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Notation We denote vectors by boldface lowercase letters such as w, and the elements in the
vector are denoted by italics letters with subscripts, such as wk. Matrices are denoted by boldface
uppercase letters such as H. For any positive integer N , we denote the set {1, 2, . . . , N} by [N ].
For vectors, we denote the `2 norm and `∞ norm by ‖ · ‖2 and ‖ · ‖∞, respectively. For matrices,
we denote the operator norm and the Frobenius norm by ‖ · ‖2 and ‖ · ‖F , respectively. We denote
by Φ(·) the CDF of standard Gaussian distribution. For any differentiable function f : Rd → R,
we denote its partial derivative with respect to the k-th argument by ∂kf .

A Variance, Skewness, and Sub-exponential Property

A.1 Proof of Proposition 1
We use the simplified notation f(w) := f(w;x, y). One can directly compute the gradients:

∇f(w) = x(xTw − y) = xxT(w −w∗)− ξx,

and thus
∇F (w) = E[∇f(w)] = w −w∗.

Define ∆(w) := ∇f(w)−∇F (w) with its k-th element being ∆k(w). We now compute the variance
and absolute skewness of ∆k(w).

We can see that

∆k(w) =
∑

1≤i≤d
i 6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk. (1)

Thus,

E[∆2
k(w)] = E[

∑
1≤i≤d
i 6=k

x2
kx

2
i (wi − w∗i )2 + ξ2x2

k] = ‖w −w∗‖22 − (wk − w∗k)2 + σ2, (2)

which yields

Var(∇f(w)) = E[‖∇f(w)−∇F (w)‖22] = (d− 1)‖w −w∗‖22 + dσ2.

Then we proceed to bound γ(∆k(w)). By Jensen’s inequality, we know that

γ(∆k(w)) =
E[|∆k(w)|3]

Var(∆k(w))3/2
≤

√
E[∆6

k(w)]

Var(∆k(w))3
(3)

We first find a lower bound for Var(∆k(w))3. According to (2), we know that

Var(∆k(w))3 =
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2 + σ2
)3 ≥ ( ∑

1≤i≤d
i 6=k

(wi − w∗i )2
)3

+ σ6.
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Define the following three quantities.

W1 =
∑

1≤i≤d
i 6=k

(wi − w∗i )6 (4)

W2 =
∑

1≤i,j≤d
i,j 6=k
i 6=j

(wi − w∗i )4(wj − w∗j )2 (5)

W3 =
∑

1≤i,j,`≤d
i,j,` 6=k

i 6=j,i 6=`,j 6=`

(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2 (6)

By simple algebra, one can check that( ∑
1≤i≤d
i6=k

(wi − w∗i )2
)3

= W1 + 3W2 +W3, (7)

and thus
Var(∆k(w))3 ≥W1 + 3W2 +W3 + σ6. (8)

Then, we find an upper bound on E[∆6
k(w)]. According to (1), and Hölder’s inequality, we know

that

E[∆6
k(w)] = E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i )− ξxk)6] ≤ 32
(
E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ))6] + E[ξ6x6
k]
)

= 32
(
E[(

∑
1≤i≤d
i 6=k

xi(wi − w∗i ))6] + 15σ6
)
, (9)

where in the last inequality we use the moments of Gaussian random variables. Then, we compute
the first term in (9). By algebra, one can obtain

E[(
∑

1≤i≤d
i 6=k

xi(wi − w∗i ))6] =E[
∑

1≤i≤d
i 6=k

x6
i (wi − w∗i )6] + 15E[

∑
1≤i,j≤d
i,j 6=k
i 6=j

x4
ix

2
j (wi − w∗i )4(wj − w∗j )2]

+ 15E[
∑

1≤i,j,`≤d
i,j,` 6=k

i 6=j,i 6=`,j 6=`

x2
ix

2
jx

2
`(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2]

=W1 + 15W2 + 15W3. (10)

Combining (9) and (10), we get

E[∆6
k(w)] ≤ 32(W1 + 15W2 + 15W3 + 15σ6). (11)

Combining (8) and (11), we get

γ(∆k(w)) ≤

√
E[∆6

k(w)]

Var(∆k(w))3
≤

√
32(W1 + 15W2 + 15W3 + 15σ6)

W1 + 3W2 +W3 + σ6
≤ 480.

A.2 Example of Regression with Gaussian Features
Claim 1. Suppose that each data point consists of a feature x ∈ Rd and a label y ∈ R, and the
label is generated by

y = xTw∗ + ξ

with some w∗ ∈ W. Assume that the elements of x are i.i.d. samples of standard Gaussian distri-
bution, and that the noise ξ is independent of x and drawn from Gaussian distribution N (0, σ2).
Define the quadratic loss function f(w;x, y) = 1

2 (y − xTw)2. Then, we have

Var(∇f(w;x, y)) = (d+ 1)‖w −w∗‖22 + dσ2,

and
‖γ(∇f(w;x, y))‖∞ ≤ 429.
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Proof. We use the same simplified notation as in Appendix A.1. One can also see that (1) still
holds for in the Gaussian setting. Thus,

E[∆2
k(w)] = E[

∑
1≤i≤d
i 6=k

x2
kx

2
i (wi − w∗i )2 + (x2

k − 1)2(wk − w∗k)2 + ξ2x2
k]

=
∑

1≤i≤d
i 6=k

(wi − w∗i )2 + 2(wk − w∗k)2 + σ2 (12)

= ‖w −w∗‖22 + (wk − w∗k)2 + σ2, (13)

which yields

Var(∇f(w)) = E[‖∇f(w)−∇F (w)‖22] = (d+ 1)‖w −w∗‖22 + dσ2.

Then we proceed to bound γ(∆k(w)). By Jensen’s inequality, we know that

γ(∆k(w)) =
E[|∆k(w)|3]

Var(∆k(w))3/2
≤

√
E[∆6

k(w)]

Var(∆k(w))3
(14)

We first find a lower bound for Var(∆k(w))3. According to (12), we know that

Var(∆k(w))3 =
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2 + 2(wk − w∗k)2 + σ2
)3

≥
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2
)3

+ 8(wk − w∗k)6 + σ6.

Define the W1, W2, and W3 as in (4), (5), and (6). We can also see that (7) still holds, and thus

Var(∆k(w))3 ≥W1 + 3W2 +W3 + 8(wk − w∗k)6 + σ6. (15)

Then, we find an upper bound on E[∆6
k(w)]. According to (1), and Hölder’s inequality, we know

that

E[∆6
k(w)] = E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk)6]

≤ 243
(
E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ))6] + E[(x2
k − 1)6(wk − w∗k)6] + E[ξ6x6

k]
)

= 243
(
15E[(

∑
1≤i≤d
i 6=k

xi(wi − w∗i ))6] + 6040(wk − w∗k)6 + 225σ6
)
, (16)

where in the last inequality we use the moments of Gaussian random variables. Then, we compute
the first term in (16). By algebra, one can obtain

E[(
∑

1≤i≤d
i 6=k

xi(wi − w∗i ))6] =E[
∑

1≤i≤d
i 6=k

x6
i (wi − w∗i )6] + 15E[

∑
1≤i,j≤d
i,j 6=k
i6=j

x4
ix

2
j (wi − w∗i )4(wj − w∗j )2]

+ 15E[
∑

1≤i,j,`≤d
i,j,` 6=k

i 6=j,i 6=`,j 6=`

x2
ix

2
jx

2
`(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2]

=15W1 + 45W2 + 15W3. (17)

Combining (16) and (17), we get

E[∆6
k(w)] ≤ 243(225W1 + 675W2 + 225W3 + 6040(wk − w∗k)6 + 225σ6). (18)

Combining (15) and (18), we get

γ(∆k(w)) ≤

√
E[∆6

k(w)]

Var(∆k(w))3
≤

√
243(225W1 + 675W2 + 225W3 + 6040(wk − w∗k)6 + 225σ6)

W1 + 3W2 +W3 + 8(wk − w∗k)6 + σ6
≤ 429.
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A.3 Proof of Proposition 2
We use the same notation as in Appendix A.1. We have

∂kf(w; z)− F (w) = ∆k(w) =
∑

1≤i≤d
i6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk

= xk(−ξ +
∑

1≤i≤d
i 6=k

xi(wi − w∗i )) := xk∆′k(w)

Since ∆′k(w) has symmetric distribution and xk is uniformly distributed in {−1, 1}, we know that
the distributions of ∆k(w) and ∆′k(w). We then prove a stronger result on ∆′k(w). We first recall
the definition of v-sub-Gaussian random variables. A random variable X with mean µ = E[X] is
v-sub-Gaussian if for all λ ∈ R, E[eλ(X−µ)] ≤ ev

2λ2/2. We can see that v-sub-Gaussian random
variables are also v-sub-exponential. One can also check that xi’s are i.i.d. 1-sub-Gaussian random
variables, and then ∆′k(w) is v-sub-exponential with

v =
(
σ2 +

∑
1≤i≤d
i6=k

(wi − w∗i )2
)1/2 ≤√σ2 + ‖w −w∗‖22.

B Proof of Theorem 1
The proof of Theorem 1 consists of two parts: 1) the analysis of coordinate-wise median estimator
of the population gradients, and 2) the convergence analysis of the robustified gradient descent
algorithm.

Recall that at iteration t, the master machine sends wt to all the worker machines. For any
normal worker machine, say machine i ∈ [m] \ B, the gradient of the local empirical loss function
gi(wt) = ∇Fi(wt) is computed and returned to the center machine, while the Byzantine machines,
say machine i ∈ B, the returned message gi(wt) can be arbitrary or even adversarial. The master
machine then compute the coordinate-wise median, i.e.,

g(wt) = med{gi(wt) : i ∈ [m]}.

The following theorem provides a uniform bound on the distance between g(wt) and ∇F (wt).

Claim 2. Define

gi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B.

(19)

and the coordinate-wise median of gi(w):

g(w) = med{gi(w) : i ∈ [m]}. (20)

Suppose that Assumption 2, 3, and 1 hold, and inequality (2) is satisfied with some ε > 0. Then,
we have with probability at least 1− 4d

(1+nmL̂D)d
, we have

‖g(w)−∇F (w)‖2 ≤ 2
√

2
1

nm
+
√

2
Cε√
n
V

α+

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

 , (21)

for all w ∈ W, where Cε is defined as in (4) in the main paper.

Proof. See Appendix B.1.

Then, we proceed to analyze the convergence of the robust distributed gradient descent algo-
rithm. We condition on the event that the bound in (21) is satisfied for all w ∈ W. Then, in the
t-th iteration, we define

ŵt+1 = wt − ηg(wt).
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Thus, we have wt+1 = ΠW(ŵt+1). By the property of Euclidean projection, we know that

‖wt+1 −w∗‖2 ≤ ‖ŵt+1 −w∗‖2.

We further have

‖wt+1 −w∗‖2 ≤ ‖wt − ηg(wt)−w∗‖2
≤ ‖wt − η∇F (wt)−w∗‖2 + η‖g(wt)−∇F (wt)‖2.

(22)

Meanwhile, we have

‖wt − η∇F (wt)−w∗‖22 = ‖wt −w∗‖22 − 2η〈wt −w∗,∇F (wt)〉+ η2‖∇F (wt)‖22. (23)

Since F (w) is λF -strongly convex, by the co-coercivity of strongly convex functions (see Lemma
3.11 in [2] for more details), we obtain

〈wt −w∗,∇F (wt)〉 ≥ LFλF
LF + λF

‖wt −w∗‖22 +
1

LF + λF
‖∇F (wt)‖22.

Let η = 1
LF

. Then we get

‖wt − η∇F (wt)−w∗‖22 ≤ (1− 2λF
LF + λF

)‖wt −w∗‖22 −
2

LF (LF + λF )
‖∇F (wt)‖22 +

1

L2
F

‖∇F (wt)‖22

≤ (1− 2λF
LF + λF

)‖wt −w∗‖22,

where in the second inequality we use the fact that λF ≤ LF . Using the fact
√

1− x ≤ 1− x
2 , we

get

‖wt − η∇F (wt)−w∗‖2 ≤ (1− λF
LF + λF

)‖wt −w∗‖2. (24)

Combining (22) and (24), we get

‖wt+1 −w∗‖2 ≤ (1− λF
LF + λF

)‖wt −w∗‖2 +
1

LF
∆, (25)

where

∆ = 2
√

2
1

nm
+
√

2
Cε√
n
V (α+

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

).

Then we can complete the proof by iterating (25).

B.1 Proof of Claim 2
The proof of Claim 2 relies on careful analysis of the median of means estimator in the presence
of adversarial data and a covering net argument.

We first consider a general problem of robust estimation of a one dimensional random variable.
Suppose that there are m worker machines, and q of them are Byzantine machines, which store
n adversarial data (recall that α := q/m). Each of the other m(1 − α) normal worker machines
stores n i.i.d. samples of some one dimensional random variable x ∼ D. Denote the j-th sample in
the i-th worker machine by xi,j . Let µ := E[x], σ2 := Var(x), and γ(x) be the absolute skewness
of x. In addition, define x̄i as the average of samples in the i-th machine, i.e., x̄i = 1

n

∑n
j=1 x

i,j .
For any z ∈ R, define p̃(z) := 1

m(1−α)

∑
i∈[m]\B 1(x̄i ≤ z) as the empirical distribution function of

the sample averages on the normal worker machines. We have the following result on p̃(z).

Lemma 1. Suppose that for a fixed t > 0, we have

α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n
≤ 1

2
− ε, (26)

for some ε > 0. Then, with probability at least 1− 4e−2t, we have

p̃

(
µ+ Cε

σ√
n

(α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≥ 1

2
+ α, (27)
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and

p̃

(
µ− Cε

σ√
n

(α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≤ 1

2
− α, (28)

where Cε is defined as in (4) in the main paper.

Proof. See Appendix B.2.

We further define the distribution function of all themmachines as p̂(z) := 1
m

∑
i∈[m] 1(x̄i ≤ z).

We have the following direct corollary on p̂(z) and the median of means estimatormed{x̄i : i ∈ [m]}.

Corollary 1. Suppose that condition (26) is satisfied. Then, with probability at least 1 − 4e−2t,
we have,

p̂

(
µ+ Cε

σ√
n

(α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≥ 1

2
, (29)

and

p̂

(
µ− Cε

σ√
n

(α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≤ 1

2
. (30)

Thus, we have with probability at least 1− 4e−2t,

|med{x̄i : i ∈ [m]} − µ| ≤ Cε
σ√
n

(α+

√
t

m(1− α)
+ 0.4748

γ(x)√
n

). (31)

Proof. One can easily check that for any z ∈ R, we have |p̂(z) − p̃(z)| ≤ α, which yields the
results (29) and (30). The result (31) can be derived using the fact that p̂(med{x̄i : i ∈ [m]}) =
1/2.

Lemma 1 and Corollary 1 can be translated to the estimators of the gradients. Define gi(w)
and g(w) as in (19) and (20), and let gik(w) and gk(w) be the k-th coordinate of gi(w) and g(w),
respectively. In addition, for any w ∈ W, k ∈ [d], and z ∈ R, we define the empirical distribution
function of the k-th coordinate of the gradients on the normal machines:

p̃(z;w, k) =
1

m(1− α)

∑
i∈[m]\B

1(gik(w) ≤ z), (32)

and on all the m machines

p̂(z;w, k) =
1

m

m∑
i=1

1(gik(w) ≤ z). (33)

We use the symbol ∂k to denote the partial derivative of any function with respect to its k-th argu-
ment. We also use the simplified notation σ2

k(w) := Var(∂kf(w; z)), and γk(w) := γ(∂kf(w; z)).
Then, according to Lemma 1, when (26) is satisfied, for any fixed w ∈ W and k ∈ [d], we have
with probability at least 1− 4e−2t,

p̃

(
∂kF (w) + Cε

σk(w)√
n

(α+

√
t

m(1− α)
+ 0.4748

γk(w)√
n

);w, k

)
≥ 1

2
+ α, (34)

and

p̃

(
∂kF (w)− Cε

σk(w)√
n

(α+

√
t

m(1− α)
+ 0.4748

γk(w)√
n

);w, k

)
≤ 1

2
− α. (35)

Further, according to Corollary 1, we know that with probability 1− 4e−2t,

|gk(w)− ∂kF (w)| ≤ Cε
σk(w)√

n
(α+

√
t

m(1− α)
+ 0.4748

γk(w)√
n

). (36)

Here, the inequality (36) gives a bound on the accuracy of the median of means estimator for the
gradient at any fixed w and any coordinate k ∈ [d]. To extend this result to all w ∈ W and all the
d coordinates, we need to use union bound and a covering net argument.
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Let Wδ = {w1,w2, . . . ,wNδ} be a finite subset of W such that for any w ∈ W, there exists
w` ∈ Wδ such that ‖w` −w‖2 ≤ δ. According to the standard covering net results [8], we know
that Nδ ≤ (1 + D

δ )d. By union bound, we know that with probability at least 1 − 4dNδe
−2t, the

bounds in (34) and (35) hold for all w = w` ∈ Wδ, and k ∈ [d]. By gathering all the k coordinates
and using Assumption 3, we know that this implies for all w` ∈ Wδ,

‖g(w`)−∇F (w`)‖2 ≤
Cε√
n
V

(
α+

√
t

m(1− α)
+ 0.4748

S√
n

)
. (37)

Then, consider an arbitrary w ∈ W. Suppose that ‖w` − w‖2 ≤ δ. Since by Assumption 1,
we assume that for each k ∈ [d], the partial derivative ∂kf(w; z) is Lk-Lipschitz for all z, we know
that for every normal machine i ∈ [m] \ B,∣∣gik(w)− gik(w`)

∣∣ ≤ Lkδ.
Then, according to the definition of p̃(z;w, k) in (33), we know that for any z ∈ R, p̃(z+Lkδ;w, k) ≥
p̃(z;w`, k) and p̃(z − Lkδ;w, k) ≤ p̃(z;w`, k). Then, the bounds in (34) and (35) yield

p̃

(
∂kF (w`) + Lkδ + Cε

σk(w`)√
n

(α+

√
t

m(1− α)
+ 0.4748

γk(w`)√
n

);w, k

)
≥ 1

2
+ α, (38)

and

p̃

(
∂kF (w`)− Lkδ − Cε

σk(w`)√
n

(α+

√
t

m(1− α)
+ 0.4748

γk(w`)√
n

);w, k

)
≤ 1

2
− α. (39)

Using the fact that |∂kF (w`)− ∂kF (w)| ≤ Lkδ, and Corollary 1, we have

|gk(w)− ∂kF (w)| ≤ 2Lkδ + Cε
σk(w`)√

n
(α+

√
t

m(1− α)
+ 0.4748

γk(w`)√
n

).

Again, by gathering all the k coordinates we get

‖g(w)−∇F (w)‖22 ≤ 8δ2
d∑
k=1

L2
k + 2

C2
ε

n

d∑
k=1

σ2
k(w`)(α+

√
t

m(1− α)
+ 0.4748

γk(w`)√
n

)2,

where we use the fact that (a+ b)2 ≤ 2(a2 + b2). Then, by Assumption 2 and 3, we further obtain

‖g(w)−∇F (w)‖2 ≤ 2
√

2δL̂+
√

2
Cε√
n
V

(
α+

√
t

m(1− α)
+ 0.4748

S√
n

)
, (40)

where we use the fact that
√
a+ b ≤

√
a +
√
b. Combining (37) and (40), we conclude that for

any δ > 0, with probability at least 1 − 4dNδe
−2t, (40) holds for all w ∈ W. We simply choose

δ = 1

nmL̂
, and t = d log(1 +nmL̂D). Then, we know that with probability at least 1− 4d

(1+nmL̂D)d
,

we have

‖g(w)−∇F (w)‖2 ≤ 2
√

2
1

nm
+
√

2
Cε√
n
V

α+

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n


for all w ∈ W.

B.2 Proof of Lemma 1
We recall the Berry-Esseen Theorem [1, 4, 7] and the bounded difference inequality, which are
useful in this proof.
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Claim 3 (Berry-Esseen Theorem). Assume that Y1, . . . , Yn are i.i.d. copies of a random variable
Y with mean µ, variance σ2, and such that E[|Y − µ|3] <∞. Then,

sup
s∈R

∣∣∣∣P{√nȲ − µσ
≤ s
}
− Φ(s)

∣∣∣∣ ≤ 0.4748
E[|Y − µ|3]

σ3
√
n

,

where Ȳ = 1
n

∑n
i=1 Yi and Φ(s) is the cumulative distribution function of the standard normal

random variable.

Claim 4 (Bounded Difference Inequality). Let X1, . . . , Xn be i.i.d. random variables, and assume
that Z = g(X1, . . . , Xn), where g satisfies that for all j ∈ [n] and all x1, x2, . . . , xj , x

′
j , . . . , xn,

|g(x1, . . . , xj−1, xj , xj+1, . . . , xn)− g(x1, . . . , xj−1, x
′
j , xj+1, . . . , xn)| ≤ cj .

Then for any t ≥ 0,

P {Z − E[Z] ≥ t} ≤ exp

(
− 2t2∑n

j=1 c
2
j

)
and

P {Z − E[Z] ≤ −t} ≤ exp

(
− 2t2∑n

j=1 c
2
j

)
.

Let σn := σ√
n

and cn := 0.4748E[|x−µ|3]
σ3
√
n

= 0.4748γ(x)√
n
. Define Wi := x̄i−µ

σn
for all i ∈ [m],

and Φn(·) be the distribution function of Wi for any i ∈ [m] \ B. We also define the empirical
distribution function of {Wi : i ∈ [m] \ B} as Φ̃n(·), i.e., Φ̃n(z) = 1

m(1−α)

∑
i∈[m]\B 1(Wi ≤ z).

Thus, we have
Φ̃n(z) = p̃(σnz + µ). (41)

We then focus on Φ̃n(z). We know that for any z ∈ R, E[Φ̃n(z)] = Φn(z). Then, since the bounded
difference inequality is satisfied with cj = 1

m(1−α) , we have for any t > 0,

∣∣∣Φ̃n(z)− Φn(z)
∣∣∣ ≤√ t

m(1− α)
, (42)

on the draw of Wi, i ∈ [m] \ B with probability at least 1 − 2e−2t. Let z1 ≥ z2 be such that
Φn(z1) ≥ 1

2 + α +
√

t
m(1−α) , and Φn(z2) ≤ 1

2 − α −
√

t
m(1−α) . Then, by union bound, we know

that with probability at least 1 − 4e−2t, Φ̃n(z1) ≥ 1/2 + α and Φ̃n(z2) ≤ 1/2 − α. The next step
is to choose z1 and z2. According to Claim 3, we know that

Φn(z1) ≥ Φ(z1)− cn,

and thus, it suffices to find z1 such that

Φ(z1) =
1

2
+ α+

√
t

m(1− α)
+ cn.

By mean value theorem, we know that there exists ξ ∈ [0, z1] such that

α+

√
t

m(1− α)
+ cn = z1Φ′(ξ) =

z1√
2π
e−

ξ2

2 ≥ z1√
2π
e−

z21
2

Suppose that for some fix constant ε ∈ (0, 1/2), we have

α+

√
t

m(1− α)
+ cn ≤

1

2
− ε.

Then, we know that z1 ≤ Φ−1(1− ε), and thus we have

α+

√
t

m(1− α)
+ cn ≥

z1√
2π

exp(−1

2
(Φ−1(1− ε))2),
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which yields

z1 ≤
√

2π exp(
1

2
(Φ−1(1− ε))2)

(
α+

√
t

m(1− α)
+ cn

)
.

Similarly

z2 ≥ −
√

2π exp(
1

2
(Φ−1(1− ε))2)

(
α+

√
t

m(1− α)
+ cn

)
.

For simplicity, let Cε :=
√

2π exp( 1
2 (Φ−1(1 − ε))2). We conclude that with probability 1 − 4e−2t,

we have

p̃(µ+ Cεσn(α+

√
t

m(1− α)
+ cn)) ≥ 1

2
+ α,

and

p̃(µ− Cεσn(α+

√
t

m(1− α)
+ cn)) ≤ 1

2
− α.

C Proof of Theorem 2
Since Claim 2 holds without assuming the convexity of F (w), when F (w) is non-strongly convex,
the event that (21) holds for all w ∈ W still happens with probability at least 1− 4d

(1+nmL̂D)d
. We

condition on this event. We first show that when Assumption 4 is satisfied and we choose η = 1
LF

,
the iterates wt stays in W without using projection. Namely, define

wt+1 = wt − ηg(wt),

for T = 0, 1, . . . , T − 1, then wt ∈ W for all t = 0, 1, . . . , T . To see this, we have

‖wt+1 −w∗‖2 ≤ ‖wt − η∇F (wt)−w∗‖2 + η‖g(wt)−∇F (wt)‖2,

and

‖wt − η∇F (wt)−w∗‖22 = ‖wt −w∗‖22 − 2η〈∇F (wt),wt −w∗〉+ η2‖∇F (wt)‖22

≤ ‖wt −w∗‖22 − 2η
1

LF
‖∇F (wt)‖22 + η2‖∇F (wt)‖22

= ‖wt −w∗‖22 −
1

L2
F

‖∇F (wt)‖22

≤ ‖wt −w∗‖22

where the inequality is due to the co-coercivity of convex functions. Thus, we get

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 +
∆

LF
,

and since T = LFD0

∆ , according to Assumption 4 we know thatwt ∈ W for all t = 0, 1, . . . , T . Then,
we proceed to study the algorithm without projection. Here, we define Dt := ‖w0 −w∗‖2 + t∆

LF
for t = 0, 1, . . . , T .

Using the smoothness of F (w), we have

F (wt+1) ≤ F (wt) + 〈∇F (wt),wt+1 −wt〉+
LF
2
‖wt+1 −wt‖22

= F (wt) + η〈∇F (wt),−g(wt) +∇F (wt)−∇F (wt)〉+ η2LF
2
‖g(wt)−∇F (wt) +∇F (wt)‖22.

Since η = 1
LF

and ‖g(wt)−∇F (wt)‖2 ≤ ∆, by simple algebra, we obtain

F (wt+1) ≤ F (wt)− 1

2LF
‖∇F (wt)‖22 +

1

2LF
∆2. (43)

We now prove the following lemma.
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Lemma 2. Condition on the event that (21) holds for all w ∈ W. When F (w) is convex, by
running T = LFD0

∆ parallel iterations, there exists t ∈ {0, 1, 2, . . . , T} such that

F (wt)− F (w∗) ≤ 16D0∆.

Proof. We first notice that since T = LFD0

∆ , we have Dt ≤ 2D0 for all t = 0, 1, . . . , T . According
to the first order optimality of convex functions, for any w,

F (w)− F (w∗) ≤ 〈∇F (w),w −w∗〉 ≤ ‖∇F (w)‖2‖w −w∗‖2,

and thus
‖∇F (w)‖2 ≥

F (w)− F (w∗)

‖w −w∗‖2
. (44)

Suppose that there exists t ∈ {0, 1, . . . , T − 1} such that ‖∇F (wt)‖2 <
√

2∆. Then we have

F (wt)− F (w∗) ≤ ‖∇F (wt)‖2‖wt −w∗‖2 ≤ 2
√

2D0∆.

Otherwise, for all t ∈ {0, 1, . . . , T − 1}, ‖∇F (wt)‖2 ≥
√

2∆. Then, according to (43) and (44), we
have for all t < T ,

F (wt+1)− F (w∗) ≤ F (wt)− F (w∗)− 1

4LF
‖∇F (wt)‖22

≤ F (wt)− F (w∗)− 1

4LFD2
t

(F (wt)− F (w∗))2.

Multiplying both sides by [(F (wt+1)− F (w∗))(F (wt)− F (w∗)]−1 and rearranging the terms, we
obtain

1

F (wt+1)− F (w∗)
≥ 1

F (wt)− F (w∗)
+

1

4LFD2
t

F (wt)− F (w∗)

F (wt+1)− F (w∗)
≥ 1

F (wt)− F (w∗)
+

1

16LFD2
0

,

which implies
1

F (wT )− F (w∗)
≥ 1

F (w0)− F (w∗)
+

T

16LFD2
0

≥ T

16LFD2
0

.

Then, we obtain F (wT )− F (w∗) ≤ 16D0∆ using the fact that T = LFD0

∆ .

Next, we show that F (wT ) − F (w∗) ≤ 16D0∆ + 1
2LF

∆2. More specifically, let t = t0 be the
first time that F (wt) − F (w∗) ≤ 16D0∆, and we show that for any t > t0, F (wt) − F (w∗) ≤
16D0∆ + 1

2LF
∆2. If this statement is not true, then we let t1 > t0 be the first time that F (wt)−

F (w∗) > 16D0∆ + 1
2LF

∆2. Then there must be F (wt1−1) < F (wt1). According to (43), there
should also be

F (wt1−1)− F (w∗) ≥ F (wt1)− F (w∗)− 1

2LF
∆2 > 16D0∆.

Then, according to (44), we have

‖∇F (wt1−1)‖2 ≥
F (wt1−1)− F (w∗)

‖wt1−1 −w∗‖2
> 8∆.

Then according to (43), this implies F (wt1) ≤ F (wt1−1), which contradicts with the fact that
F (wt1−1) < F (wt1).

D Proof of Theorem 3
Since Claim 2 holds without assuming the convexity of F (w), when F (w) is non-convex, the event
that (21) holds for all w ∈ W still happens with probability at least 1− 4d

(1+nmL̂D)d
. We condition

on this event. We first show that when Assumption 5 is satisfied and we choose η = 1
LF

, the
iterates wt stays in W without using projection. Since we have

‖wt+1−w∗‖2 ≤ ‖wt−w∗‖2 + η(‖∇F (wt)‖2 + ‖g(wt)−∇F (wt)‖2) ≤ ‖wt−w∗‖2 +
1

LF
(M + ∆).

10



Then, we know that by running T = 2LF
∆2 (F (w0)−F (w∗)) parallel iterations, using Assumption 5,

we know that wt ∈ W for t = 0, 1, . . . , T without projection.
We proceed to study the convergence rate of the algorithm. By the smoothness of F (w),

we know that when choosing η = 1
LF

, the inequality (43) still holds. More specifically, for all
t = 0, 1, . . . , T − 1,

F (wt+1)− F (w∗) ≤ F (wt)− F (w∗)− 1

2LF
‖∇F (wt)‖22 +

1

2LF
∆2. (45)

Sum up (45) for t = 0, 1, . . . , T − 1. Then, we get

0 ≤ F (wT )− F (w∗) ≤ F (w0)− F (w∗)− 1

2LF

T−1∑
t=0

‖∇F (wt)‖22 +
T

2LF
∆2.

This implies that

min
t=0,1,...,T

‖∇F (wt)‖22 ≤ 2
LF
T

(F (w0)− F (w∗)) + ∆2,

which completes the proof.

E Proof of Theorem 4
The proof of Theorem 4 consists of two parts: 1) the analysis of coordinate-wise trimmed mean
of means estimator of the population gradients, and 2) the convergence analysis of the robustified
gradient descent algorithm. Since the second part is essentially the same as the proof of Theorem 1,
we mainly focus on the first part here.

Claim 5. Define

gi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B.

(46)

and the coordinate-wise trimmed mean of gi(w):

g(w) = trmeanβ{gi(w) : i ∈ [m]}. (47)

Suppose that Assumptions 1 and 6 are satisfied, and that α ≤ β ≤ 1
2 − ε. Then, with probability at

least 1− 2d(m+1)

(1+nmL̂D)d
,

‖g(w)−∇F (w)‖2 ≤
v

ε

(
3
√

2βd√
n

+
2d√
nm

)√
log(1 + nmL̂D) +

1

d
logm+ Õ(

β

n
+

1

nm
)

for all w ∈ W.

Proof. See Appendix E.1

The rest of the proof is essentially the same as the proof of Theorem 1. In fact, we essentially
analyze a gradient descent algorithm with bounded noise in the gradients. In the proof of Theorem 1
in Appendix B. The bound on the noise in the gradients is

∆ =
√

2
Cε√
n
V (α+

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

) + 2
√

2
1

nm
,

while here we replace ∆ with ∆′:

∆′ :=
v

ε

(
3
√

2βd√
n

+
2d√
nm

)√
log(1 + nmL̂D) +

1

d
logm+ Õ(

β

n
+

1

nm
),

and the same analysis can still go through. Therefore, we omit the details of the analysis here.

Remark 1. The same arguments still go through when the population risk function F (w) is non-
strongly convex or non-convex. One can simply replace the bound on the noise in the gradients ∆
in Theorems 2 and 3 with ∆′ here. Thus we omit the details here.
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E.1 Proof of Claim 5
The proof of Claim 5 relies on the analysis of the trimmed mean of means estimator in the presence
of adversarial data and a covering net argument. We first consider a general problem of robust
estimation of a one dimensional random variable. Suppose that there are m worker machines, and
q of them are Byzantine machines, which store n adversarial data (recall that α := q/m). Each
of the other m(1 − α) normal worker machines stores n i.i.d. samples of some one dimensional
random variable x ∼ D. Suppose that x is v-sub-exponential and let µ := E[x]. Denote the j-th
sample in the i-th worker machine by xi,j . In addition, define x̄i as the average of samples in the
i-th machine, i.e., x̄i = 1

n

∑n
j=1 x

i,j . We have the following result on the trimmed mean of x̄i,
i ∈ [m].

Lemma 3. Suppose that the one dimensional samples on all the normal machines are i.i.d. v-
sub-exponential with mean µ. Then, we have for any t ≥ 0,

P{| 1

(1− α)m

∑
i∈[m]\B

x̄i − µ| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}},

and for any s ≥ 0,

P{ max
i∈[m]\B

{|x̄i − µ|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}},

and when β ≥ α, | 1
(1−α)m

∑
i∈[m]\B x̄

i − µ| ≤ t, and maxi∈[m]\B{|x̄i − µ|} ≤ s, we have

|trmeanβ{x̄i : i ∈ [m]} − µ| ≤ t+ 3βs

1− 2β
.

Proof. See Appendix E.2.

Lemma 3 can be directly applied to the k-th partial derivative of the loss functions. Since we
assume that for any k ∈ [d] and w ∈ W, ∂kf(w; z) is v-sub-exponential, we have for any t ≥ 0,
s ≥ 0,

P{| 1

(1− α)m

∑
i∈[m]\B

gik(w)− ∂kF (w)| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}}, (48)

P{ max
i∈[m]\B

{|gik(w)− ∂kF (w)|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}}, (49)

and consequently with probability at least

1− 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}} − 2(1− α)m exp{−nmin{ s

2v
,
s2

2v2
}},

we have
|gk(w)− ∂kF (w)| = |trmeanβ{gik(w) : i ∈ [m]} − ∂kF (w)| ≤ t+ 3βs

1− 2β
. (50)

To extend this result to all w ∈ W and all the d coordinates, we need to use union bound and a
covering net argument. Let Wδ = {w1,w2, . . . ,wNδ} be a finite subset of W such that for any
w ∈ W, there exists w` ∈ Wδ such that ‖w` −w‖2 ≤ δ. According to the standard covering net
results [8], we know that Nδ ≤ (1 + D

δ )d. By union bound, we know that with probability at least

1− 2dNδ exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}},

the bound | 1
(1−α)m

∑
i∈[m]\B g

i
k(w) − ∂kF (w)| ≤ t holds for all w = w` ∈ Wδ, and k ∈ [d], and

with probability at least

1− 2(1− α)dmNδ exp{−nmin{ s
2v
,
s2

2v2
}}

12



the bound maxi∈[m]\B{|gik(w) − ∂kF (w)|} ≤ s holds for all w = w` ∈ Wδ, and k ∈ [d]. By
gathering all the k coordinates, we know that this implies for all w` ∈ Wδ,

‖g(w`)−∇F (w`)‖2 ≤
√
d
t+ 3βs

1− 2β
. (51)

Then, consider an arbitrary w ∈ W. Suppose that ‖w` − w‖2 ≤ δ. Since by Assumption 1, we
assume that for each k ∈ [d], the partial derivative ∂kf(w; z) is Lk-Lipschitz for all z, we know
that for every normal machine i ∈ [m] \ B,∣∣gik(w)− gik(w`)

∣∣ ≤ Lkδ, ∣∣∂kF (w)− ∂kF (w`)
∣∣ ≤ Lkδ.

This means that if | 1
(1−α)m

∑
i∈[m]\B g

i
k(w`)−∂kF (w`)| ≤ t and maxi∈[m]\B{|gik(w`)−∂kF (w`)|} ≤

s hold for all w` ∈ Wδ, and k ∈ [d], then

| 1

(1− α)m

∑
i∈[m]\B

gik(w)− ∂kF (w)| ≤ t+ 2Lkδ,

and
max

i∈[m]\B
{|gik(w)− ∂kF (w)|} ≤ s+ 2Lkδ

hold for all w ∈ W. This implies that for all w ∈ W and k ∈ [d],

|gk(w)− ∂kF (w)| = |trmeanβ{gik(w) : i ∈ [m]} − ∂kF (w)| ≤ t+ 3βs

1− 2β
+

2(1 + 3β)

1− 2β
δLk,

which yields

‖g(w)−∇F (w)‖2 ≤
√

2d
t+ 3βs

1− 2β
+
√

2
2(1 + 3β)

1− 2β
δL̂.

The proof is completed by choosing δ = 1

nmL̂
,

t = vmax{ 8d

nm
log(1 + nmL̂D),

√
8d

nm
log(1 + nmL̂D)},

s = vmax{ 4

n
(d log(1 + nmL̂D) + logm),

√
4

n
(d log(1 + nmL̂D) + logm)},

and using the fact that β ≤ 1
2 − ε.

E.2 Proof of Lemma 3
We first recall Bernstein’s inequality for sub-exponential random variables.

Claim 6 (Bernstein’s inequality). Suppose that X1, X2, . . . , Xn are i.i.d. v-sub-exponential random
variables with mean µ. Then for any t ≥ 0,

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≤ 2 exp{−nmin{ t
2v
,
t2

2v2
}}.

Thus, for any t ≥ 0

P{| 1

(1− α)m

∑
i∈[m]\B

x̄i − µ| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}}. (52)

Similarly, for any i ∈ [m] \ B, and any s ≥ 0

P{|x̄i − µ| ≥ s} ≤ 2 exp{−nmin{ s
2v
,
s2

2v2
}}.

Then, by union bound we know that

P{ max
i∈[m]\B

{|x̄i − µ|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}}. (53)
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We proceed to analyze the trimmed mean of means estimator. To simplify notation, we define
M = [m] \ B as the set of all normal worker machines, U ⊆ [m] as the set of all untrimmed
machines, and T ⊆ [m] as the set of all trimmed machines. The trimmed mean of means estimator
simply computes

trmeanβ{x̄i : i ∈ [m]} =
1

(1− 2β)m

∑
i∈U

x̄i.

We further have

|trmeanβ{x̄i : i ∈ [m]} − µ| =

∣∣∣∣∣ 1

(1− 2β)m

∑
i∈U

x̄i − µ

∣∣∣∣∣
=

1

(1− 2β)m

∣∣∣∣∣∑
i∈M

(x̄i − µ)−
∑

i∈M∩T
(x̄i − µ) +

∑
i∈B∩U

(x̄i − µ)

∣∣∣∣∣
=

1

(1− 2β)m

(
|
∑
i∈M

(x̄i − µ)|+ |
∑

i∈M∩T
(x̄i − µ)|+ |

∑
i∈B∩U

(x̄i − µ)|
)
(54)

We also know that |
∑
i∈M∩T (x̄i−µ)| ≤ 2βmmaxi∈M{|x̄i−µ|}. In addition, since β ≥ α, without

loss of generality, we assume thatM∩T 6= ∅, and then |
∑
i∈B∩U (x̄i−µ)| ≤ αmmaxi∈M{|x̄i−µ|}.

Then we directly obtain the desired result.

F Proof of Theorem 7
Since the loss functions are quadratic, we denote the loss function f(w; zi,j) by

f(w; zi,j) =
1

2
wTHi,jw + pT

i,jw + ci,j .

We further defineHi := 1
n

∑n
j=1 Hi,j , pi := 1

n

∑n
j=1 pi,j , and ci := 1

n

∑n
j=1 ci,j . Thus the empirical

risk function on the i-th machine is

Fi(w) =
1

2
wTHiw + pT

i w + ci.

Then, for any worker machine i ∈ [m]\B, ŵi = −H−1
i pi. In addition, the population risk minimizer

is w∗ = −H−1
F pF . We further define Ui,j := Hi,j −HF , Ui = Hi −HF , vi,j = pi,j − pF , and

vi = pi − pF . Then
ŵi = −(Ui + HF )−1(vi + pF ).

Let ek be the k-th vector in the standard basis, i.e., the k-th column of the d× d identity matrix.
We proceed to study the distribution of the k-th coordinate of ŵi −w∗, i ∈ [m] \ B, i.e.,

ŵik − w∗k = eT
kH
−1
F pF − eT

k (Ui + HF )−1(vi + pF ).

Similar to the proof of Theorem 1, we need to obtain a Berry-Esseen type bound for ŵik − w∗k.
However, here, ŵik is not a sample mean of n i.i.d. random variables, and thus we cannot directly
apply the vanilla Berry-Esseen bound. Instead, we apply the following bound in [6] on functions
of sample means.

Claim 7 (Theorem 2.11 in [6], simplified). Let X be a Hilbert space equipped with norm ‖ · ‖. Let
f : X → R be a function on X . Suppose that there exists linear functions ` : X → R, θ > 0,
Mθ > 0 such that

|f(X)− `(X)| ≤ Mθ

2
‖X‖2, ∀ ‖X‖ ≤ θ. (55)

Suppose that there is a probability distribution DX over X , and let X,X1, X2, . . . , Xn be i.i.d.
random variables drawn from DX . Assume that E[X] = 0, and define

σ̃ := (E[`(X)2])1/2, νp := (E[‖X‖p])1/p, p = 2, 3, ς :=
(E[|`(X)|3])1/3

σ̃
.

14



Let X̄ = 1
n

∑n
i=1Xi. Then for any z ∈ R, we have∣∣∣∣P{ f(X̄)

σ̃/
√
n
≤ z
}
− Φ(z)

∣∣∣∣ ≤ C√
n
, (56)

where C = C0 + C1ς
3 + (C20 + C21ς)ν

2
2 + (C30 + C31ς)ν

2
3 + C4, with

C0 = 0.1393, C1 = 2.3356

(C20, C21, C30, C31) =
Mθ

2σ̃

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,

(8/π)1/6

n1/3
,

2

n1/2

)
C4 = min{ ν2

2

θ2n1/2
,

2ν3
2 + ν3

3/n
1/2

θ3n
}.

(57)

Define the function ψk(U,v) : Rd×d × R→ R:

ψk(U,v) := eT
kH
−1
F pF − eT

k (U + HF )−1(v + pF ),

and thus

ŵik − w∗k = ψk(Ui,vi) = ψk(
1

n

n∑
j=1

Ui,j ,
1

n

n∑
j=1

vi,j).

On the product space Rd×d × R, define the element-wise inner product:

〈(U,v), (X,y)〉 =

d∑
i,j=1

Ui,jXi,j +

d∑
i=1

viyi,

and thus Rd×d × R is associated with the norm

‖(U,v)‖ =
√
‖U‖2F + ‖v‖22,

where ‖ · ‖F denotes the Frobenius norm of matrices. We then provide the following lemma on
ψk(U,v).

Lemma 4. There exits a linear function `k(U,v) = eT
kH
−1
F UH−1

F pF −eT
kH
−1
F v such that for any

U, v with

‖U‖2F + ‖v‖22 ≤
λ2
F

4
,

we have
|ψk(U,v)− `k(U,v)| ≤ λF + 2‖pF ‖2

λ3
F

(‖U‖2F + ‖v‖22).

Proof. See Appendix F.1.

Lemma 4 tells us that the condition (55) is satisfied with θ = λF
2 and Mθ = 2λF+4‖pF ‖2

λ3
F

. For
all normal worker machine i ∈ [m] \ B, denote the distribution of Ui,j and vi,j by DU and Dv,
respectively. Since ŵik−w∗k = ψk( 1

n

∑n
j=1 Ui,j ,

1
n

∑n
j=1 vi,j), Claim 7 directly gives us the following

lemma.

Lemma 5. Let U ∼ DU , v ∼ Dv, and `k(U,v) = eT
kH
−1
F UH−1

F pF − eT
kH
−1
F v. Define

σ̃k := (E[`k(U,v)2])1/2, νp := (E[(‖U‖2F + ‖v‖22)p/2])1/p, p = 2, 3, ςk :=
(E[|`k(U,v)|3])1/3

σ̃k
.

Then for any z ∈ R, i ∈ [m] \ B, we have∣∣∣∣P{ ŵik − w∗kσ̃k/
√
n
≤ z
}
− Φ(z)

∣∣∣∣ ≤ Ck√
n
, (58)

where
Ck = Ĉ0 + Ĉ1ς

3
k +

1

σ̃k

[
(Ĉ20 + Ĉ21ςk)ν2

2 + (Ĉ30 + Ĉ31ςk)ν2
3

]
+ Ĉ4,
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with
Ĉ0 = 0.1393, Ĉ1 = 2.3356

(Ĉ20, Ĉ21, Ĉ30, Ĉ31) =
λF + 2‖pF ‖2

λ3
F

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,

(8/π)1/6

n1/3
,

2

n1/2

)
Ĉ4 = min{ 4ν2

2

λ2
Fn

1/2
,

16ν3
2 + 8ν3

3/n
1/2

λ3
Fn

}.

(59)

Then, we proceed to bound med{ŵik : i ∈ [m]}−w∗k, the technique is similar to what we use in
the proof of Claim 2. For every z ∈ R, k ∈ [d], define

p̃(z; k) =
1

m(1− α)

∑
i∈[m]\B

1(ŵik − w∗k ≤ z).

We have the following lemma on p̃(z; k).

Lemma 6. Suppose that for a fixed t > 0, we have

α+

√
t

m(1− α)
+
Ck√
n
≤ 1

2
− ε, (60)

for some ε > 0. Then, with probability at least 1− 4e−2t, we have

p̃

(
Cε

σ̃k√
n

(α+

√
t

m(1− α)
+
Ck√
n

); k

)
≥ 1

2
+ α, (61)

and

p̃

(
−Cε

σ̃k√
n

(α+

√
t

m(1− α)
+
Ck√
n

); k

)
≤ 1

2
− α, (62)

where Cε is defined as in (4) in the main paper.

Proof. The proof is essentially the same as the proof of Lemma 1. One can simply replace σ in
Lemma 1 with σ̃k and 0.4748γ(x) in Lemma 1 with Ck. Then the same arguments still apply.
Thus, we skip the details of this proof.

Then, define p̂(z; k) = 1
m

∑
i∈[m] 1(ŵik −w∗k ≤ z). Using the same arguments as in Corollary 1,

we know that

p̂

(
Cε

σ̃k√
n

(α+

√
t

m(1− α)
+
Ck√
n

); k

)
≥ 1

2
,

and

p̂

(
−Cε

σ̃k√
n

(α+

√
t

m(1− α)
+
Ck√
n

); k

)
≤ 1

2
,

which implies that |med{ŵik : i ∈ [m]} − w∗k| ≤ Cε
σ̃k√
n

(α+
√

t
m(1−α) + Ck√

n
). Then, let

σ̃ :=

√√√√ d∑
k=1

σ̃2
k =

√
E[‖H−1

F (UH−1
F pF − v)‖22],

and C̃ = maxk∈[d] Ck, we have with probability at least 1− 4de−2t,

‖med{ŵi : i ∈ [m]} −w∗‖2 ≤
Cε√
n
σ̃
(
α+

√
t

m(1− α)
+

C̃√
n

)
.

We complete the proof by choosing t = 1
2 log(nmd).
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Explicit expression of C̃ To summarize, we provide an explicit expression of C̃. Let ek be the
k-th vector in the standard basis, i.e., the k-th column of the d × d identity matrix, and define
`k(U,v) : Rd×d × R→ R as

`k(U,v) = eT
kH
−1
F UH−1

F pF − eT
kH
−1
F v.

Let H ∼ DH and p ∼ Dp and define

σ̃k := (E[`k(H−HF ,p− pF )2])1/2, ςk :=
(E[|`k(H−HF ,p− pF )|3])1/3

σ̃k
.

νp := (E[(‖H−HF ‖2F + ‖p− pF ‖22)p/2])1/p, p = 2, 3

Then, C̃ = maxk∈[d] Ck, with where

Ck = Ĉ0 + Ĉ1ς
3
k +

1

σ̃k

[
(Ĉ20 + Ĉ21ςk)ν2

2 + (Ĉ30 + Ĉ31ςk)ν2
3

]
+ Ĉ4,

with

Ĉ0 = 0.1393, Ĉ1 = 2.3356

(Ĉ20, Ĉ21, Ĉ30, Ĉ31) =
λF + 2‖pF ‖2

λ3
F

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,

(8/π)1/6

n1/3
,

2

n1/2

)
Ĉ4 = min{ 4ν2

2

λ2
Fn

1/2
,

16ν3
2 + 8ν3

3/n
1/2

λ3
Fn

}.

F.1 Proof of Lemma 4
We use ‖·‖2 and ‖·‖F to denote the operator norm and the Frobenius norm of matrices, respectively.
We have the identity

(I + A)−1 =

∞∑
r=0

(−1)rAr, ∀‖A‖2 < 1.

Then, we have for all U ∈ Rd×d such that ‖H−1
F U‖2 < 1,

(U + HF )−1 = (I + H−1
F U)−1H−1

F = H−1
F −H−1

F UH−1
F +

∞∑
r=2

(−1)r(H−1
F U)rH−1

F . (63)

Let us consider the set of matrices such that ‖U‖F ≤ λF
2 . One can check that for any such matrix,

we have ‖H−1
F U‖2 ≤ 1

2 . Let

`k(U,v) = eT
kH
−1
F UH−1

F pF − eT
kH
−1
F v.

Then, we know that

|ψk(U,v)− `k(U,v)| =

∣∣∣∣∣eT
kH
−1
F UH−1

F v −
∞∑
r=2

(−1)reT
k (H−1

F U)rH−1
F (v + pF )

∣∣∣∣∣ . (64)

Denote the operator norm of matrices by ‖ · ‖2. We further have for any r ≥ 1,

|eT
k (H−1

F U)rH−1
F v| ≤ 1

2
‖H−1

F U‖r−1
2 (‖H−1

F U‖22 + ‖H−1
F v‖22) ≤ 1

2rλ2
F

(‖U‖2F + ‖v‖22), (65)

where we use the fact ‖U‖2 ≤ ‖U‖F . In addition, for any r ≥ 2,

|eT
k (H−1

F U)rH−1
F pF | ≤ ‖H−1

F U‖r−2
2 ‖H−1

F ‖
3
2‖U‖22‖pF ‖2 ≤

‖pF ‖2
2r−2λ3

F

‖U‖2F . (66)

Then, we plug (65) and (66) into (64), and obtain

|ψk(U,v)− `k(U,v)| ≤ 1

λ2
F

(‖U‖2F + ‖v‖22) +
2‖pF ‖2
λ3
F

‖U‖2F ,

which completes the proof.
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G Proof of Observation 1
This proof is essentially the same as the lower bound in the robust mean estimation literature [3]
and [5]. We reproduce this result for the purpose of completeness. For a d dimensional Gaussian
distribution P = N (µ, σ2I), we denote by Pn the joint distribution of n i.i.d. samples of P .
Obviously Pn is equivalent to a dn dimensional Gaussian distribution N (µ+, σ2I), where µ+ ∈ Rdn
is a vector generated by repeating µ n times, i.e., µ+ = [µT µT · · · µT]T.

We show that for two d dimensional distributions P1 = N (µ1, σ
2I) and P2 = N (µ2, σ

2I), there
exist two dn dimensional distributions Q1 and Q2 such that

(1− α)Pn1 + αQ1 = (1− α)Pn2 + αQ2. (67)

If this happens, then no algorithm can distinguish between P1 and P2. Let φ1 and φ2 be the PDF
of Pn1 and Pn2 , respectively. Let µ1 and µ2 be such that the total variation distance between Pn1
and Pn2 is

1

2

∫
‖φ1 − φ2‖1 =

α

1− α
.

By the results of the total variation distance between Gaussian distributions, we know that

‖µ+
1 − µ+

2 ‖2 ≥
2ασ

1− α
. (68)

Let Q1 be the distribution with PDF 1−α
α (φ2 − φ1)1φ2≥φ1

and Q2 be the distribution with PDF
1−α
α (φ1−φ2)1φ1≥φ2

. One can verify that (67) is satisfied. In this case, by the lower bound in (68),
we get

‖µ1 − µ2‖2 ≥
2ασ√
n(1− α)

≥ 2ασ√
n
.

This implies that for two Gaussian distributions such that ‖µ1−µ2‖2 = Ω( α√
n

), in the worst case
it can be impossible to distinguish these two distributions due to the existence of the adversary.
Thus, to estimate the mean µ of a Gaussian distribution in the distributed setting with α fraction
of Byzantine machines, any algorithm that computes an estimation µ̂ of the mean has a constant
probability of error ‖µ̂− µ‖2 = Ω( α√

n
).

Further, according to the standard results from minimax theory [9], we know that using O(nm)

data, there is a constant probability that ‖µ̂− µ‖2 = Ω(
√

d
nm ). Combining these two results, we

know that ‖µ̂− µ‖2 = Ω( α√
n

+
√

d
nm ).

Remark. In our paper, we consider the setting where a deterministic α fraction of worker
machines are adversarial, whereas in this lower bound, we consider the probabilistic setting where
the machines are adversarial with probability α. We note that Chernoff bound ensures that the
number of Byzantine machines concentrates around αm. This fact then implies that the lower
bound also holds for the case where Ω(αm) Byzantine machines are selected uniformly at random
without replacement from all machines. Since we can translate an average-case bound to a minimax
lower bound, we can further show that the lower bound holds under the same setting of our main
theorems, that is, an unknown set of αm Byzantine machines are selected without any assumption.
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