFE denotes the mean square of
fitting error and MSPE denotes the mean square of prediction error. BART-20, BART-30 and BART-50 denote BART with 20, 30 and 50
trees respectively. Knockoffs-0.1, Knockoffs-0.2 and Knockoffs-0.3 denote Knockoffs using FDR = 0.1, 0.2 and 0.3, respectively. The
numbers outside the parentheses denote the mean of the corresponding values. The numbers in parentheses denote the standard deviations
of the corresponding values. *In SIS-SCAD, the algorithm fails to detect the variables and in each run, the number of selected variables
exceeds its default threshold (37 in this case), so it returns 37 variables each time.

METHODS
∣∣∣Ŝi∣∣∣ FSR NSR MSFE MSPE

CASE 1

OURS 5.2(0.4) 0.038 0 1.57(0.15) 2.34(0.25)
SPINN 8.2(3.66) 0.463 0.12 1.49(0.29) 6.68(0.76)
l1-NN 3.6(2.12) 0.167 0.4 2.87(0.83) 6.08(0.77)
GAM 29.2(9.92) 0.829 0 3.14(0.59) 26.71(67.93)

RF 10.5(2.32) 0.610 0.18 0.97(0.10) 6.63(1.65)
BART-20 15.9(3.25) 0.755 0.22 2.96(0.46) 7.19(1.20)
BART-35 12.2(3.29) 0.672 0.2 2.18(0.49) 6.90(1.70)
BART-50 9.6(3.06) 0.562 0.16 1.45(0.27) 6.93(1.62)

KNOCKOFFS-0.1 0 NA NA - -
KNOCKOFFS-0.2 2.3(2.98) 0.22 0.64 - -
KNOCKOFFS-0.3 4(3.46) 0.25 0.4 - -

SIS-SCAD 37(0.0)* 0.881 0.12 1.92(0.30) 9.87(1.80)

METHODS
∣∣∣Ŝgi∣∣∣ GFSR GNSR MSFE MSPE

CASE 2

OURS 3.2(0.42) 0.0625 0 2.16(0.63) 4.20(0.80)
SPINN 9.83(6.81) 0.533 0.57 2.43(0.50) 6.62(1.49)
l1-NN 6.44(8.32) 0.61 0.81 4.22(2.06) 6.78(1.72)
GAM 33.6(17.26) 0.911 0 4.68(2.33) 5.97(3.81)

RF 11.4(3.47) 0.737 0 1.14(0.42) 7.20(4.08)
BART-20 19.1(4.07) 0.895 0.33 2.31(0.67) 9.64(4.02)
BART-35 13.0(5.50) 0.808 0.17 1.26(0.28) 9.08(4.00)
BART-50 7.1(2.28) 0.732 0.37 0.81(0.19) 9.77(4.54)

KNOCKOFFS-0.1 0 NA NA - -
KNOCKOFFS-0.2 0 NA NA - -
KNOCKOFFS-0.3 6.2(8.98) 0.71 0.4 - -

LR-OGL 190.8(15.19) 0.984 0 3.51(1.06) 8.16(3.73)

sion for the 11 continuous variables, i.e. xi, x2
i and x3

i and
consider them as a group. We let 2 discrete variables form 2
groups and add 154 additional groups each consisting of 3
irrelevant variables independently drawn from N(0, 1). We
use 200, 100 and 206 instances for training, validating and
testing. We set the number of hidden units of Spinn and
GEPNN to be 3 for CCLE, CCPP and Airfoil. Since we add
nonlinear features for Boston Housing dataset, we reduce
the number of hidden units to 2 for Spinn and GEPNN. For
Boston Housing dataset, we use sparse group lasso instead
of SIS-SCAD since it is a group variable selection problem.
To measure the sparsity, we calculate the number of selected
variables or variable groups, denoted as

∣∣∣Ŝi∣∣∣ and
∣∣∣Ŝgi∣∣∣ re-

spectively. For datasets with artificial noise variables, we
also calculate the number of selected variables or variable
groups in original dataset denoted as

∣∣∣Ŝi∣∣∣
q

and
∣∣∣Ŝgi∣∣∣

q
respec-

tively, where q is the number of original variables or original
groups of variables. Result for CCLE is summarized in Ta-
ble [2] and result for the other 3 datasets is summarized in
Table [3]. We don not compare Knockoffs in CCLE data
since it can not predict and the possible relevant variables
are unknown. In the other 3 datasets, the performance of
Knockoffs is not stable. In CCPP and Airfoil, it tends to
select no variables or too many variables. Thus, the variance

of the number of selected variables is large. In Boston, it
selects too many variables1. In all the 4 datasets, GEPNN
has the highest averaged prediction accuracy and also tends
to selects less variables. We use t-test to show the statistical
significance of GEPNN in terms of having higher prediction
accuracy and obtaining a sparser model. For each dataset,
we compare GEPNN with other two methods that have the
smallest averaged MSPE. The result is summarized in Table
[4]. For CCLE dataset, although the MSPE of GEPNN is
not significantly smaller, the number of variables selected
by GEPNN is significantly smaller. For the other 3 datasets,
MSPE of GEPNN is significantly smaller than that of all
the compared methods. Note that although the p-values for
MSPE of CCPP/GAM and Boston/RF are relatively not very
small, GEPNN obtains a much sparser model.

6. Related Work
Spinn by (Feng & Simon, 2017) is closely related to our
method, which also uses a penalized neural network to select
variables. It selects variables by shrinking the weights of
irrelevant variables to zero. Here we point out several major
differences.

1Some variables in original dataset of Boston are irrelevant.
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Table 2. Result for CCLE data. The setting of this table is same as
that of Table [1].

METHODS
∣∣∣Ŝi

∣∣∣ MSFE MSPE
OURS 7.3(2.26) 1.15(0.16) 1.19(0.061)
SPINN 28.9(7.71) 0.63(0.068) 1.24(0.17)
l1-NN 16.9(5.07) 0.76(0.084) 1.20(0.13)
GAM 22.3(4.14) 0.89(0.11) 32.37(57.08)
RF 36.1(3.18) 0.18(0.014) 1.22(0.088)
BART-20 32.4(3.27) 0.68(0.081) 1.29(0.11)
BART-35 44.8(3.91) 0.62(0.087) 1.23(0.12)
BART-50 51.3(2.50) 0.58(0.066) 1.23(0.10)
SIS-SCAD 14.6(2.91) 0.95(0.14) 1.27(0.10)

Criterion in selecting variables: Spinn selects variables
by shrinking the weights of irrelevant variables to zero,
while our method eliminates irrelevant variables by mea-
suring their utility in explaining the response variable. To
study the difference between these two criteria in identify-
ing irrelevant variables, we conduct the following experi-
ment: We use the method in case 1 of simulation study with
p = 500, 200, 100 to generate the data. Figure [1] shows
the ‖ŵj,∗‖22 of Spinn and ∆ñL(η̂−j , η̂) in the first iteration
of our method, j = 1, ..., p (for the cases p = 500, 200,
we sort values and plot the 100 largest values). Here we
use the squared l2 norm for the weights to make the con-
vergence rate of irrelevant weights the same order as the
convergence rate of ∆ñL(η̂−j , η̂), j ∈ Sc. Both Spinn and
our method are properly tuned. Different from what we
expect from a linear model, ∆ñL(η̂−j , η̂) is not necessarily
proportional to ‖ŵj,∗‖22. In Spinn, there is no significant
gap between the squared l2 norm of relevant weights and
that of irrelevant weights even when p is small enough.
For example, in Figure [1], when p = 500, the squared l2
norm of 4 irrelevant weights are higher than that of 2 rele-
vant weights. Even when p = 100, there is no significant
difference between max

j∈Sc
‖ŵj,∗‖22 and min

j∈S
‖ŵj,∗‖22. How-

ever, we can observe a significant gap in our method since
min
j∈S

∆ñL(η̂−j , η̂)� max
j∈Sc

∆ñL(η̂−j , η̂). This agrees with

our result in Theorem 2. Note that, similar to the inclusion
probability in (Meinshausen & Buhlmann, 2010), Drop-Out-
One Loss can alternatively be applied to rank the importance
of variables.

The role of λ1: In practice, (Feng & Simon, 2017) needs to
choose λ1 carefully so that the weights of irrelevant variable
can shrink to zero. However, our method is not as sensitive
to the choice of λ1. We only use λ1 to obtain a lower
bound model in which the relevant variables make enough
contribution to explain the variance of y.

Iterative selection procedure: In practice, we use the itera-
tive selection procedure to further improve the performance
of GEPNN. This way, the lower bound model can be refined

Table 3. Result for CCPP, Airfoil and Boston Housing.
∣∣∣Ŝi

∣∣∣
q

de-

notes the number of selected variables in original dataset, where
q is the number of variables in original dataset.

∣∣∣Ŝgi

∣∣∣
q

denotes

the number of selected groups in original dataset, where q is the
number of groups in original dataset. The other settings are the
same as that of Table [1].

METHODS
∣∣∣Ŝi∣∣∣ ∣∣∣Ŝi∣∣∣

4
MSFE MSPE

C
C

P
P

OURS 2.4(0.50) 2.3(0.47) 0.075(0.012) 0.075(0.0044)
SPINN 3.8(3.19) 2.9(0.66) 0.076(0.017) 0.10(0.0092)
l1-NN 3.3(1.89) 2.6(0.52) 0.066(0.017) 0.090(0.0055)
GAM 6.0(3.62) 3.0(0.67) 0.067(0.013) 0.079(0.0052)

RF 3.9(0.32) 3.9(0.32) 0.017(0.0019) 0.12(0.0058)
BART-20 10.3(2.95) 2.9(0.57) 0.070(0.011) 0.14(0.026)
BART-35 10.8(2.70) 3.0(0.67) 0.041(0.0093) 0.13(0.023)
BART-50 9.3(4.05) 2.5(0.53) 0.022(0.0046) 0.11(0.014)

KNOCKOFFS-0.1 1.0(3.16) 0.4(1.26) - -
KNOCKOFFS-0.2 3.9(3.51) 2.4(2.07) - -
KNOCKOFFS-0.3 3.3(3.50) 1.9(1.73) - -

SIS-SCAD 1.2(0.42) 1.2(0.42) 0.092(0.015) 0.098(0.0090)

METHODS
∣∣∣Ŝi∣∣∣ ∣∣∣Ŝi∣∣∣

5
MSFE MSPE

A
IR

F
O

IL

OURS 3.5(0.97) 3.3(0.67) 23.06(7.34) 25.33(4.91)
SPINN 21.6(12.22) 3.2(0.42) 0.46(0.18) 70.20(13.54)
l1-NN 18.2(11.07) 3.0(1.05) 0.62(0.64) 69.63(7.48)
GAM 5.1(3.28) 3.2(0.63) 31.56(4.43) 34.42(3.18)

RF 5(1.15) 3.3(0.48) 5.24(0.42) 35.90(1.72)
BART-20 12.8(1.40) 3.7(0.67) 19.47(2.76) 36.81(4.21)
BART-35 9.5(2.42) 3.4(0.70) 14.16(2.35) 34.09(2.80)
BART-50 6.0(1.70) 3.8(0.80) 12.59(1.92) 34.67(2.22)

KNOCKOFFS-0.1 0 0 - -
KNOCKOFFS-0.2 1.3(2.75) 0.7(1.49) - -
KNOCKOFFS-0.3 7.4(3.92) 4(0) - -

SIS-SCAD 37(0.0)* 4.7(0.48) 10.55(0.98) 39.11(3.81)

METHODS
∣∣∣Ŝgi∣∣∣ ∣∣∣Ŝgi∣∣∣

13
MSFE MSPE

B
O

S
T

O
N

OURS 5.1(1.20) 4.1(1.37) 13.25(4.30) 17.37(2.85)
SPINN 19.0(6.41) 5.2(1.40) 2.32(2.90) 60.57(7.87)
l1-NN 12.4(6.77) 3.5(0.85) 1.12(0.54) 62.09(12.78)
GAM 17.4(19.17) 1.9(1.27) 16.09(6.60) 25.00(4.32)

RF 6.7(0.82) 6.7(0.82) 2.90(0.48) 21.40(6.11)
BART-20 16.2(2.00) 6.9(1.19) 9.09(1.86) 27.72(7.10)
BART-35 19.2(1.60) 7.2(1.32) 5.42(1.33) 25.12(5.33)
BART-50 17.5(2.32) 7.3(1.16) 3.40(0.81) 24.39(4.15)

KNOCKOFFS-0.1 12.8(1.32) 11.4(0.7) - -
KNOCKOFFS-0.2 15.3(2.45) 11.7(0.48) - -
KNOCKOFFS-0.3 26.6(6.52) 12.1(0.74) - -

SGL 9.2(4.78) 2.3(0.48) 19.23(2.39) 29.00(5.04)

through iterations. This procedure is useful because, differ-
ent from a linear or additive system, we allow any form of
interaction between variables.

Incorporating grouping information: The group lasso
penalty used in Spinn only groups the weights tied to the
same variable. Under this framework, we cannot incorporate
the grouping information of variables unless a new penalty
is developed. However, our method allows us to easily elim-
inate groups of variables and allows the groups to overlap
with each other.

Theoretical contributions: We show GEPNN can select
relevant variables and eliminate irrelevant ones with prob-
ability 1 as n→∞. This property is referred as the “Ora-
cle Property”, which is not established in (Feng & Simon,
2017).
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Figure 1. Barplot for ‖ŵj,∗‖22 and ∆ñL(η̂−j , η̂) (sorted by ascending order). The first row is for ‖ŵj,∗‖22 and the second row is for
∆ñL(η̂−j , η̂). The left, middle and right columns are for the cases p = 500, 200 and 100, respectively. For cases p = 200, 500, we only
plot the 100 largest values. The orange bars are for the corresponding ‖ŵj,∗‖22 or ∆ñL(η̂−j , η̂) of relevant variables and the blue bars
are for the corresponding ‖ŵj,∗‖22 or ∆ñL(η̂−j , η̂) of irrelevant variables.

Table 4. Result for statistical test. The numbers are corresponding
p-values.

∣∣∣Ŝi

∣∣∣ or ∣∣∣Ŝgi

∣∣∣ is the number of selected variables or

variable groups.
∣∣∣Ŝi

∣∣∣
q
or
∣∣∣Ŝgi

∣∣∣
q

is the number of selected variables

or variable groups in original dataset. The other settings are the
same as that of Table [1].

DATA/METHOD
∣∣∣Ŝi

∣∣∣ or ∣∣∣Ŝgi

∣∣∣ ∣∣∣Ŝi

∣∣∣
q
or
∣∣∣Ŝgi

∣∣∣
q

MSPE

CCLE/RF 1.16e−9 - 1.99e−1
CCLE/l1-NN 6.24e−5 - 0.3669
CCPP/l1-NN 0.077 0.072 1.21e−6
CCPP/GAM 5.59e−3 5.31e−3 2.86e−2
AIRFOIL/BART-35 5.20e−6 0.37 1.10e−4
AIRFOIL/GAM 0.63 0.08423 8.68e−5
BOSTON/RF 1.54e−3 6.34e−5 4.12e−2
BOSTON/BART-50 6.87e−8 1.60e−4 8.53e−4

Other related literature (Liang et al., 2017) uses Bayesian
neural networks to select variables; However, compared
with our method, it is much more computationally expen-
sive. Our method is also similar to (Couvreur & Bresler,
2000), which can be viewed as an alternative matching pur-
suit method (Sindhwani & Lozano, 2011; Zhang, 2011).
However, (Couvreur & Bresler, 2000) is designed for lin-
ear models with low dimension, and its selection procedure

is also different from ours. (Alvarez & Salzmann, 2016;
Scardapane et al., 2017) also focus on selecting the nodes
in neural network. However, their target is to obtain a com-
pact network rather than select input variables in a high
dimensional setting.

7. Conclusion
We address the problem of variable selection for high di-
mensional nonparametric regression. In contrast to previous
methods, we do not make structural assumptions such as
linearity and additivity on the regression function. We pro-
pose a novel approach to eliminate irrelevant variables or
groups of variables based on the so-called “drop-out-one
loss”. We prove the oracle property of the proposed method
and compare it with several other variable selection tech-
niques using numerical experiments. The results imply that
our method is efficient in selecting relevant variables, elimi-
nating irrelevant variables, and making accurate predictions.
For future work, it is of interest to generalize our method to
select the network structure, since it is shown in (Alvarez
& Salzmann, 2016; Scardapane et al., 2017) that network
structure is critical in the performance of neural networks.
It is also of interest to study on controlled variable selection
by controlling the threshold.
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