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Notation We denote vectors by boldface lowercase letters such as w, and the elements in the
vector are denoted by italics letters with subscripts, such as wy. Matrices are denoted by boldface
uppercase letters such as H. For any positive integer N, we denote the set {1,2,..., N} by [NV].
For vectors, we denote the ¢3 norm and ¢, norm by || - ||z and || - ||, respectively. For matrices,
we denote the operator norm and the Frobenius norm by || - ||2 and || - || 7, respectively. We denote
by ®(-) the CDF of standard Gaussian distribution. For any differentiable function f : R¢ — R,
we denote its partial derivative with respect to the k-th argument by O f.

A Variance, Skewness, and Sub-exponential Property

A.1 Proof of Proposition 1
We use the simplified notation f(w) := f(w;x,y). One can directly compute the gradients:
Viw) =x(x"w —y) = xx"(w — w*) — £x,

and thus
VE(w)=E[Vf(w)]=w—w".
Define A(w) := V f(w)—V F(w) with its k-th element being A (w). We now compute the variance

and absolute skewness of Ay (w).
We can see that

Arw) = S wai(wi — w) + (2f — 1)(wy — wi) - Eay. (1)
1<i<d
ik
Thus,
E[AZ(W)] =E[ ) ajaf(w; — w))* + &af] = |w — w*[|3 — (wy — w})* + 0%, (2)
1<i<d
i#k

which yields
Var(V f(w)) = E[|Vf(w) = VE(w)|3] = (d - 1)[w — w*||3 + do.
Then we proceed to bound v(Ag(w)). By Jensen’s inequality, we know that

E[AR(W)]
Var(Ag(w))3

A (Ap(w)) = LIARWI]

‘
= Var(Be(w))P2 =

We first find a lower bound for Var(Ag(w))3. According to (2), we know that

Var(Qe(w))’ = (D7 (wi—wi)* +0°)" = ( 3 (wi—w))?)’ +0°
1<i<d 1<i<d
i#k ik



Define the following three quantities.

W= > (w;—wj)® (4)
1<i<d
i#k
Wy = Z (w; —w)H(wj — w;‘)2 (5)
1<i,j<d
i,j#k
i#]
Wa= > (w;—w))*(wy — w))*(wg — wy)? (6)
1<i,j,6<d
1,5, 0#k
175,17, 5 7L
By simple algebra, one can check that
(D (o —wj)?)” = Wi+ 3Ws + W, (7)

1<i<d
i#k
and thus
Var(Ag(w))? > Wy + 3Wy + Ws + oS, (8)

Then, we find an upper bound on E[A$(w)]. According to (1), and Hélder’s inequality, we know
that

E[AF(W)] =E[( ) axwi(w; —w]) — €ox)®] < 32(E[( Y @nas(wi — w)))®] + E[E%af])

1<i<d 1<i<d
i#k i#k
=32(E[( Y @i(wi —w]))®] +150°), (9)
1<i<d
i£k

where in the last inequality we use the moments of Gaussian random variables. Then, we compute
the first term in (9). By algebra, one can obtain

E[( Y zi(w —w})*] =E[ Y af(wi —w})?] +15E[ Y afef(wi —w))*(w; —w))?]

1<i<d 1<i<d 1<i,j<d
ik ik i,j#k
i#£]
+ 15E][ Z x?z?x?(wi —wi)*(w; — w;-‘)z(wg —w})?
1<i,j,0<d
RN
iF£J,iAL, 5L
=Wi + 15W5 + 15W3. (10)
Combining (9) and (10), we get
E[AS(w)] < 32(W; + 156Ws + 15W5 + 1509). (11)

Combining (8) and (11), we get

E[AS (w)] 32(Wy + 15Wy + 15Ws + 1509)
A <y ——kT2 <
V(Ar(w)) \/Var(Ak(w))?’ = W1 + 8Wa + Ws + 00

< 480.

A.2 Example of Regression with Gaussian Features

Claim 1. Suppose that each data point consists of a feature x € R% and a label y € R, and the
label is generated by

y=x"w +¢
with some w* € W. Assume that the elements of x are i.i.d. samples of standard Gaussian distri-
bution, and that the noise & is independent of x and drawn from Gaussian distribution N'(0,02).

Define the quadratic loss function f(w;x,y) = %(y —xTw)2. Then, we have

Var(V f(w;x,y)) = (d +1)||w — w3 + do,

and
[V(Vf(w;x,9))[|oe < 429.



Proof. We use the same simplified notation as in Appendix A.1. One can also see that (1) still
holds for in the Gaussian setting. Thus,

EARW)]=E[ Y aiaf(wi —w])® + (af = 1)° (wy — wf)? + af]

1<i<d
itk
- Z (w; — w})? + 2(wy, — wj)* + o? (12)
1<i<d
i#k
= |w — w3 + (wy, — wy)? + 0%, (13)

which yields
Var(V f(w)) = E[|Vf(w) = VE(w)|3] = (d + 1)[[w — w*||3 + do.
Then we proceed to bound v(Ag(w)). By Jensen’s inequality, we know that

E[|Ar(w)[] E[AR(W)]
A = < 14
VAW = T Ar )2 =\ Var (B (w) P (14)
We first find a lower bound for Var(Ay(w))3. According to (12), we know that
Var(Ax(w))* = (D7 (i = w])” + 2(wp —w})? +0%)°
1<i<d
i#k
> (3 (wi—w)*)" 48wy — wp)° + 0",
1<i<d
i#k
Define the Wy, W, and W3 as in (4), (5), and (6). We can also see that (7) still holds, and thus
Var(Ag(w))? > Wy + 3Wa + Wi + 8(wy, — wjp)® + 0. (15)

Then, we find an upper bound on E[Af(w)]. According to (1), and Hélder’s inequality, we know
that

E[AY(W)] = E[( Y apas(w; —w]) + (2 — 1)(wy, — wf) — Ea)°]
1<i<d
i#k
< U3(E[( Y wpwi(w; — w)))®] + B[(af — 1)°(wy, — wi)®] + B[£%af)])
1<i<d
i#k
= 243(15E[( Y wi(w; — w}))%] + 6040(wy, — w)® + 2250°), (16)
1<i<d
ik

where in the last inequality we use the moments of Gaussian random variables. Then, we compute
the first term in (16). By algebra, one can obtain

E[( Y wi(w —w))T=E[ ) of(wi —w})*]+15E[ Y afef(wi —w))!(w; —w))?]

1<i<d 1<i<d 1<i,j<d
ik i#k W57k
i#]
+IE[ Y afafad(wi —w))?(w; —w))?(we — wp)’]
1<i,j,6<d
0. 04k
i
Combining (16) and (17), we get
E[AS (w)] < 243(225W + 675Ws 4 225W5 + 6040(wy — w})® + 22509). (18)
Combining (15) and (18), we get

< 429.

(Ap(w)) < E[AR(W)] _ [243(225W1 + 675W5 + 225Ws + 6040 (wy — w)S + 2250°)
TR Var (A (w))? = Wi + 3Wa + Ws + 8(wg — w})® + 00

O



A.3 Proof of Proposition 2

We use the same notation as in Appendix A.1. We have

Onf(wiz) — F(w) = Ap(w) = Y aps(w; — w]) + (af — 1) (wy, — wf) — €
1<i<d
i#k
=ap(=E+ Y milw; —w)) = wpAj(w)
1<i<d
i#k
Since A} (w) has symmetric distribution and zj, is uniformly distributed in {—1,1}, we know that
the distributions of Ay(w) and A} (w). We then prove a stronger result on Aj (w). We first recall
the definition of v-sub-Gaussian random variables. A random variable X with mean p = E[X] is
v-sub-Gaussian if for all A\ € R, E[e*X~M] < ¢v"3*/2. We can see that v-sub-Gaussian random
variables are also v-sub-exponential. One can also check that z;’s are i.i.d. 1-sub-Gaussian random
variables, and then A} (w) is v-sub-exponential with

v= (04 Y (wi—w))?) <\ o+ w - w3

1<i<d
ik

B Proof of Theorem 1

The proof of Theorem 1 consists of two parts: 1) the analysis of coordinate-wise median estimator
of the population gradients, and 2) the convergence analysis of the robustified gradient descent
algorithm.

Recall that at iteration ¢, the master machine sends w' to all the worker machines. For any
normal worker machine, say machine ¢ € [m] \ B, the gradient of the local empirical loss function
gi(w!) = VF;(w') is computed and returned to the center machine, while the Byzantine machines,
say machine i € B, the returned message g(w') can be arbitrary or even adversarial. The master
machine then compute the coordinate-wise median, i.e.,

g(w') = med{g'(w') : i € [m]}.
The following theorem provides a uniform bound on the distance between g(w') and VF(w?!).

Claim 2. Define

gi(w) = {*VE-(w) e\, 19)
and the coordinate-wise median of g'(w):
g(w) = med{g’'(w) : i € [m]}. (20)

Suppose that Assumption 2, 3, and 1 hold, and inequality (2) is satisfied with some € > 0. Then,

. . 4d
we have with probability at least 1 — CinmID)d’ e have

Ce
=V

\/dlog(l +nmlD) | oaras S| (o)

1
lg(w) = VE(W)[l> < 2v2— + V2 T —a) v

for all w € W, where C, is defined as in (4) in the main paper.
Proof. See Appendix B.1. O

Then, we proceed to analyze the convergence of the robust distributed gradient descent algo-
rithm. We condition on the event that the bound in (21) is satisfied for all w € W. Then, in the

t-th iteration, we define

@ = W ().



Thus, we have wi™t = IT),(W!*!). By the property of Euclidean projection, we know that

t+1

[wE = w e < W — w7

We further have

oWl < flw' - ng(w') — w2

< [w' =nVF(W") — w2 +1llg(w’) — VE(W') .

[[w (22)

Meanwhile, we have
[w' —nVE(w') = w3 = [w' = w*|3 — 2n(w' —w", VE(w")) + p?*[VF(w")[3.  (23)

Since F(w) is Ap-strongly convex, by the co-coercivity of strongly convex functions (see Lemma
3.11 in [2] for more details), we obtain

LrAp 1
wl —w* VF(wh)) > ——||w! — w*||3 + ———||VF(w))|3.
( (W)= F 2| I3+ o IV Pl
Let n = ﬁ Then we get
[w! —nVE(w!) — w3 < (1 — —2F jwt — W = 2 [VF(wWY) 3+ — [VE(w))[3
2= Lr+ Ap > Lp(Lr+Ar) > L2 >
2A\F
< 1 e t _ * |12

where in the second inequality we use the fact that Ap < Lp. Using the fact /1 -2 <1— %, we
get

AF
L npgVE(W)) —wH|la < (1 — ——— b wr . 24
Wt = gV F W)~ £ (1= 25w = wl (24)
Combining (22) and (24), we get
A 1
witl —wHl, < (1 - —2E )|wt — w* + —A, 25
[ o < (1= 25w = wa+ (29)

where

1 C. dlog(1 +nmLD) S
A=2vV2— 2 A748—).
\fnm_‘_f\/ﬁv(a—i—\/ m(l — ) 047 8\/5)

Then we can complete the proof by iterating (25).

B.1 Proof of Claim 2

The proof of Claim 2 relies on careful analysis of the median of means estimator in the presence
of adversarial data and a covering net argument.

We first consider a general problem of robust estimation of a one dimensional random variable.
Suppose that there are m worker machines, and ¢ of them are Byzantine machines, which store
n adversarial data (recall that o := ¢/m). Each of the other m(1 — «) normal worker machines
stores n i.i.d. samples of some one dimensional random variable z ~ D. Denote the j-th sample in
the i-th worker machine by x%J. Let p := E[z], 02 := Var(z), and ~(x) be the absolute skewness
of z. In addition, define # as the average of samples in the i-th machine, i.e., & = %22:1 b,
For any z € R, define p(z) := ﬁ Dicim\B 1(#* < 2) as the empirical distribution function of
the sample averages on the normal worker machines. We have the following result on p(z).

Lemma 1. Suppose that for a fixred t > 0, we have

t y(z) 1
a+1/m+0.4748%§5—6, (26)

for some € > 0. Then, with probability at least 1 — 4e~2t, we have

5(“+ijﬁ(a+‘/m(1t—a) +0.47487(\/?)) 2%+a7 (27)



and

ﬁ(u - CE%(Q + m + 0.47487(\/3%))> < % —a, (28)

where C. is defined as in (4) in the main paper.
Proof. See Appendix B.2. O

We further define the distribution function of all the m machines as p(z) := L > ielm) 1(z < 2).
We have the following direct corollary on p(z) and the median of means estimator med{z* : i € [m]}.

Corollary 1. Suppose that condition (26) is satisfied. Then, with probability at least 1 — de~2t,
we have,

t

ﬁ<u+ CG%(Q+ e +0.47487(\/9%))> > % (29)

and

P (u - CG%(Q + ﬁ + 0.47487\(;3)> < % (30)

Thus, we have with probability at least 1 — 4e~2,

t (@)
\F( i 0.4748 7

Proof. One can easily check that for any z € R, we have |p(z) — p(z)| < «, which yields the
results (29) and (30). The result (31) can be derived using the fact that p(med{z’ : i € [m]}) =
1/2. O

med{' : i € [m]} — 4| < C. ). (31)

Lemma 1 and Corollary 1 can be translated to the estimators of the gradients. Define g'(w)
and g(w) as in (19) and (20), and let g (w) and gi(w) be the k-th coordinate of g*(w) and g(w),
respectively. In addition, for any w € W, k € [d], and z € R, we define the empirical distribution
function of the k-th coordinate of the gradients on the normal machines:

1 )

n(z: = — 1(qg} < 2
Pewb) = s > Mgh(w) < 2), (32

i€[m]\B

and on all the m machines

_ I o=,

plzw. k) = — > 1(gi(w) < 2). (33)
i=1

We use the symbol J), to denote the partial derivative of any function with respect to its k-th argu-
ment. We also use the simplified notation o7 (w) := Var(dy f(w;z)), and v, (w) := v(0xf(W; 2)).
Then, according to Lemma 1, when (26) is satisfied, for any fixed w € W and k € [d], we have

with probability at least 1 — 4e=2,

~ or(w) t Ye(W) 1
F _— 474 > = 4
p(@k (w) + C- n (a+ m(l = )+0 748 1Y) NG );w. k 25te (34)
and
~ o (w) t V(W) 1
F — _— A74 wok ] <= —a.
p(@k (w) — Ce N (o + m(l—a)JrO 748 N )W, <g-a (35)
Further, according to Corollary 1, we know that with probability 1 — 4e~2,
or(w) t Ye(W)
lgx (W) — O F(w)| < Ce (4 4| —— +0.4748 ). (36)

vn m(l — a) vn

Here, the inequality (36) gives a bound on the accuracy of the median of means estimator for the
gradient at any fixed w and any coordinate k € [d]. To extend this result to all w € W and all the
d coordinates, we need to use union bound and a covering net argument.



Let W5 = {w!, w2, ..., w5} be a finite subset of W such that for any w € W, there exists
w' € Ws such that |[w’ — wll2 < J. According to the standard covering net results [8], we know
that Ns < (1+ %)d. By union bound, we know that with probability at least 1 — 4dNse~2*, the
bounds in (34) and (35) hold for all w = w* € W;, and k € [d]. By gathering all the k coordinates
and using Assumption 3, we know that this implies for all w* € Wi,

lg(w’) — VF(w*)|2 < S%V (a + ﬁ + 0.4748\55) . (37)

Then, consider an arbitrary w € W. Suppose that ||[w’ — w|s < §. Since by Assumption 1,
we assume that for each k € [d], the partial derivative dy f(w;z) is Lg-Lipschitz for all z, we know
that for every normal machine i € [m] \ B,

gk (w) = gi(Wh)| < L.

Then, according to the definition of p(z; w, k) in (33), we know that for any 2z € R, p(z+Lxd; w, k) >
p(z;wh k) and p(z — Li6; w, k) < p(z; w, k). Then, the bounds in (34) and (35) yield

P (akF(wf) + L6 + C. Uk\(/vﬁvq (o + /ﬁ + 0.4748%\(/‘%2) )i w, k) > % +a,  (38)

P (akF(wf) — L6 —C. ak\(/vﬁvf) (a+ m + 0.4748%'(\/";));w, k) < % —a. (39)

Using the fact that [0y F(w’) — 0, F(w)| < L6, and Corollary 1, we have

|9k (W) — O F'(w)| < 2Lid + Ce ak\(/v;) (a+ \/E -~ 0.4748%(\/‘);)).

Again, by gathering all the k coordinates we get

d d
c? t (W)
g(w)—VEWw)|2 <82 L2 +2=<Y o2(wh)(a+ /| ————— +0.4748 2
lg(w) (w)l|3 2 kT2 ’; R (WO)( i —a) NG )

where we use the fact that (a +b)? < 2(a? +b?). Then, by Assumption 2 and 3, we further obtain

and

lg(w) — VE(w)||2 < 2v25L + Valey <a b=y oaras S (40)
n m(l — «)

% %)

where we use the fact that va +b < v/a + v/b. Combining (37) and (40), we conclude that for
any § > 0, with probability at least 1 — 4dNse=2!, (40) holds for all w € W. We simply choose

5= ﬁ, and t = dlog(1+ nmED). Then, we know that with probability at least 1 — m,
we have
1 C. dlog(1 +nmLD) s
—VF < 2vV2— 2—V 0.4748—

for all w € W.

B.2 Proof of Lemma 1

We recall the Berry-Esseen Theorem [1, 4, 7] and the bounded difference inequality, which are
useful in this proof.



Claim 3 (Berry-Esseen Theorem). Assume that Y7,...,Y, are i.i.d. copies of a random variable
Y with mean w, variance o2, and such that E[|Y — u|?] < co. Then,

E[)Y — ul’]

o3y
where Y = %Z?ZlYi and ®(s) is the cumulative distribution function of the standard normal
random variable.

sup <0.4748

seR

]P’{\/EY/_

a gs} — B(s)

Claim 4 (Bounded Difference Inequality). Let Xi,...,X,, be i.i.d. random variables, and assume
that Z = g(Xu,...,X,), where g satisfies that for all j € [n] and all x1,22,..., 2, T,

/
Gree
|g($1,.. .,xj_l,xj,xj+1,...,:cn) 79(1’1,...,mj_1,$;,$j+1,...7fn)| S Cj.

Then for any t > 0,
212
P{Z-EZ] >t} <exp| ~=n——3

and

21
P{Z —E[Z] < —t} <exp ( Z;;l c?) .

Let oy = %= and ¢, := 0.4748"L2=4E] — 047487 Define W; := =% for all i € [m],
and ®,(-) be the distribution function of W; for any ¢ € [m] \ B. We also define the empirical
distribution function of {W; : i € [m] \ B} as ®,(-), i.e., ®n(z) = mZie[m]\Bﬂ(Wi < z).
Thus, we have _

0, (2) = plomz + ). (41)

We then focus on ®,,(z). We know that for any z € R, E[®,,(z)] = ®,(z). Then, since the bounded
yt>0,

difference inequality is satisfied with c¢; = ﬁ, we have for an,

802 - 0| < |/ o (42)

on the draw of W;, i € [m]\ B with probability at least 1 — 272!, Let z; > 22 be such that
D, (z1) > % + o+ ﬁ, and @, (z) < % —a— ﬁ Then, by union bound, we know
that with probability at least 1 — 4e=2f, @, (21) > 1/2 4+ a and ®,(22) < 1/2 — o. The next step
is to choose z; and z. According to Claim 3, we know that

@n(zl) > ‘I)(Zl) — Cn,

and thus, it suffices to find z; such that

t

1
<I>(zl):§+a+ m

+cpn.

By mean value theorem, we know that there exists £ € [0, z1] such that

t z1 g 21 i
oty ————F =0 () =—=e"7 >
n 1 (6) o

m(l — )
Suppose that for some fix constant € € (0,1/2), we have

t 1
S <> —e
ot m(lfa)+cn_2 ‘

Then, we know that z; < ®~!(1 —¢), and thus we have

t z
a+ | ———+cp >

iyt e 1= 9)),

| —



which yields
1 t
21 < \/27Texp(§(<1>_1(1 —6)?) (a + m—a) + cn> .
Similarly

z9 > —\/ﬁexp(%(é’l(l —e)?) (a + ﬁ + cn> .

(1-«

For simplicity, let Ce := v2mexp(3(®1(1 — €))?). We conclude that with probability 1 — 4e~2¢,
we have
t

ezl
m(l — ) n)) =5 T

ﬁ(;u + Ceo'n(a +

and

Py — Ceon(a+

C Proof of Theorem 2

Since Claim 2 holds without assuming the convexity of F'(w), when F(w) is non-strongly convex,

the event that (21) holds for all w € W still happens with probability at least 1 — ﬁ. We

condition on this event. We first show that when Assumption 4 is satisfied and we choose n = ﬁ,
the iterates w' stays in WW without using projection. Namely, define

= wh — ng(w'),

w
for T=0,1,..., 7 — 1, then wt € Wforallt =0,1,...,T. To see this, we have

Wt —wlls < [l = nVE(w') — w*[|2 + nllg(w’) = VE(w')]2,
and

Iw' =V E(w') = w3 = [w' — W[5 — 2n(VF(w"), w' — w") +2°|[VF(w")]3

. 1
< w' — w3 - 2nEIIVF(Wt)II§ +n?|[VF(w)|3

= [[w' = w3 = o [IVE(w)]3

1
7y
< Jw! = w3

where the inequality is due to the co-coercivity of convex functions. Thus, we get

A
W' = w¥llz < W' = w¥[l2 +
Lp
and since T' = %, according to Assumption 4 we know that w® € Wforallt = 0,1,...,T. Then,
we proceed to study the algorithm without projection. Here, we define Dy := |[|[w’ — w*||5 + %

fort=0,1,...,T.
Using the smoothness of F(w), we have

F(w'™) < F(w') + (VE(w'), w'™ — w') + —=[w'™ — w'|3
L
= P(w!) £ p(VF(w'), ~g(w!) + VF(w!) = TF(w) + 7725 [g(w!) = VF(w!) + TF(w) .
Since 7 = 7~ and [|g(w') — VF(w')||2 < A, by simple algebra, we obtain

1 1
P < F(w!) = o [P [ + 57— A% (43)

We now prove the following lemma.



Lemma 2. Condition on the event that (21) holds for all w € W. When F(w) is convex, by

running T = % parallel iterations, there exists t € {0,1,2,...,T} such that

F(w') — F(w*) < 16DgA.

Proof. We first notice that since T = LFAD“, we have D; < 2D for all t = 0,1,...,T. According
to the first order optimality of convex functions, for any w,

F(w) = F(w") < (VF(w),w — w") < [[VF(w)]2]|w — w"[|2,
and thus
F(w)— F(w")

IVE(w)ll2 > .
[w —w*|ls

(44)
Suppose that there exists t € {0,1,...,T — 1} such that [|[VF(w!)||2 < v2A. Then we have
F(w') = F(w") < ||[VE(W')||2|w’ — w*||2 < 2V2DA.

Otherwise, for all ¢ € {0,1,...,T — 1}, ||[VF(w?)|l2 > v/2A. Then, according to (43) and (44), we
have for all t < T,

F(w't!) — F(w*) < F(w') — F(w*) — EHVF(WOH%

1
< ty kN - ty * 2'
< Flw') = F(w') = g (F(w') = F(w)
Multiplying both sides by [(F(w'T!) — F(w*))(F(w!) — F(w*)]~! and rearranging the terms, we
obtain
1 1 1 F(wt) — F(w*) < 1 1

FwiT) — F(w*) = F(wh) — F(w) | 4LpD? F(w'1) — F(w") = F(wh) — F(w*) ' 16LzD}’

which implies

1 1 T T
> > .
F(wT) = F(w") = F(w0) — F(w") ' 16LpDg — 16L7D3
Then, we obtain F(w’) — F(w*) < 16DyA using the fact that T' = —LFADO. O

Next, we show that F(wT) — F(w*) < 16DyA + ﬁA? More specifically, let ¢t = ty be the
first time that F(w') — F(w*) < 16DpA, and we show that for any ¢ > to, F(w') — F(w*) <
16Dy A + ﬁAZ. If this statement is not true, then we let ¢; > o be the first time that F(w') —
F(w*) > 16DgA + 57—A?. Then there must be F(w"~') < F(w"). According to (43), there
should also be

1
F(wh™!) - F(w*) > F(w') — F(w*) — fﬂ > 16Dy A.
F

Then, according to (44), we have

F(wi=1) — F(w")

VE(wh g >
|| (W )”2 = ||Wt1_1 — W*HQ

> 8A.

Then according to (43), this implies F(w') < F(w' 1), which contradicts with the fact that
F(wh=1) < F(w').

D Proof of Theorem 3

Since Claim 2 holds without assuming the convexity of F'(w), when F'(w) is non-convex, the event

that (21) holds for all w € W still happens with probability at least 1 — ﬁ. We condition

on this event. We first show that when Assumption 5 is satisfied and we choose n = ﬁ, the
iterates w' stays in WV without using projection. Since we have

. ) . 1
[wi = w2 < W' = w2 +0([VF(W)|2 +[lg(w’) = VF(W')2) < [w' —w l2+ 7 (M +4).

10



Then, we know that by running T = ZALQF (F(w) — F(w*)) parallel iterations, using Assumption 5,

we know that wt € W for t = 0,1,...,T without projection.

We proceed to study the convergence rate of the algorithm. By the smoothness of F(w),
we know that when choosing n = i, the inequality (43) still holds. More specifically, for all
t=0,1,...,7 -1,

F(whl) — F(w") < F(w') — F(w") — iI\VF(wt)IIS + ﬁﬁ (45)

Sum up (45) for t =0,1,...,7 — 1. Then, we get
T * 0 T 9
0<F(w') - F(w") < F(w') — ZHV H2+EA'

This implies that

min [VE(w)3 <225 (F(w") = F(w")) + A%

which completes the proof.

E Proof of Theorem 4

The proof of Theorem 4 consists of two parts: 1) the analysis of coordinate-wise trimmed mean
of means estimator of the population gradients, and 2) the convergence analysis of the robustified
gradient descent algorithm. Since the second part is essentially the same as the proof of Theorem 1,
we mainly focus on the first part here.

Claim 5. Define
g (w) = {VFZ-(W) ie[m]\B, (46)

* i€ B.
and the coordinate-wise trimmed mean of g'(w):
g(w) = trmeang{g’(w) : i € [m]}. (47)

Suppose that Assumptions 1 and 6 are satisfied, and that o < f < < = —e. Then, with probability at
2d(m+1)

leastl—m,
3v28d  2d \/ ~ 1 g1
—VF <f — log(1 LD)+ -1 —
lg(w) = VE(w)]2 ( v *m) og(1+nmLD) + ~logm + O + —)
for allw e W.
Proof. See Appendix E.1 O

The rest of the proof is essentially the same as the proof of Theorem 1. In fact, we essentially
analyze a gradient descent algorithm with bounded noise in the gradients. In the proof of Theorem 1
in Appendix B. The bound on the noise in the gradients is

C. dlog(1 + nmLD) S 1
\%4 A748— 2vV2—
NG (a-f—\/ o) +0.47 Sﬁ) fnm,
while here we replace A with A’:
A 3\fﬁd 2d
Vi Vm

and the same analysis can still go through. Therefore, we omit the details of the analysis here.

A=+"2

1 3 1
)\/log(1+nmLD)+dlogm+(9( +%)

Remark 1. The same arguments still go through when the population risk function F(w) is non-
strongly convex or non-convexr. One can simply replace the bound on the noise in the gradients A
in Theorems 2 and 3 with A" here. Thus we omit the details here.

11



E.1 Proof of Claim 5

The proof of Claim 5 relies on the analysis of the trimmed mean of means estimator in the presence
of adversarial data and a covering net argument. We first consider a general problem of robust
estimation of a one dimensional random variable. Suppose that there are m worker machines, and
q of them are Byzantine machines, which store n adversarial data (recall that « := ¢/m). Each
of the other m(1 — a) normal worker machines stores n i.i.d. samples of some one dimensional
random variable z ~ D. Suppose that x is v-sub-exponential and let p := E[z]. Denote the j-th
sample in the i-th worker machine by z*7. In addition, define ' as the average of samples in the
i-th machine, i.e., ¢ = %Z?:l . We have the following result on the trimmed mean of Z‘,
i € [m].

Lemma 3. Suppose that the one dimensional samples on all the normal machines are i.i.d. v-
sub-exponential with mean . Then, we have for any t > 0,

t2

1 ; t
P{|——— Tl >t <2 1-—
{] v Z T —p| >t} < 2exp{—( a)mnmln{ 502

ie[m]\B

53
and for any s > 0,

P{ max {|a' — pl} = 5} <201 — aymexp{- nmin{_- 2v2}}

and when 8 > «, |m Zie[m]\B 7 —pu| <t, and maxie[m]\g{ﬁi — pl} < s, we have

t+308s
1-28"

Proof. See Appendix E.2. O

[trmeang{z’ : i € [m]} — p| <

Lemma 3 can be directly applied to the k-th partial derivative of the loss functions. Since we
assume that for any &k € [d] and w € W, Oy f(w;z) is v-sub-exponential, we have for any ¢ > 0,
s >0,

1

Bl 3 (W)~ w2 1) < 2exp{—(1— amamin{ - Ly
(1 a)mie[m]\g
s 82
P{, max {|g(w) ~ OuF(w)l} = s} £ 2(1 - jmesp{-nmin{; 2}, (49

and consequently with probability at least

1—2exp{—(1—a)mn mm{ 202 }} 2(1 — a)mexp{— nmln{2 202 }}

we have
lgr(W) — O F(w)| = [trmeang{g} (W) : i € [m]} — OpF'(W)] t;:zﬁg.

To extend this result to all w € W and all the d coordinates, we need to use union bound and a
covering net argument. Let Ws = {w! w? ... . w¥s} be a finite subset of W such that for any
w € W, there exists w’ € W;s such that |w’ — wl|z < §. According to the standard covering net
results [8], we know that Ny < (1+ £)9. By union bound, we know that with probability at least

IN

(50)

2
1 —2dN;sexp{—(1 — a)mn mln{ ; 51

the bound |(1+a)m D icim\B gi(w) — OxF(w)| < t holds for all w = w’ € Wy, and k € [d], and
with probability at least

1—2(1 — a)dmN; exp{— nmln{ 52 }}
v

12



the bound max;cpn\s{|gs(W) — OF(w)|} < s holds for all w = w* € Wj, and k € [d]. By
gathering all the k coordinates, we know that this implies for all w’ € W,

l(w) ~ VP2 < VAT (51)

Then, consider an arbitrary w € W. Suppose that ||[w® — w]||s < 6. Since by Assumption 1, we
assume that for each k € [d], the partial derivative dj f(w;2z) is Lj-Lipschitz for all z, we know
that for every normal machine i € [m] \ B,

lgi(w) — gi(W")| < Lid,  |0nF(w) — O F(w")| < Ly0.

This means that if |m Zie[m]\B g,i(wf) fakF(wZ)| < tand maxie[m]\lgﬂg,i(we)fﬁkF(wZ)|} <
s hold for all w* € W, and k € [d], then

1

|(1 —a)m

Z gi(w) — OpF(w)| <t + 2Ly,
ie[m]\B

and

max_{|gh(w) — O F(w)|} < s+2Ly0
i€[m]\B

hold for all w € W. This implies that for all w € W and k € [d],

t+38s | 2(1+38)

gk (W) — O F(w)| = [trmeang{gi(w) : i € [m]} — OpF(w)| < 1—28 1-23

0Ly,

which yields

l(w) - VF(w)l < VBT 4 VaR DT

The proof is completed by choosing § =

nmL ’

8d ~ 8d ~
t= vmax{— log(1 + nmLD), \/ log(1 +nmLD)},

4 ~
s= vmax{ (dlog(1 + nmLD) + logm), \/(dlog(l +nmLD) + logm)},
n
and using the fact that g < < s — e
E.2 Proof of Lemma 3

We first recall Bernstein’s inequality for sub-exponential random variables.

Claim 6 (Bernstein’s inequality). Suppose that X1, X, ..., X,, are i.i.d. v-sub-exponential random
variables with mean p. Then for any t > 0,

1 n
}P’{\EZXi pl >t} < 2exp{— nmln{ 2U2}}
Thus, for any t > 0

Bl 3 &> 1) < 2exp{~(1 - a)mnmin{ -, ), (52)
(1 a)mie[m]\B 2v

Similarly, for any ¢ € [m] \ B, and any s > 0

P —ul>st <2 .
{1Z" — | > s} exp{— nmm{2 202 }}
Then, by union bound we know that
]P’{ max {\x —ul} > s} <2(1 — a)mexp{— nmln{ 2v2 }} (53)
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We proceed to analyze the trimmed mean of means estimator. To simplify notation, we define
M = [m] \ B as the set of all normal worker machines, & C [m] as the set of all untrimmed
machines, and 7 C [m] as the set of all trimmed machines. The trimmed mean of means estimator
simply computes

trmeang {7’ : i € [m]} = m Zﬁ:i
ieu

We further have

[trmeang{z’ : i € [m]} — p| =

1 —i
T

1 ) ) .
T DGR R DI RN RS S CEn
(1-28)m z;\/l g ie%w’r 8 ie;b( 8
e DICETIE I DI CEIEHID DECEA))
€M iEMNT eBNU

(54)
We also know that | Y, \q7 (2 — p)| < 28mmaxie p{|Z° — p|}. In addition, since 3 > a, without
loss of generality, we assume that MNT # 0, and then | 3", 5y, (Z° — p)| < ammax;e p {7 — pl}-
Then we directly obtain the desired result.

F Proof of Theorem 7

Since the loss functions are quadratic, we denote the loss function f(w;z"7) by

flw;z"7) = §WTH2',J'W +PiW + Cij
We further define H; := 1 Z?zl H;; pi:=1 Z?zl pij,and¢; == 1 22‘;1 ¢; j. Thus the empirical
risk function on the i-th machine is

1
F(w) = §WTHZ‘W + p,:-Fw + ¢;.

Then, for any worker machine i € [m]\B, W' = -H; 'p;. In addition, the population risk minimizer
is w* = —H}lpp. We further define U; ; := H; ; — Hp, U; = H; — Hp, v, ; = p;j; — Pr, and
v; = p; — pr. Then

Eat}

W' =—(U; +Hp) '(vi + pr).
Let e; be the k-th vector in the standard basis, i.e., the k-th column of the d x d identity matrix.
We proceed to study the distribution of the k-th coordinate of W' — w*, i € [m]\ B, i.e.,

o}, — wi = e Hp'pr — e} (U; + Hp) " H(vi + pr).

Similar to the proof of Theorem 1, we need to obtain a Berry-Esseen type bound for &% — wj.
However, here, @} is not a sample mean of n i.i.d. random variables, and thus we cannot directly
apply the vanilla Berry-Esseen bound. Instead, we apply the following bound in [6] on functions
of sample means.

Claim 7 (Theorem 2.11 in [6], simplified). Let X be a Hilbert space equipped with norm || -||. Let
f X = R be a function on X. Suppose that there exists linear functions £ : X — R, 8 > 0,
My > 0 such that

500 — (X)) < SLIXIP, v 1x] <o (59)

Suppose that there is a probability distribution Dx over X, and let X, X1, Xo,..., X, be i.i.d.
random variables drawn from Dx. Assume that E[X] =0, and define

= B2, vp= EIXITNVPp=23, <= —— e

14



Let X = 23" | X;. Then for any z € R, we have

s} ool

where C = Cy + 01§3 + (CQQ + Cglg)Vg + (030 -+ Cglg)llg + Cy, with

Cp =0.1393, () =2.3356

My (216 22/3 (8/m)1/6 2
(Ca0, Ca1, C30, C31) = o (2(7r) R i YRS v et e v (57)
v:  2u3 +vd/nt/?
C4 = min{ e 1/2, Poor
Define the function 15 (U,v) : R4 x R — R:
Ur(U,v) :=efH,'pr —ej (U+Hp) (v + pr),
and thus .
'L/E]Zc _wz :wk(U%V'L) ¢k Z 0,99 sz,j
j 1
On the product space R*¢ x R, define the element-wise inner product:
(U, v) Z Ui j Xij; + szyl,
4,j=1
and thus R?¥¢ x R is associated with the norm
1O, V)l = /013 + VI3,
where || - || denotes the Frobenius norm of matrices. We then provide the following lemma on

d)k(U, V).

Lemma 4. There exits a linear function £, (U,v) = eEHI}lUH;lpF —efH, LV such that for any
U, v with

/\2
[U)% + v < TF,
we have \ 2lprl
F+2||PFi2
k(U v) = 4:(U, v)| < /\73(”U||2F +[v[I3)-
F
Proof. See Appendix F.1. O

Lemma 4 tells us that the condition (55) is satisfied with 6 = )‘—F and My w For

all normal worker machine i € [m] \ B, denote the distribution of U, 4 and v; ; by DU and D,,
respectively. Since @} —wj = (1 S Ui Z;;l v;.j), Claim 7 directly gives us the following
lemma.

Lemma 5. Let U~ Dy, v ~ D, and {1, (U,v) = ¢, H_IUHF Pr — ekH v. Define

(E[l (T, V)P

o= (EIR(UV) N2 vy = E(UIE + IVIDPDYPp =23, =

Ok
Then for any z € R, i € [m] \ B, we have
wE — w; Ck
Pk "k < } D(2)| < ==, 58
P{RA <o) o] < %)

where
~ ~ 1. ~ ~ ~ ~ ~
Cr=Co+Cisi + 5 [(Cgo + Corsk)v3 + (Cao + Cs1§k)’/?ﬂ + Cy,
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with R R
Co =0.1393, C; =2.3356

~ o~ A~ A +2 2 22/3 8/ 1/6 9
(C20,C21, C30, C31) = Ar + 2llprllz (2(7r)1/6’2+ (8/m) >

)\% nl/67 pl/3 7 pl/2 (59)
& in{ v 16v3 4 8v3/n'/?
= min .
! AZpl/2’ An

Then, we proceed to bound med{@? : i € [m]} — w}, the technique is similar to what we use in
the proof of Claim 2. For every z € R, k € [d], define

i€[m]\B
We have the following lemma on p(z; k).

Lemma 6. Suppose that for a fixred t > 0, we have

t Ch

1
T G
at m(l—a)+\/ﬁ*2

€, (60)
for some € > 0. Then, with probability at least 1 — 4e~ 2, we have

- Ok t Ck . 1 o
P (CE\/H(OL+ W’L(1—04)+\/ﬁ)7k> > 2 + «, (61)

and

ﬁ(-@j’%(m m(lt_a)+3%);k> g%—m (62)

where C. is defined as in (4) in the main paper.

Proof. The proof is essentially the same as the proof of Lemma 1. One can simply replace o in
Lemma 1 with o and 0.4748y(z) in Lemma 1 with C%. Then the same arguments still apply.
Thus, we skip the details of this proof. O

Then, define p(z; k) = = > iem) 1(@! —wj; < z2). Using the same arguments as in Corollary 1,
we know that

—~ Ok t Cy, 1
Ce—= ——+ —F=)k| =3,
p< \/ﬁ(a+ m(lfoz)—i_\/ﬁ) >_2
and
~ ok t Ch 1
L A R
p( \/ﬁ(a+ m(lfa)—k n> >_2
which implies that |med{w@} : i € [m]} — w}| < C’e%(a + m(ltfoz) + %) Then, let

52 = \/El|H; (UH;'pr — V|13,

and C = maxye(q) C, we have with probability at least 1 — 4dde—2t,

OE&(OH— _t +£)
vn m(l—a) = n’

We complete the proof by choosing ¢ = %log(nmd).

||med{vAVi ci € m) — w2 <
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Explicit expression of C To summarize, we provide an explicit expression of C. Let e be the
k-th vector in the standard basis, i.e., the k-th column of the d x d identity matrix, and define
(U, v) : R¥*4 xR — R as

0,(U,v) =elH,'UH,'pr —ef H'v.
Let H ~ Dy and p ~ D, and define

(E[[6x(H-Hp,p — pF)|3])1/3.

o = (E[6x(H - Hp,p — pr)?)"?, = Ok

vy == (E[(|H-Hp|% + |p—prl3)"?)/?,p=2,3
Then, C= maxyc(q) Ck, with where
~ ~ 1 - ~ ~ ~ ~ ~
O = Co + Crc? + 5 [(Coo+ Corsi)v3 + (Cao + Carr)v3] + Cu,
with
Co =0.1393, C; = 2.3356

P A o+ 2 9 92/3 (8/m)1/6 9
(Czo,C21,C307031):F”pF”2(2(7T)1/6,2+ (&/m) )

A3, nl/60  p1/3 0 p1/2
~ 4v  16v3 + 8v3 /nt/?
Cy = 2 2 3 .
L= rnln{ i Xn

F.1 Proof of Lemma 4

We use ||-]|2 and ||| r to denote the operator norm and the Frobenius norm of matrices, respectively.
We have the identity

oo

I+A)'=>(-1)"A", VAl <L
r=0

Then, we have for all U € R¥*9 such that |[Hz'Ulls < 1,
(U+Hp) ' =(1+H;'U)"'H;! = H;! - H;'UH;! + Z H,'U)H; . (63)

Let us consider the set of matrices such that |[U[|z < 2£. One can check that for any such matrix,
we have |[Hp'U|l2 < 3. Let
0,(U,v) = et H.'UH 'pr —ef H'v.

Then, we know that

o0
W (U,v) = £(U,v)| = [ef Hp ' UHR'v = Y “(=1)"e} (H;'U)"H' (v + pr)| .- (64)
r=2
Denote the operator norm of matrices by || - [|2. We further have for any r > 1,

lrTvrr— |
lex (Hp U) Hy'v| < S [HR U™ (| HE U3 + [[H'v]3) < (IOl + Ivl5).  (65)

- 27")\2
where we use the fact |U||2 < ||U||r. In addition, for any r > 2,
T H—lU 'r‘H—l < H—lU r—2 H U ||pF||2 10] 2 66
lex (H'U)" Hp'pr| < [[H Ul [HE 5[ UlEIprll: < 5= N 101 (66)
Then, we plug (65) and (66) into (64), and obtain
1 2 2 ||PF||2
[¥r(U,v) = (U, v)| < 55 (U7 + lIv]2) + I01I%,
F

which completes the proof.
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G Proof of Observation 1

This proof is essentially the same as the lower bound in the robust mean estimation literature [3]
and [5]. We reproduce this result for the purpose of completeness. For a d dimensional Gaussian
distribution P = N(u,0?I), we denote by P" the joint distribution of n i.i.d. samples of P.
Obviously P™ is equivalent to a dn dimensional Gaussian distribution A'(u™", 021), where u* € R
is a vector generated by repeating p n times, i.e., pt = [pT pT .- pT7T.

We show that for two d dimensional distributions P; = N'(u;,021) and P> = N (s, 021), there
exist two dn dimensional distributions Q1 and @2 such that

1-—a)P'+aQ1=(1—a)Py + aQs. (67)

If this happens, then no algorithm can distinguish between P; and Ps. Let ¢1 and ¢5 be the PDF
of P* and PJ, respectively. Let p; and p, be such that the total variation distance between Pj*

and P is
1 o
3 [ = ol = 1.

By the results of the total variation distance between Gaussian distributions, we know that

2a0

i — pd |2 > (68)

1—a’

Let Q1 be the distribution with PDF 1=%(¢y — ¢)14,>4, and Q2 be the distribution with PDF

=9 (¢1 — ¢2)1 gy, >4,. One can verify that (67) is satisfied. In this case, by the lower bound in (68),

we get
2a0 200

[y — a2 > Vil —a) > T

This implies that for two Gaussian distributions such that ||, — ps|l2 = Q(%), in the worst case
it can be impossible to distinguish these two distributions due to the existence of the adversary.
Thus, to estimate the mean p of a Gaussian distribution in the distributed setting with « fraction
of Byzantine machines, any algorithm that computes an estimation g of the mean has a constant
probability of error ||pt — pll2 = Q(%)

Further, according to the standard results from minimax theory [9], we know that using O(nm)
d

nm

data, there is a constant probability that || — w2 = Q(

know that |7 — prll2 = (5 +/75).

Remark. In our paper, we consider the setting where a deterministic « fraction of worker
machines are adversarial, whereas in this lower bound, we consider the probabilistic setting where
the machines are adversarial with probability . We note that Chernoff bound ensures that the
number of Byzantine machines concentrates around am. This fact then implies that the lower
bound also holds for the case where Q}(am) Byzantine machines are selected uniformly at random
without replacement from all machines. Since we can translate an average-case bound to a minimax
lower bound, we can further show that the lower bound holds under the same setting of our main
theorems, that is, an unknown set of am Byzantine machines are selected without any assumption.

). Combining these two results, we
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