
Loss Decomposition for Fast Learning in Large Output Spaces

Ian E.H. Yen 1 Satyen Kale 2 Felix X. Yu 2 Dan Holtmann-Rice 2 Sanjiv Kumar 2 Pradeep Ravikumar 1

Abstract
For problems with large output spaces, evalua-
tion of the loss function and its gradient are ex-
pensive, typically taking linear time in the size of
the output space. Recently, methods have been
developed to speed up learning via efficient data
structures for Nearest-Neighbor Search (NNS) or
Maximum Inner-Product Search (MIPS). How-
ever, the performance of such data structures
typically degrades in high dimensions. In this
work, we propose a novel technique to reduce the
intractable high dimensional search problem to
several much more tractable lower dimensional
ones via dual decomposition of the loss func-
tion. At the same time, we demonstrate guaran-
teed convergence to the original loss via a greedy
message passing procedure. In our experiments
on multiclass and multilabel classification with
hundreds of thousands of classes, as well as train-
ing skip-gram word embeddings with a vocabu-
lary size of half a million, our technique consis-
tently improves the accuracy of search-based gra-
dient approximation methods and outperforms
sampling-based gradient approximation methods
by a large margin.

1. Introduction
Large output spaces are ubiquitous in several machine
learning problems today: for example, extreme multiclass
or multilabel classification problems with many classes,
language modeling with big vocabularies, or metric learn-
ing with a large number of pairwise distance constraints.
In all such problems, a key bottleneck in training models
is evaluation of the loss function and its gradient. The loss
functions used for such problems typically require an enu-
meration of all the possible outputs, and thus, naı̈vely, ne-
cessitate a linear running time in the number of outputs for

1Carnegie Mellon University, Pittsburgh, USA 2Google,
New York, USA. Correspondence to: Ian E.H. Yen
<eyan@cs.cmu.edu>, Satyen Kale <satyenkale@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

evaluation. This can be a significant bottleneck in iterative
methods such as gradient descent used to train the model,
since each step now requires a huge number of operations.

Many approaches have been proposed to mitigate this
issue. One body of work imposes structure over the
output space, such as low-rank (Yu et al., 2014), tree-
structure (Prabhu & Varma, 2014), locally low-rank (Bhatia
et al., 2015), or hierarchical factorization (Morin & Ben-
gio, 2005; Mnih & Hinton, 2009). However, structural as-
sumptions can be violated in many situations. For exam-
ple, while the low-rank structure is typically reasonable in
a recommendation problem, it is usually not true in mul-
ticlass classification as for each instance there is exactly
one correct answer (i.e. classes may not be correlated with
each other). Additionally, even for valid structural assump-
tions, constructing the correct structure from data is hard,
and in practice heuristics or human annotation are required
(Morin & Bengio, 2005; Mnih & Hinton, 2009).

Another approach is sampling approximation (Mikolov
et al., 2013; Gutmann & Hyvärinen, 2012; Jean et al.,
2014), which computes an estimate of the gradient based
on the scores of only a small fraction of the negative output
classes and also a small set of classes labeled as positive.
The approximation, however, has large variance when the
loss has a skewed distribution over classes. For example, in
extreme multiclass or multilabel classification, the loss typ-
ically only concentrates on a few confusing classes, which
have small probabilities of being sampled. The variance
in gradient estimation often leads to slow progress of the
learning algorithm.

In this paper, we consider problems with large output
spaces, but with each example having only a relatively
small set of correct outputs. The learning objective for
such tasks typically has its gradient concentrated on a rel-
atively small number of classes, and therefore an efficient
way to learn is to search for classes of significant gradi-
ent magnitude. For example, (Yen et al., 2016; 2017) pro-
posed a method to search classes efficiently by maintain-
ing a sparse model during training. However, this method
applies only in problems of high input dimension. Another
strategy that has received a lot of attention recently is to uti-
lize data structures to find classes efficiently through Max-
imum Inner-Product Search (MIPS) or Nearest-Neighbor

Loss Decomposition for Fast Learning in Large Output Spaces

Search (NNS) (Yen et al., 2013; Vijayanarasimhan et al.,
2014; Mussmann & Ermon, 2016; Mussmann et al., 2017;
Spring & Shrivastava, 2017b;a; Wu et al., 2017; Guo et al.,
2016). The main challenge here is that as dimension grows,
it becomes difficult to perform MIPS or NNS with both
high recall and high precision, and therefore gradient ap-
proximation through MIPS or NNS often sacrifices accu-
racy to achieve efficiency.

In this work, we propose an algorithm based on an ap-
plication of dual decomposition (Boyd et al., 2011) to the
convex-conjugate representation of the loss function. This
can be viewed as a complementary technique for applying
search data structures to a learning problem. Essentially,
the algorithm replaces the high dimensional search prob-
lem with several lower dimensional searches by decoupling
the dimensions via dual decomposition. Lower dimen-
sional search can be done much more efficiently, and the
different searches are then coupled together via a greedy
message passing algorithm. We prove that this greedy mes-
sage passing technique is guaranteed to converge and thus
we can obtain good approximations to the loss and its gra-
dient. We term our overall approach LDGS for Loss De-
composition Guided Search.

Our experiments on large-scale face recognition, document
tagging and word embedding show that the proposed ap-
proach significantly improves the accuracy of the search-
based gradient approximation method and is orders of mag-
nitude faster than other strategies of gradient approxima-
tion such as sampling.

2. Problem Setup
Let X denote the input space and Y the output space, and
let K := |Y|. In this paper we focus on the situation where
K is extremely large, on the order of hundreds of thousands
or larger. We are interested in learning a scoring function
f : X → RK for a large output space Y from a given class
of such functions, F . Labeled samples are pairs (x,P)
with x ∈ X and P ⊆ Y which denotes the set of correct
labels for the input point x. We use the notation N :=
Y \ P to denote the set of negative labels for the example.
Given a collection of training samples {(xi,Pi)}Ni=1, the
learning objective takes the following form:

min
f∈F

1

N

N∑
i=1

L(f(xi),Pi).

where L : RK × 2Y → R is a loss function such that
L(z,P) penalizes the discrepancy between the score vec-
tor z ∈ RK and a set of positive labels P ⊆ Y . The eval-
uation of the loss function and its gradient with respect to
the score vector, ∇zL(z,P), typically has cost growing
linearly with the size of the output space K, and thus is

expensive for problems with huge output spaces.

The key to our method for reducing the complexity of
loss and gradient evaluation will be the following linear
structural assumption on the class of scoring functions F :
there is an embedding dimension parameter D ∈ N such
that for every f ∈ F , we can associate a weight matrix
W ∈ RK×D and feature map φ : X → RD so that for all
x ∈ X ,

f(x) = Wφ(x). (1)

We will assume that D � K, say on the order of a few
hundreds or thousands, so that we can explicitly evaluate
φ(x).

The problem we consider is the following: given f and a
batch of samples {xi,Pi}Ni=1, compute an approximation
to the empirical loss 1

N

∑N
i=1 L(f(xi),Pi) and its gradi-

ent. This is an important subroutine that naturally arises
in either full batch gradient descent or minibatch stochastic
gradient descent.

The main challenge here is to construct data structures that
preprocess the matrix W so that good approximations to
the loss f(xi,Pi) and its gradient can be computed without
computing the vector f(x) entirely: i.e. we desire sublin-
ear (in K) time computation of such approximations given
access to an appropriate data structure.

Before proceeding to our dual decomposition based search
technique, we give a few examples of problems with large
output space that fit in our framework:

1. Extreme Classification. In extreme classification
problems, popular classification loss functions include
Cross-Entropy Loss

L(z,P) :=
∑
k∈P

log
(∑K

j=1 exp(zj)
)
− zk (2)

and Max-Margin Loss

L(z,P) :=

[
max

k∈P,j∈N
zj − zk + 1

]
+

. (3)

For multiclass problems, |P| = 1, while for multil-
abel problems we usually have |P| � K. A typical
scoring function takes the form

f(x) := Wφ(x). (4)

Here, φ(x) is a feature map constructed either from
the domain knowledge or via learning (e.g., a neural
network). Both of them fit the structural assumption
(1).

2. Metric Learning. In Metric Learning problems, dur-
ing training we learn a function

f(x) = [−d(x,y)]y∈Y , (5)

Loss Decomposition for Fast Learning in Large Output Spaces

that denotes the dissimilarities of the point x to a col-
lection of points y ∈ Y . Common choices of the dis-
similarity function include the squared Euclidean dis-
tance d(x,y) = ‖ψ(x)−ψ(y)‖22 parameterized by a
nonlinear transformation ψ : X → Rd for some d ∈
N, and, more generally, the squared Mahalanobis dis-
tance d(x,y) = (ψ(x)−ψ(y))>M(ψ(x)−ψ(y))
parameterized by ψ and a positive definite matrixM .
The candidate set Y could be the whole set of train-
ing samples {xi}Ni=1, or a collection of latent prox-
ies {yk}Kk=1 as suggested by a recent state-of-the-art
method (Movshovitz-Attias et al., 2017). For each
sample (x,P), the goal is to learn a distance function
s.t. the positive candidates P are closer to x than the
negative ones. Common loss functions for the task
are Neighborhood Component Analysis (NCA) loss
(Goldberger et al., 2005)

L(z,P) :=
∑
k∈P

log
(∑K

j=1 exp(zj)
)
− zk (6)

and the Triplet loss (Weinberger & Saul, 2009)

L(z,P) =
∑
k∈P

∑
j∈N

[zj − zk + 1]+. (7)

It is easy to see that such scoring functions satisfy the
structural assumption (1): for the scoring function f
given by the squared Mahalanobis distance parameter-
ized by ψ and M , the matrix W consists of the rows
〈−ψ(y)>Mψ(y), 2ψ(y)>M ,−1〉 for each y ∈ Y ,
and φ(x) = 〈1,ψ(x)>,ψ(x)>Mψ(x)〉>. Thus the
embedding dimension D = d+ 2.

3. Word Embeddings. In the standard word2vec train-
ing (Mikolov et al., 2013), the input space X is the
vocabulary set, and the output space Y = X ; thus K
is the vocabulary size. The Skip-gram objective learns
a scoring function f of the following form:

f(x) = 〈φ(y)>φ(x)〉y∈X , (8)

where φ(·) is a latent word embedding. This clearly
fits the structural assumption (1): the rows of the ma-
trixW are the embeddings φ(y) for all y ∈ X .

Then given a text corpus D, the loss function1 for a
sample (x,P) where P is the set of words in the cor-
pus appearing within a certain size window around the
input word x, is given by

L(z,P) = qx
∑
y∈P

qy|x·[log
(∑

y′∈X exp(zy′)
)
−zy]

(9)
where qx is the empirical unigram frequency of x and
qy|x is the empirical frequency of observing y within
a window of x in the corpus D.

1This is a more compact reformulation of the loss function in
(Mikolov et al., 2013).

Algorithm 1 Loss and Gradient Approximation via Search

input A sample (x,P), accuracy parameter τ > 0, and
access to a MIPS data structure T for the rows ofW .

output Approximations to L(f(x),P),∇L(f(x),P).
1: Query T with φ(x) and threshold τ to find S := {k |
|[f(x)]k| > τ}.

2: Construct a sparse approximation z̃ for f(x) by setting
z̃k = f(x)k for k ∈ S ∪P , and z̃k = 0 for k 6∈ S ∪P .

3: Return L(z̃,P) and ∇L(z̃,P).

2.1. Loss and Gradient Approximation via Search

All the loss functions we considered in the applications
mentioned share a key feature: their value can be well
approximated by the scores of the positive labels and the
largest scores of the negative labels. Similarly, their gra-
dients are dominated by the coordinates corresponding to
the positive labels and the negative labels with the largest
scores. For example, the Max-Margin loss (3) is com-
pletely determined by the largest score of the negative la-
bels and the lowest scores of the positive labels, and its
gradient is non-zero only on the negative label with largest
score and the positive label with lowest score. Similarly,
for the Cross-Entropy loss (2), the coordinates of the gra-
dient corresponding to the negative classes are dominated
by the ones with the highest score; the gradient coordinates
decrease exponentially as the scores decrease.

This key property suggests the following natural idea for
approximating these losses and their gradients: since the
score function f satisfies the linear structural property (1),
we can compute the largest scores efficiently via a Maxi-
mum Inner Product Search (MIPS) data structure (Shrivas-
tava & Li, 2014). This data structure stores a large data set
of vectors v1,v2, . . . ,vK ∈ RD and supports queries of
the following form: given a target vector u ∈ RD and a
threshold τ , it returns the vectors vi stored in it that satisfy
|v>i u| ≥ τ in time that is typically sublinear in K. Thus,
we can preprocess W by storing the rows of W in an effi-
cient MIPS data structure. Then for each sample x, we can
compute the highest scores by querying this data structure
with the target vector φ(x) and some reasonable thresh-
old τ , computing approximations to the loss and gradient
from the returned vectors (and treating all other scores as
0). This method is depicted in Algorithm 1.

The error in this approximation is naturally bounded by
τ times the `∞ Lipschitz constant of L(·,P). For most
loss functions considered in this paper, the `∞ Lipschitz
constant is reasonably small: 2 for Max-Margin loss,
O(Pmax log(K)) for Cross-Entropy loss (here, Pmax is the
maximum number of positive labels for any example), etc.

The main difficulty in applying this approach in practice

Loss Decomposition for Fast Learning in Large Output Spaces

is the curse of dimensionality: the dependence on D is
exponential for exact methods, and even for approximate
methods, such as Locality-Sensitive Hashing, the cost still
implicitly depends on the dimension as points become far
apart when the intrinsic dimensionality is high (Li & Malik,
2017).

To deal with the curse of dimensionality, we introduce a
novel search technique based on dual decomposition. This
method, and its analysis, are given in the following section.

In order to apply and analyze the technique, we need the
loss functions to be smooth (i.e. have Lipschitz continuous
gradients). For non-smooth losses like Max-Margin loss
(3), we apply Nesterov’s smoothing technique (Nesterov,
2005), which constructs a surrogate loss function with
guaranteed approximation quality by adding a strongly
convex term to the Fenchel conjugate of the loss:

Lµ(z) := max
α
〈z,α〉 −

(
L∗(α) +

µ

2
‖α‖2

)
. (10)

Here, µ is a smoothing parameter that ensures that the sur-
rogate loss has 1

µ Lipschitz continuous gradients while ap-
proximating the original loss function to withinO(µ). This
Smoothed Max-Margin loss has gradient

∇L(z) := projC(
z+1N
µ) (11)

where 1N denotes a vector containing 0 for indices k ∈ P
and 1 for k ∈ N , and projC(.) denotes the projection onto
the bi-simplex C = {α |

∑
k∈N αk =

∑
k∈P −αk ≤

1, αN ≥ 0, αP ≤ 0}. The Smoothed Max-Margin loss
and its gradient can again be computed using the largest
few scores.

3. Loss Decomposition
We now describe our loss decomposition method. Recall
the linear structural assumption (1): f(x) = Wφ(x) for
all x ∈ X . In this section, we will keep (x,P) fixed, and
we will drop the dependence on P in L for convenience
and simply use the notation L(f(x)) and∇L(f(x)).

While MIPS over the D-dimensional rows of W can be
computationally expensive, we can exploit the linear struc-
ture of f by decomposing it: chunking the D coordi-
nates of the vectors in RD into B blocks, each of size
D/B. Here B ∈ N is an integer; larger B leads to eas-
ier MIPS problems but reduces accuracy of approxima-
tions produced. Let W (1),W (2), . . . ,W (B) be the cor-
responding block partitioning of W obtained by grouping
together the columns corresponding to the coordinates in
each block. Similarly, let φ(1)(x),φ(2)(x), . . . ,φ(B)(x)
be the conformal partitioning of the coordinates of φ(x).

Now define the overall score vector z := f(x) = Wφ(x),
and per-chunk score vectors zj = W (j)φ(j)(x), for j ∈

[B]. Then we have z =
∑B
j=1 zj , in other words, we have

a decomposition of the score vector. The following theo-
rem states that the loss of a decomposable score vector can
itself be decomposed into several parts connected through
a set of message variables. This theorem is key to decou-
pling the variables into lower dimensional chunks that can
be optimized separately via an efficient MIPS data struc-
ture. While this theorem can be derived by applying dual
decomposition to the convex conjugate of the loss function,
here we provide a simpler direct proof by construction.
Theorem 1. Let L : RK → R be a convex function, and let
z ∈ RK be decomposed as a sum of B vectors as follows:
z =

∑B
j=1 zj . Then L(z) is equal to the optimum value of

the following convex minimization problem:

min
λj∈RK , j∈[B]

1

B

B∑
j=1

L(B(zj + λj)) s.t.

B∑
j=1

λj = 0.

(12)

Proof. First, for any λ1,λ2, . . . ,λB ∈ RK such that∑B
j=1 λj = 0, by Jensen’s inequality applied to the con-

vex function L, we have L(z) ≤ 1
B

∑B
j=1 L(B(zj +λj)).

On the other hand, if we set λj = 1
Bz− zj for all j ∈ [B],

we have L(z) = 1
B

∑B
j=1 L(B(zj + λj)).

3.1. Loss Decomposition Guided Search (LDGS)

Theorem (1) is the basis for our algorithm for computing
approximations to the loss and its gradient. This approx-
imation is computed by approximately solving the convex
minimization problem (12) without computing the whole
score vector z, using a form of descent method on the λj
variables (which we refer to as “message passing”). The
gradient computations required for each step can be (ap-
proximately) done using an efficient MIPS data structure
storing the D/B dimensional rows ofW (j). The details of
the algorithm are given in Algorithm 2. It can be viewed
as running a version of the Frank-Wolfe algorithm on an
appropriate convex function.

A sublinear in K time implementation of step 5 in the al-
gorithm relies on the fact that both z̃j and λj are sparse
vectors, which in turn relies on the fact that gradients of the
loss functions of interest are either sparse or concentrated
on a few coordinates. Step 9 in the algorithm moves the
current solution towards the optimal solution λ∗j that we
have a closed form formula for, thanks to the constructive
proof of Theorem (1). This movement is only done for the
set of coordinates of the gradients of high magnitude identi-
fied in step 5 of the algorithm, thus ensuring that only a few
coordinates are updated. Thus essentially the algorithm is
performing a greedy descent towards the optimal solution.
For more details on how the data structures are maintained
in the algorithm, refer to Section 4.

Loss Decomposition for Fast Learning in Large Output Spaces

Algorithm 2 Greedy Message Passing

input a sample x, threshold parameters τ1, τ2 > 0, and
access to B MIPS data structures Tj storing the rows
ofW (j), for j ∈ [B]

output Approximation to ∇L(f(x)).

1: Query Tj with φ(j)(x) and threshold τ to find Sj :=
{k | |[zj]k| > τ1}.

2: Construct a sparse approximation z̃j for zj by setting
[z̃j]k = [zj]k for k ∈ Sj ∪ P , and [z̃j]k = 0 for
k 6∈ S ∪ P .

3: for t = 1, 2, . . . (until converged) do
4: Compute the set

A :=
⋃
j∈[B]

{k | |[∇L(B(z̃j + λj))]k| > τ2}.

5: Compute [λ∗j]k = 1
B [z̃]k − [z̃j]k for all k ∈ A and

all j ∈ [B].
6: Compute the step size η = 2

t+2 .
7: For all k ∈ A and all j ∈ [B], update

[λj]k ← η[λ∗j]k + (1− η)[λj]k.

8: end for
9: Output 1

B

∑B
j=1∇L(B(z̃j + λj)).

3.2. Error Analysis

Define z̃ =
∑B
j=1 z̃j . Note that ‖z − z̃‖∞ ≤ Bτ1, so the

error in approximating L(z) by L(z̃) is at most Bτ1 times
the `∞ Lipschitz constant of L, which is typically small as
explained earlier. The algorithm essentially runs a Frank-
Wolfe type method to converge to L(z̃). In the follow-
ing, we analyze the convergence rate of the greedy message
passing algorithm (Algorithm 2) to L(z̃). The analysis re-
lies on smoothness of the loss function. A function is said
to be 1/µ-smooth if its gradients are Lipschitz continuous
with constant 1/µ. For the Cross-Entropy loss (2) we have
µ = 1, and for the smoothed max-margin loss (10), µ is a
tunable parameter, and we found setting µ ∈ [1, 5] works
well in our experiments.

To analyze the algorithm, denote by Λ the BK dimen-
sional vector 〈λ1,λ2, . . . ,λB〉 in any given step in the
loop of the algorithm. Similarly let Λ∗ denote the BK
dimensional vector composed of λ∗j . Define G(Λ) =
1
B

∑B
j=1 L(B(z̃j+λj)), i.e. the objective function in (12).

Theorem 2 (Greedy Message Passing). Suppose the loss
function L is 1/µ-smooth. Then the suboptimality gap of
Λ in the t-th step of the loop can be bounded as follows:

G(Λ)−G(Λ∗) ≤ 2B‖Λ∗‖2

µ(t+ 2)
+ 2τ2 ln(t)‖Λ∗‖1

Proof. Since the loss function L is 1/µ-smooth, it is easy
to check that G is B/µ-smooth. Thus, if ∆Λ is the change
in Λ in a given step of the loop in the algorithm, then

G(Λ + ∆Λ)−G(Λ) ≤ η〈∇G(Λ),∆Λ〉+
η2B

2µ
‖∆Λ‖2.

Note that ∆Λ equals Λ∗−Λ in all coordinates except those
corresponding to k /∈ A for all j ∈ [B], and the magnitude
of the gradient in those coordinates is at most τ2. Thus
we have 〈∇G(Λ),∆Λ〉 ≤ 〈∇G(Λ),Λ∗−Λ〉+ τ2‖Λ∗‖1.
Here, we used the fact that each coordinate of Λ lies be-
tween 0 and the corresponding coordinate of Λ∗. Next,
by the convexity of G, we have 〈∇G(Λ),Λ∗ − Λ〉 ≤
G(Λ∗) − G(Λ). Putting all the bounds together and fol-
lowing some algebraic manipulations, we have

G(Λ + ∆Λ)−G(Λ∗)

≤ (1− η)(G(Λ)−G(Λ∗)) + ητ2‖Λ∗‖1 +
η2B

2µ
‖Λ∗‖2.

(13)

Here, we used the fact that each coordinate of Λ lies be-
tween 0 and the corresponding coordinate of Λ∗ to get the
bound ‖∆Λ‖2 ≤ ‖Λ∗‖2.

Now, using the fact that η = 2
t+2 in iteration t, a simple in-

duction on t implies the claimed bound on G(Λ)−G(Λ∗).

Thus, to ensure that the suboptimality gap is at most ε, it
suffices to run the greedy procedure for T = B‖Λ∗‖2

4µε steps
with τ2 = ε

4 ln(T)‖Λ∗‖1 . While this theorem provides a
proof of convergence for the algorithm to any desired er-
ror level, the bound it provides is quite weak. In practice,
we found that running just one step of the loop suffices to
improve performance over direct search-based methods.

If, in addition to being smooth, the loss function is also
strongly convex (which can be achieved by adding some `22
regularization, for instance) then we can also show conver-
gence of the gradients. This is because for strongly convex
functions the convergence of gradients can be bounded in
terms of the convergence of the loss value. This is a very
standard analysis and we omit it for the sake of clarity.

Cost Analysis. Exact gradient evaluation for a single
sample can be computed in O(DK) time. Directly apply-
ing a search-based gradient approximation (Algorithm 1)
has a cost ofO(DQD(K)),whereQD(K) is the number of
classes retrieved in the MIPS data structure in order to find
all classes of significant gradients. The query cost QD(K)
has a strong dependency on the dimension D. Exact MIPS
has a cost QD(K) exponential in D (Shrivastava & Li,
2014; Li & Malik, 2017). For approximate search methods,

Loss Decomposition for Fast Learning in Large Output Spaces

such as Locality Sensitive Hashing (LSH), the costQD(K)
typically only implicitly depends on the dimension. Our
method (Algorithm 2) dividesD intoB subproblems of di-
mension D/B with a cost per message passing iteration of
O(DQD/B(K)+DB|A|), whereA is the set computed in
step 4 of Algorithm 2. Note QD/B(K) decreases with B
rapidly (exponentially in the exact case) and therefore one
can select B such that QD/B(K) � QD(K) and balance
two terms s.t. (DQD/B(K) +DB|A|)� DK.

4. Practical Considerations
MIPS queries. In practice when using the MIPS data str-
cuctures, instead of retrieving all classes with scores more
than the threshold τ1, it is more efficient to retrieve the
top Q classes with the highest scores. In our implemen-
tation, we use Spherical Clustering (Auvolat et al., 2015)
as the MIPS data structure, where the number of clusters
C is selected such that K/C ≤ Q and C ≤ Q. Note
this requires Q ≥

√
K, leading to a speedup bounded by√

K. Similarly, for computing the active set A in step 4
of Algorithm 2, we can compute an appropriate threshold
τ2 using the properties of the loss function. In the case
of margin-based losses, (3) and (7), and their smoothed
versions (10), the gradient is sparse so τ2 can be set to 0
or some very small value (τ2 = 10−3 works well in our
experiments). Loss functions like (2), (6) typically have
exponentially decayed gradient magnitudes over the non-
confusing negative classes. For these losses, classes can be
retrieved in decreasing order of gradient magnitude, using
a lower bound on the partition function Z =

∑
k exp zk

summing over only the subset of retrieved classes in order
to decide whether more classes need to be retrieved or not.

Updates of data structures. During training the model
parameters determining f will change, and the data struc-
tures Tj need to be updated. These data structures stores
rows of W and treats φ(x) as query. For loss func-
tions with a sparse gradient, such as (3) and (7), and their
smoothed versions (10), the number of updated rows ofW ,
kr, is much smaller than K and Q (the number of classes
retrieved for a query). Thus the cost for re-indexing rows
ofW is krC(D/B)B = krCD, where C is the number of
inner products required to index each row, which is much
smaller than the costs of query and updates. For tasks with
large number of updated rows (kr ≈ Q), the method is still
effective with a larger mini-batch size Nb. As the costs of
query and updates grow with Nb while the number of rows
to re-index is bounded by K, the cost of maintaining data
structure becomes insignificant.

Sampling for initialization. For a randomly initialized
model, the early iterates of learning have gradients evenly
distributed over the classes, as the scores of all classes are

close to each other. Therefore, it is unnecessary to search
candidates of significant gradient magnitude in the early
stage. In practice, one can switch from a sampling-based
gradient approximation to a search-based gradient approxi-
mation after a number of mini-batch updates. In our exper-
iments of unsupervised learning of word embeddings, we
initialize the algorithm with a single epoch of SGD with
sampling gradient approximation.

5. Experiments
In this section, we conduct experiments on three types of
problems: (i) multiclass classification (face recognition),
(ii) multilabel classification (document tagging), and (iii)
Unsupervised Word Embedding (Skip-gram objective (9)).
For multiclass and multilabel classification, we employ
a Stochastic Gradient Descent (SGD) optimization algo-
rithm, with an initial step size chosen from {1, 0.1, 0.01}
for the best performance of each method, with a 1/(1 + t)
cooling scheme where t is the iteration counter. The mini-
batch size is 10 and all methods are parallelized with 10
CPU cores in a shared-memory architecture, running on
a dedicated machine. All the implementation are in C++.
The following loss functions and gradient evaluation meth-
ods are compared for the experiments on multiclass and
multilabel classification:

• Softmax: exact gradient evaluation of the cross-
entropy loss (2). For multiclass, we have |P| = 1
and for multilabel, |P| � K.

• Sampled-Softmax: the sampling strategy in (Jean
et al., 2014; Chen et al., 2015), which includes all
positive classes of the instances and uniformly sub-
samples from the remaining negative classes. Here we
choose sample size as K/100.

• Margin: exact gradient evaluation of the smoothed
max-margin loss (10), where we choose µ = 1 for
the case of multiclass, and µ = 5 for the case of mul-
tilabel. The bi-simplex projection (11) is computed
in O(K logK) using the procedure described in (Yen
et al., 2016). Note the gradient update for this loss is
faster than that for cross-entropy, as the loss gradient
is very sparse, making the backward pass much faster.

• MIPS: search-based gradient evaluation (Algorithm
1) with smoothed max-margin loss (same setting to
Margin). We use Spherical Clustering (Auvolat et al.,
2015) with 100 centroids as the MIPS data structure,
and a batch query of size K/100.

• Decomp-MIPS: gradient evaluation via decomposed
search (Algorithm 2, T = 1 iteration). We divide the
inner product into B = 8 factors in the multiclass ex-
periment and B = 4 in the multilabel case. The set-
tings for MIPS data structure are the same as above.

Loss Decomposition for Fast Learning in Large Output Spaces

10
3

10
4

10
5

time

0

0.1

0.2

0.3

0.4

0.5

0.6

te
s
t-

a
c
c

Test-Acc-vs-Time

Decomp-MIPS

Margin

MIPS

Sample-Softmax

Softmax

10
3

10
4

10
5

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

-a
c
c

Train-Acc-vs-Time

Decomp-MIPS

Margin

MIPS

Sample-Softmax

Softmax

10
-1

10
0

epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

-a
c
c

Train-Acc-vs-Epoch

Decomp-MIPS

Margin

MIPS

Sample-Softmax

Softmax

Figure 1. Results of multiclass classification on the Megaface data set: Test Accuracy vs. Training time (left), Test Accuracy vs. Training
Time (middle), and Training Accuracy vs. number of epochs (right). Note the x-axis is in log-scale, and the curves are actually close to
convergence when plotted in linear scale.

10
3

10
4

10
5

time

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

te
s
t-

a
c
c

Test-Acc-vs-Time

Decomp-MIPS

Margin

MIPS

Sample-Soft

Softmax

10
3

10
4

10
5

time

0.1

0.2

0.3

0.4

0.5

0.6

tr
a
in

-a
c
c

Train-Acc-vs-Time

Decomp-MIPS

Margin

MIPS

Sample-Soft

Softmax

10
-1

10
0

10
1

epoch

0.1

0.2

0.3

0.4

0.5

0.6

tr
a
in

-a
c
c

Train-Acc-vs-Epoch

Decomp-MIPS

Margin

MIPS

Sample-Soft

Softmax

Figure 2. Results of multilabel classification on the WikiLSHTC data set: Test Accuracy vs. Training time (left), Training Accuracy vs.
Training Time (middle), and Training Accuracy vs. number of epochs (right). Note the x-axis is in log-scale, and the curves are actually
close to convergence when plotted in linear scale.

5.1. Multiclass Classificatoin

#Identities #Images Embed. Dim.
672K 4.7M 128

Table 1. Statistics of the MegaFace dataset.

For multiclass classification we conduct experiments on
the largest publicly available facial recognition dataset
MegaFace (Challenge 2)2, where each identity is consid-
ered a class, and each sample is an image cropped by a face
detector. The data set statistics are shown in Table 1.

We employ the FaceNet architecture (Schroff et al., 2015)3

pre-trained on the MS-Celeb-1M dataset, and fine-tune its
last layer on the MegaFace dataset. The input of the last
layer is an embedding of size 128, which is divided into
B = 8 factors, each of dimension 16, in the Decomp-MIPS
method.

The result is shown in Figure 1, where all methods are
run for more than one day. Firstly, comparing methods

2http://megaface.cs.washington.edu/.
3github.com/davidsandberg/facenet

that optimize the (smoothed) max-margin loss (Decomp-
MIPS, MIPS and Margin) shows that both Decomp-MIPS,
MIPS speed up the iterates by 1 ∼ 2 orders of magnitude.
However, MIPS converges at an accuracy much lower than
Decomp-MIPS and the gap gets bigger when running for
more iterations. Note the time and epochs are in log scale.
Secondly, Softmax has a much slower progress compared
to Margin. Note both of them do not even finish one epoch
(4.7M samples) after one day, while the progress of Margin
is much better, presumably because its focus on the confus-
ing identities. Sampled-Softmax has much faster iterates,
but the progress per iterate is small, leading to slower over-
all progress compared to the MIPS-based approaches.

5.2. Multilabel Classification

For multilabel classification, we conduct experiments on
WikiLSHTC (Partalas et al., 2015), a benchmark data set in
the Extreme Classification Repository4, where each class is
a catalog tag in the Wikipedia, and each sample is a docu-
ment with bag of words representation. The data statistics

4manikvarma.org/downloads/XC/
XMLRepository.html

http://megaface.cs.washington.edu/
github.com/davidsandberg/facenet
manikvarma.org/downloads/XC/XMLRepository.html
manikvarma.org/downloads/XC/XMLRepository.html

Loss Decomposition for Fast Learning in Large Output Spaces

are shown in Table 2.

We train a one-hidden-layer fully-connected feedforward
network for the multilabel classification task. The first
layer has input dimension equal to the vocabulary size
(1.6M) and an output of dimension 100. The second layer
has output size equal to the number of classes (325K),
with different loss functions and approximations for dif-
ferent methods in comparison. The training result also pro-
duces document and work embedding as by-products. For
Decomp-MIPS, the input of the last layer is divided into
B = 4 factors, each of dimension 25.

We run all the compared methods for more than one day
and the result is shown in Figure 2. First, for this mul-
tilabel task, Softmax has very good per-iteration progress,
significantly more than that from the other three approaches
based on the smoothed max-margin loss (Margin, MIPS,
Decomp-MIPS). However, the iterates of Softmax are much
slower than the others as it has a dense loss gradient and
thus a slower backpropagation, so that when comparing
training time, Softmax performs similarly to Margin. On
the other hand, when comparing Margin Decomp-MIPS,
and MIPS in progress per epoch, the updates of Decomp-
MIPS achieve almost the same progress as the exact gra-
dient calculation of Margin, while MIPS has a significant
drop in its training accuracy compared with Margin and
Decomp-MIPS, since it runs for more iterations. Overall,
the MIPS-based methods lead to an order of magnitude
speedup, while Decomp-MIPS retains the accuracy of the
exact method. On the other hand, Sampled-Softmax has an
extremely slow per-iteration progress despite its fast iter-
ates, and could not reach a comparable accuracy to other
methods even after one day.

#Label #Sample Embed. Dim. Vocab. Size
325K 1.8M 100 1.6M

Table 2. Statistics of the WikiLSHTC data set. On average, each
sample has 3.19 positive labels, and each class appears in 17.46
samples as a positive class.

5.3. Unsupervised Word Embedding

Vocab. Size #Words Embed. Dim. Window Size
≈ 451K ≈ 680M 100 8

Table 3. Statistics of the BillionW dataset.

In this section, we evaluate the proposed gradient ap-
proximation technique on the word embedding task with
the Skip-gram learning objective (9) and compare it with
two widely-used gradient approximation methods — Hi-
erarchical Softmax (Word2vec-HS) and Negative Sampling
(Word2vec-Neg) (Mikolov et al., 2013) implemented in the

10
3

10
4

10
5

Time

9

9.5

10

10.5

11

11.5

12

S
k
ip

g
ra

m
-L

o
s
s

Loss-vs-Time

GD-Decomp-MIPS

GD-Exact

GD-MIPS

Word2vec-HS

Word2vec-Neg

10
0

10
1

10
2

Epoch

9

9.5

10

10.5

11

11.5

12

S
k
ip

g
ra

m
-L

o
s
s

Loss-vs-Epoch

GD-Decomp-MIPS

GD-Exact

GD-MIPS

Word2vec-HS

Word2vec-Neg

Figure 3. Results on word embedding with Skip-gram objective,
where GD-Exact, GD-MIPS, and GD-Decomp-MIPS are initial-
ized with a model trained by one epoch of Word2vec-Neg.

word2vec5 package released by the authors. The sample
size for Word2vec-Neg is selected from {5, 10, 15, 20, 25}.

We use the benchmark data set BillonW6 of almost a half
million vocabulary size. The data statistics are provided in
Table 3. Following (Mikolov et al., 2013), we use a window
of size 8 and subsample frequent words in the corpus. Each
word w is dropped with probability max{1 −

√
t
fw
, 0}

where fw is the relative frequency of the word in the cor-
pus, and t = 10−4 is a threshold parameter.

Note that the Skip-gram objective (9) is presented in a col-
lapsed form equivalent to the one in (Mikolov et al., 2013).
Here, all terms of the same input-output pairs are grouped
together and weighted by the frequency. We compute gra-
dients from the positive outputs by summing over the em-
pirical input-output distribution qx, qy|x in (9). Then we
perform gradient descent (GD) updates on the parameters
of input words {φ(x)}x∈X and output words {φ(y)}y∈X
alternately. We use GD, GD-MIPS and GD-Decomp-MIPS
to denote the algorithm with different strategies of loss ap-
proximations. As mentioned in Section 4, since in the early
iterates the model has quite evenly distributed gradient over
candidates, we use 1 epoch of Word2vec-Neg to initial-
ize GD, GD-MIPS and GD-Decomp-MIPS. For this task,
we have many more negative classes of significant gradi-
ent magnitude than in the multilabel and multiclass exper-
iments. So we use a batch query of size K/20 instead of
K/100 to the MIPS structure. All the compared methods
are parallelized with 24 CPU cores.

The results are shown in Figure 3. After the first epoch,
methods based on alternating gradient descent (GD) (with
the collapsed objective (9)) have faster convergence per
epoch, and the iterations of GD-Deomp-MIPS are 5 times
faster than those of GD while having a significantly better
objective value than GD-MIPS for the same training time.

5code.google.com/archive/p/word2vec/
6www.statmt.org/lm-benchmark/

code.google.com/archive/p/word2vec/
www.statmt.org/lm-benchmark/

Loss Decomposition for Fast Learning in Large Output Spaces

Acknowledgements
I.Y. and P.R. acknowledge the support of NSF via IIS-
1149803.

References
Auvolat, A., Chandar, S., Vincent, P., Larochelle, H.,

and Bengio, Y. Clustering is efficient for approxi-
mate maximum inner product search. arXiv preprint
arXiv:1507.05910, 2015.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. Sparse
local embeddings for extreme multi-label classification.
In Advances in Neural Information Processing Systems,
pp. 730–738, 2015.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

Chen, W., Grangier, D., and Auli, M. Strategies for training
large vocabulary neural language models. arXiv preprint
arXiv:1512.04906, 2015.

Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhut-
dinov, R. R. Neighbourhood components analysis. In
Advances in neural information processing systems, pp.
513–520, 2005.

Guo, R., Kumar, S., Choromanski, K., and Simcha, D.
Quantization based fast inner product search. In Arti-
ficial Intelligence and Statistics, pp. 482–490, 2016.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive es-
timation of unnormalized statistical models, with appli-
cations to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361, 2012.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. On using
very large target vocabulary for neural machine transla-
tion. arXiv preprint arXiv:1412.2007, 2014.

Li, K. and Malik, J. Fast k-nearest neighbour search via
prioritized dci. In International Conference on Machine
Learning, pp. 2081–2090, 2017.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pp. 3111–3119,
2013.

Mnih, A. and Hinton, G. E. A scalable hierarchical dis-
tributed language model. In Advances in neural infor-
mation processing systems, pp. 1081–1088, 2009.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural
network language model. In Aistats, volume 5, pp. 246–
252. Citeseer, 2005.

Movshovitz-Attias, Y., Toshev, A., Leung, T. K., Ioffe, S.,
and Singh, S. No fuss distance metric learning using
proxies. arXiv preprint arXiv:1703.07464, 2017.

Mussmann, S. and Ermon, S. Learning and inference via
maximum inner product search. In International Con-
ference on Machine Learning, pp. 2587–2596, 2016.

Mussmann, S., Levy, D., and Ermon, S. Fast amortized
inference and learning in log-linear models with ran-
domly perturbed nearest neighbor search. arXiv preprint
arXiv:1707.03372, 2017.

Nesterov, Y. Smooth minimization of non-smooth func-
tions. Mathematical programming, 103(1):127–152,
2005.

Partalas, I., Kosmopoulos, A., Baskiotis, N., Artieres,
T., Paliouras, G., Gaussier, E., Androutsopoulos, I.,
Amini, M.-R., and Galinari, P. Lshtc: A bench-
mark for large-scale text classification. arXiv preprint
arXiv:1503.08581, 2015.

Prabhu, Y. and Varma, M. Fastxml: A fast, accurate and
stable tree-classifier for extreme multi-label learning. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pp. 263–272. ACM, 2014.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815–823, 2015.

Shrivastava, A. and Li, P. Asymmetric lsh (alsh) for sub-
linear time maximum inner product search (mips). In
Advances in Neural Information Processing Systems, pp.
2321–2329, 2014.

Spring, R. and Shrivastava, A. A new unbiased and effi-
cient class of lsh-based samplers and estimators for par-
tition function computation in log-linear models. arXiv
preprint arXiv:1703.05160, 2017a.

Spring, R. and Shrivastava, A. Scalable and sustainable
deep learning via randomized hashing. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 445–454.
ACM, 2017b.

Vijayanarasimhan, S., Shlens, J., Monga, R., and Yagnik, J.
Deep networks with large output spaces. arXiv preprint
arXiv:1412.7479, 2014.

Loss Decomposition for Fast Learning in Large Output Spaces

Weinberger, K. Q. and Saul, L. K. Distance metric learning
for large margin nearest neighbor classification. Journal
of Machine Learning Research, 10(Feb):207–244, 2009.

Wu, X., Guo, R., Suresh, A. T., Kumar, S., Holtmann-Rice,
D. N., Simcha, D., and Felix, X. Y. Multiscale quanti-
zation for fast similarity search. In Advances in Neural
Information Processing Systems, pp. 5749–5757, 2017.

Yen, I. E., Huang, X., Dai, W., Ravikumar, P., Dhillon, I.,
and Xing, E. Ppdsparse: A parallel primal-dual sparse
method for extreme classification. In Proceedings of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 545–553.
ACM, 2017.

Yen, I. E.-H., Chang, C.-F., Lin, T.-W., Lin, S.-W., and Lin,
S.-D. Indexed block coordinate descent for large-scale
linear classification with limited memory. In Proceed-
ings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 248–256.
ACM, 2013.

Yen, I. E.-H., Huang, X., Ravikumar, P., Zhong, K., and
Dhillon, I. Pd-sparse: A primal and dual sparse approach
to extreme multiclass and multilabel classification. In In-
ternational Conference on Machine Learning, pp. 3069–
3077, 2016.

Yu, H.-F., Jain, P., Kar, P., and Dhillon, I. Large-scale
multi-label learning with missing labels. In International
conference on machine learning, pp. 593–601, 2014.

