Probably Approximately Metric-Fair Learning

Guy N. Rothblum *! Gal Yona *!

Abstract

The seminal work of Dwork et al. [ITCS 2012]
introduced a metric-based notion of individual
fairness: given a task-specific similarity metric,
their notion required that every pair of similar
individuals should be treated similarly. In the
context of machine learning, however, individual
fairness does not generalize from a training set
to the underlying population. We show that this
can lead to computational intractability even for
simple fair-learning tasks. With this motivation
in mind, we introduce and study a relaxed no-
tion of approximate metric-fairness: for a random
pair of individuals sampled from the population,
with all but a small probability of error, if they
are similar then they should be treated similarly.
We formalize the goal of achieving approximate
metric-fairness simultaneously with best-possible
accuracy as Probably Approximately Correct and
Fair (PACF) Learning. We show that approxi-
mate metric-fairness does generalize, and lever-
age these generalization guarantees to construct
polynomial-time PACF learning algorithms for
the classes of linear and logistic predictors.

1. Introduction

Machine learning is increasingly used to make consequential
classification decisions about individuals. Examples range
from predicting whether a user will enjoy a particular arti-
cle, to estimating a felon’s recidivism risk, to determining
whether a patient is a good candidate for a medical treat-
ment. Automated classification comes with great benefits,
but it also raises substantial societal concerns (cf. (O’Neil,
2016) for a recent perspective). One prominent concern is
that these algorithms might discriminate against individuals
or groups in a way that violates laws or social and ethical
norms. This might happen due to biases in the training data
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or due to biases introduced by the algorithm. To address
these concerns, and to truly unleash the full potential of auto-
mated classification, there is a growing need for frameworks
and tools to mitigate the risks of algorithmic discrimination.
A growing literature attempts to tackle these challenges by
exploring different fairness criteria.

Discrimination can take many guises. It can be difficult to
spot and difficult to define. Imagine a protected minority
population P (defined by race, gender identity, etc). A
natural approach for protecting the members of P from
discrimination is to make sure that they are not mistreated
on average. For example, that on average members of P and
individuals outside of P are classified in any particular way
with roughly the same probability. This is a “group-level”
fairness notion, sometimes referred to as statistical parity.

Pointing out several weakness of group-level notions of fair-
ness, the seminal work of (Dwork et al., 2012) introduced
a notion of individual fairness. Their notion relies on a
task-specific similarity metric that specifies, for every two
individuals, how similar they are with respect to the specific
classification task at hand. Given such a metric, similar
individuals should be treated similarly, i.e. assigned similar
classification distributions (their focus was on probabilistic
classifiers, as will be ours). In this work, we refer to their
fairness notion as perfect metric-fairness.

Given a good metric, perfect metric-fairness provides pow-
erful protections from discrimination. Furthermore, the met-
ric provides a vehicle for specifying social norms, cultural
awareness, and task-specific knowledge. While coming up
with a good metric can be challenging, metrics arise natu-
rally in prominent existing examples (such as credit scores
and insurance risk scores), and in natural scenarios (a metric
specified by an external regulator). Dwork ef al. studied
the goal of finding a (probabilistic) classifier that minimizes
utility loss (or maximizes accuracy), subject to satisfying
the perfect metric-fairness constraint. They showed how
to phrase and solve this optimization problem for a given
collection of individuals.

1.1. This Work

Building on these foundations, we study metric-fair ma-
chine learning. Consider a learner that is given a similarity
metric and a training set of labeled examples, drawn from
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an underlying population distribution. The learner should
output a fair classifier that (to the extent possible) accurately
classifies the underlying population.

This goal departs from the scenario studied in (Dwork et al.,
2012), where the focus was on guaranteeing metric-fairness
and utility for the dataset at hand. Generalization of the fair-
ness guarantee is a key difference: we focus on guaranteeing
fairness not just for the (training) data set at hand, but also
for the underlying population from which it was drawn. We
note that perfect metric-fairness does not, as a rule, gener-
alize from a training set to the underlying population. This
presents computational difficulties for constructing learning
algorithms that are perfectly metric-fair for the underlying
population. Indeed, we exhibit a simple learning task that,
while easy to learn without fairness constraints, becomes
computationally infeasible under the perfect metric-fairness
constraint (given a particular metric).! See below and in
Section 6 for further details.

We develop a relaxed approximate metric-fairness frame-
work for machine learning, where fairness does generalize
from the sample to the underlying population, and present
polynomial-time fair learning algorithms in this framework.
We proceed to describe our setting and contributions.

Problem setting. A metric-fair learning problem is de-
fined by a domain A" and a similarity metric d. A metric-fair
learning algorithm gets as input the metric d and a sam-
ple of labeled examples, drawn i.i.d. from a distribution
D over labeled examples from (X x +1), and outputs a
classifier h. To accommodate fairness, we focus on proba-
bilistic classifiers h : X — [0, 1], where we interpret h(z)
as the probability of label 1 (the probability of —1 is thus
(1 — h(z))). We refer to these probabilistic classifiers as
predictors.

Approximate Metric-Fairness. Taking inspiration from
Valiant’s celebrated PAC learning model (Valiant, 1984), we
allow a small fairness error, which opens the door to gener-
alization. We require that for two individuals sampled from
the underlying population, with all but a small probability,
if they are similar then they should be treated similarly. Sim-
ilarity is measured by the statistical distance between the
classification distributions given to the two individuals (we
also allow a small additive slack in the similarity measure).
We refer to this condition as approximate metric-fairness
(MF). Similarly to PAC learning, we also allow a small
probability of a complete fairness failure.

Given a well-designed metric, approximate metric-fairness
guarantees that almost every individual gets fair treatment

"'We remark that perfect metric-fairness can always be obtained
trivially by outputting a constant classifier that treats all individuals
identically, the challenge is achieving metric-fairness together with
non-trivial accuracy.

compared to almost every other individual. In particular, it
provides discrimination-protections to every group P that
is not too small. However, this guarantee also has limita-
tions: particular individuals and even small groups might en-
counter bias and discrimination. There are certainly settings
in which this is problematic, but in other settings protecting
all groups that are not too small is an appealing guarantee.
The relaxation is well-motivated because approximate fair-
ness opens the door to fairness-generalization bounds, as
well as efficient learning algorithms for a rich collection
of problems (see below). We elaborate on these choices in
Section 2.

Competitive accuracy. Turning our attention to the accu-
racy objective, we follow (Dwork et al., 2012) in considering
fairness to be a hard constraint (e.g. imposed by a regula-
tor). Given the fairness constraint, what is a reasonable
accuracy objective? Ideally, we would like the predictor’s
accuracy to approach (as the sample size grows) that of the
most accurate approximately MF predictor. This is analo-
gous to the accuracy guarantee pioneered in (Dwork et al.,
2012). A probably approximately correct and fair (PACF)
learning algorithm guarantees both approximate MF and
“best-possible” accuracy. A more relaxed accuracy bench-
mark is approaching the accuracy of the best classifier that
is approximately MF for a tighter (more restrictive) fairness-
error. We refer this as a relaxed PACF learning algorithm
(looking ahead, our efficient algorithms achieve this relaxed
accuracy guarantee). We note that even relaxed PACF guar-
antees that the classifier is (at the very least) competitive
with the best perfectly metric-fair classifier. We elaborate in
Section 3.

Generalization bounds. A key issue in learning theory
is that of generalization: to what extent is a classifier that
is accurate on a finite sample S ~ D™ also guaranteed
to be accurate w.r.t the underlying distribution? We de-
velop strong generalization bounds for approximate metric-
fairness, showing that for any class of predictors with
bounded Rademacher complexity, approximate MF on the
sample S implies approximate MF on the underlying dis-
tribution (w.h.p. over the choice of sample .S). The use of
Rademacher complexity guarantees fairness-generalization
for finite classes and also for many infinite classes. Prov-
ing that approximate metric-fairness generalizes well is a
crucial component in our analysis: it opens the door to
polynomial-time algorithms that can focus on guaranteeing
fairness (and accuracy) on the sample. Generalization also
implies information-theoretic sample-complexity bounds
for PACF learning, similar to those known for PAC learning
(without fairness constraints). We elaborate in Section 4.

Efficient algorithms. We construct polynomial-time (re-
laxed) PACF algorithms for linear and logistic regression.
Recall that (for fairness) we focus on regression problems:
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learning predictors that assign a probability in [0, 1] to each
example. For linear predictors, the probability is a linear
function of an example’s distance from a hyperplane. Lo-
gistic predictors compose a linear function with a sigmoidal
transfer function. This allows logistic predictors to exhibit
sharper transitions from low predictions to high predictions.
In particular, a logistic predictor can better approximate
a classifier that labels examples that are below a hyper-
plane by —1, and examples that are above the hyperplane
by 1. Linear and logistic predictors can be more powerful
than they first seem: by embedding a learning problem into
a higher-dimensional space, linear functions (over the ex-
panded space) can capture the power of many of the function
classes that are known to be PAC learnable (Hellerstein &
Servedio, 2007). We overview these results in Section 5. We
note that a key challenge in efficient metric-fair learning is
that the fairness constraints are neither Lipschitz nor convex
(even when the predictor is linear). This is also a challenge
for proving generalization and sample complexity bounds.

Perfect metric-fairness is hard. Under mild cryptographic
assumptions, we exhibit a learning problem and a similarity
metric where: (4) there exists a perfectly fair and perfectly
accurate simple (linear) predictor, but (4¢) any polynomial-
time perfectly metric-fair learner can only find a trivial
predictor, whose error approaches 1/2. In contrast, (i)
there does exist a polynomial-time (relaxed) PACF learning
algorithm for this task. This is an important motivation for
our study of approximate MF. We elaborate in Section 6.

Organization. In the remainder of this paper, we go on to
provide a detailed overview of our contributions. In Section
1.2 we review related work. Section 2 details and discusses
the definition of approximate metric-fairness. Accurate and
fair (PACF) learning is discussed in Section 3. We state
and prove fairness-generalization bounds in Section 4. Our
polynomial-time PACF learning algorithms for linear and
logistic regression are in Section 5. Section 6 elaborates on
the hardness of perfectly metric-fair learning.

1.2. Related Work

There is a growing body of work attempting to study the
question of algorithmic discrimination. This literature is
characterized by an abundance of definitions, each capturing
different discrimination concerns and notions of fairness.
One high-level distinction can be drawn between group and
individual notions of fairness.

Group fairness notions assume the existence of a protected
attribute (e.g gender, race), which induces a partition of
the instance space into some small number of groups. A
fair classifier is one that achieves parity of some statistical
measure across these groups. Some prominent measures
include classification rates (statistical parity, see e.g (Feld-
man et al., 2015)), calibration, and false positive or negative

rates (Kleinberg et al., 2016; Chouldechova, 2017; Hardt
et al., 2016). It has been established that some of these no-
tions are inherently incompatible with each other, in all but
trivial cases (Kleinberg et al., 2016; Chouldechova, 2017).
The work of (Woodworth et al., 2017) takes a step towards
incorporating the fairness notion of (Hardt et al., 2016) into
a statistical and computational theory of learning, and con-
siders a relaxation of the fairness definition to overcome the
computational intractability of the learning objective. The
work of (Dwork et al., 2017) proposes an efficient frame-
work for learning different classifiers for different groups in
a fair manner.

Individual fairness (Dwork et al., 2012) posits that “similar
individuals should be treated similarly”. This powerful guar-
antee is formalized via a Lipschitz condition (with respect to
an existing task-specific similarity metric) on the classifier
mapping individuals to distributions over outcomes. Recent
works (see e.g (Joseph et al.)) study different individual-
level fairness in the contexts of reinforcement and online
learning.

Our notion of approximate metric-fairness can be inter-
preted as staking a middle-ground between individual- and
group-fairness. In this sense, it is similar to recent works
that protect large collections of sufficiently-large groups
(Hébert-Johnson et al., 2017; Kearns et al., 2017; Kim et al.,
2018). A distinction from these works is in protecting every
sufficiently-large group, rather than a large collection of
groups that is fixed a priori. (Kim et al., 2018) consider a
(computational) relaxation of individual fairness, focusing
on settings where the metric itself is not fully known.

Finally, several works have studied fair regression
(Kamishima et al., 2012; Calders et al., 2013; Zafar et al.,
2017; Berk et al., 2017). The main differences in our work
are a focus on metric-based fairness, a strong rigorous fair-
ness guarantee, and proofs of competitive accuracy (both
stated with respect to the underlying distribution).

2. Approximate Metric-Fairness

We require that metric-fairness holds for all but a small
« fraction of pairs of individuals. That is, with all but
« probability over a choice of two individuals from the
underlying distribution, if the two individuals are similar
then they get similar classification distributions. We think
of a € [0, 1) as a small constant, and note that setting v =
0 recovers the definition of perfect metric-fairness (thus,
setting o to be a small constant larger than O is indeed a
relaxation). Similarity is measured by the statistical distance
between the classification distributions given to the two
individuals, where we also allow a small additive slack ~ in
the similarity measure. The larger + is, the more “differently”
similar individuals might be treated. We think of -y as a small
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constant, close to 0.

Definition 2.1 A predictor h is («, ) approximately metric-
fair (MF) with respect to a similarity metric d and a data
distribution D if:

LY Pr [|h(x) - h(a')| > d(z,a') +4] <a (D)

z,x'~D

Similarly to the PAC learning model, we also allow a small
0 probability of failure. This probability is taken over the
choice of the training set and over the learner’s coins. For ex-
ample, & bounds the probability that the randomly sampled
training set is not representative of the underlying popula-
tion. We think of § as very small or even negligible. A
learning algorithm is probably approximately metric-fair if
with all but § probability over the sample (and the learner’s
coins), it outputs a classifier that is («, ~y)-approximately
MF. Further details are in Appendix A.2 in the full version
(see supplementary material).

Given a well-designed metric, approximate metric-fairness
(for sufficiently small «, ) guarantees that almost every
individual gets fair treatment compared to almost every
other individual (see Appendix A.3 for a quantitative dis-
cussion). Every protected group P of fractional size sig-
nificantly larger than « is protected in the sense that, on
average, members of P are treated similarly to similar indi-
viduals outside of P. We note, however, that this guarantee
does not protect single individuals or small groups (see the
discussion in Section 1.1).

3. Accurate and Fair Learning

Our goal is to obtain learning algorithms that are probably
approximately metric-fair, and that simultaneously guaran-
tee non-trivial accuracy. Recall that fairness, on its own, can
always be obtained by outputting a constant classifier that
ignores its input and treats all individuals identically. It is
the combination of the fairness and the accuracy objectives
that makes for an interesting task. As discussed above, we
follow (Dwork et al., 2012) in focusing on finding a clas-
sifier that maximizes accuracy, subject to the approximate
metric-fairness constraint. This is a natural formulation, as
we think of fairness as a hard requirement (imposed, for
example, by a regulator), and thus fairness cannot be traded
off for better accuracy.

As discussed above, we focus on the setting of binary clas-
sification. A learning problem is defined by an instance
domain & and a class H of predictors (probabilistic classi-
fiers) h : X — [0, 1]. A fair learning problem also includes
a similarity metric d : X2 — [0, 1]. The learning algorithm
gets as input the metric d and a sample of labeled examples,
drawn i.i.d. from a distribution D over labeled examples
from (X x +1), and its goal is to output a predictor that

is both fair and as accurate as possible. A proper learner
outputs a predictor in the class H, whereas an improper
learner’s output is unconstrained (but # is used as a bench-
mark for accuracy). For a learned (real-valued) predictor h,
we use errp(h) to denote the expected ¢; error of h (the
absolute loss) on a random sample from D.?

Accuracy guarantee: PACF learning. As discussed
above, the goal in metric-fair and accurate learning is op-
timizing the predictor’s accuracy subject to the fairness
constraint. Ideally, we aim to approach (as the sample size
grows) the error rate of the most accurate classifier that
satisfies the fairness constraints. A more relaxed bench-
mark is guaranteeing («,-y)-approximate metric-fairness,
while approaching the accuracy of the best classifier that
is (o/,v')-approximately metric-fair, for o/ € [0, a] and
~" € [0,7]. Our efficient learning algorithms will achieve
this more relaxed accuracy goal (see below). We note that
even relaxed competitiveness means that the classifier is (at
the very least) competitive with the best perfectly metric-fair
classifier.

These goals are captured in the following definition of prob-
ably approximately correct and fair (PACF) learning. Cru-
cially, both fairness and accuracy goals are stated with re-
spect to the (unknown) underlying distribution.

Definition 3.1 (PACF Learning) A learning algorithm A
PACF-learns a hypothesis class H if for every metric d and
population distribution D, every required fairness parame-
ters a,y € [0, 1), every failure probability 6 € (0, 1), and
every error parameters €, €., €, € (0, 1), there exists a sam-

log | X|-log(1/9)
QY €.€q €y

o,y € [0,1) (specified below), such that with all but 6
probability over an i.i.d. sample of size m and A’s coin
tosses, the output predictor h satisfies the following two
conditions:

ple complexity m = poly ( ) and constants

1. Fairness: h is («,y)-approximately metric-fair w.r.t.
the metric d and the distribution D.

2. Accuracy: Let H'. be the subclass of hypotheses in H
that are (o' — €4, — €)-approximately MF, then:

errp(h) < min errp(h’) + €
heH

We say that A is efficient if it runs in time poly(m). If
accuracy holds for o/ = « and ' = +, then we stay that
A is a strong PACF learning algorithm. Otherwise, we say
that A is a relaxed PACF learning algorithm.

See Appendix B and Definitions B.2 and B.3 for a full
treatment. Note that the accuracy guarantee is agnostic: we

2All results also translate to £ error (the squared loss).
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make no assumptions about the way the training labels are
generated. Agnostic learning is particularly well suited to
our setting: since we make no assumptions about the metric
d, even if the labels are generated by h € H, it might be the
case that d does not allow for accurate predictions, in which
case a fair learner cannot compete with h’s accuracy.

4. Generalization

Generalization is a key issue in learning theory. We de-
velop strong generalization bounds for approximate metric-
fairness, showing that with high probability, guaranteeing
empirical approximate MF on a training set also guarantees
approximate MF on the underlying distribution (w.h.p. over
the choice of sample S). This generalization bound opens
the door to polynomial-time algorithms that can focus on
guaranteeing fairness (and accuracy) on the sample and ef-
fectively rules out the possibility of creating a “false facade”
of fairness (i.e, a classifier that appears fair on a random
sample, but is not fair w.r.t new individuals).

Towards proving generalization, we define the empirical
fairness loss on a sample S (a training set). Fixing a fairness
parameter -, a predictor i and a pair of individuals z, 2’ in
the training set, consider the MF loss on the “edge” between
2 and 2’ (recall that the MF loss is 1 if the “internal” inequal-
ity of Equation (1) holds, and O otherwise). Observe that
the losses on the (‘g‘) edges are not independent random
variables (over the choice of S), because each individual
x € S affects many edges. Thus, rather than count the
empirical MF loss over all edges, we restrict ourselves to
a “matching” M (S) in the complete graph whose vertices
are S: a collection of edges, where each individual is in-
volved in exactly one edge. The empirical MF loss of h on
S is defined as the average MF loss over edges in M (S).?
Note that, since we restricted our attention to a matching,
the MF losses on these edges are now independent random
variables (over the choice of S). A classifier is empirically
(c, y)-approximately MF if its empirical MF loss is at most
a. We are now ready to state our generalization bound:

Theorem 4.1 Let H be a hypothesis class with Rademacher
complexity Ry, (H) = (r/\/m). For every § € (0,1) and
every €4, €y € (0,1), there exists a sample complexity m =

0] (%) such that with probability at least 1 — 6 over
oty

an i.i.d sample S ~ D™, simultaneously for every h € H.:

if h is («,7y)-approximately metric-fair on the sample S,

then h is also (o + €4,y + €)-approximately metric-fair

on the underlying distribution D.

3The choice of which matching is used does not affect any of
the results. Note that we could also choose to average over all
the edges in the graph induced by S. Generalization bounds still
follow, but the rate of convergence is not faster.

See Appendix A.4 and Theorem A.9 for a full statement
and discussion (and see Definition A.8 for a definition of
Rademacher complexity). Rademacher complexity differs
from the celebrated VC-dimension in several respects: first,
it is defined for any class of real-valued functions (making it
suitable for our setting of learning probabilistic classifiers);
second, it is data-dependent and can be measured from
finite samples (indeed, Theorem 4.1 can be stated w.r.t. the
empirical Rademacher complexity on a given sample); third,
it often results in tighter uniform convergence bounds (see,
e.g, (Koltchinskii & Panchenko, 2002)). We note that for
every finite hypothesis class  whose range is [0, 1], the
Rademacher complexity is bounded by O(+/log |H|/m).

Technical Overview of Theorem 4.1. For any class of
(bounded) real-valued functions F, the maximal difference
(over all functions f € F) between the function’s empirical
average on a randomly drawn sample, and the function’s
true expectation over the underlying distribution, can be
bounded in terms of the Rademacher complexity of the
class (as well as the sample size and desired confidence).
For a hypothesis class H and a loss function ¢, applying
this result for the class £(H) = {{n},c yields a bound
on the maximal difference (over all hypotheses h € H)
between the true loss and the empirical loss, in terms of the
Rademacher complexity of the composed class L£(H). If
the loss function ¢ is G-Lipschitz, this can be converted to a
bound in terms of the Rademacher complexity of H using

the fact that R (L(H)) < G - R (H).

Turning our attention to generalization of the fairness guar-
antee, we are faced with the problem that our “0-1"" MF loss
function is not Lipschitz. We resolve this by defining an
approximation ¢’ to the MF loss that is a piece-wise linear
and G-Lipschitz function. The approximation ¢’ does gen-
eralize, and so we conclude that the empirical MF loss is
close to the empirical value of ¢/, which is close to the true
value of ¢/, which in turn is close to the true MF loss. The
approximation incurs a 1/G additive slack in the fairness
guarantee. The larger G is, the more accurately ¢’ approxi-
mates the MF loss, but this comes at the price of increasing
the Lipschitz constant (which hurts generalization). The
generalization theorem statement above reflects a choice of
G that trades off these conflicting concerns.

4.1. Information-Theoretic Sample Complexity

The fairness-generalization result of Theorem 4.1 implies
that, from a sample-complexity perspective, any hypothesis
class is strongly PACF learnable, with sample complexity
comparable to that of standard PAC learning.

Theorem 4.2 Let H be a hypothesis class with Rademacher
complexity Ry, (H) = (r//m). Then H is information-
theoretically strongly PACF learnable with sample complex-
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itym=0 (TZ 1n(1/5)),for ¢ =min{e, €q,€,}.

(¢)?

5. Efficient Fair Learning

One of our primary contributions is the construction of
polynomial-time relaxed-PACF learning algorithms for ex-
pressive hypothesis classes. We focus on linear classifica-
tion tasks, where the labels are determined by a separating
hyperplane. Learning linear classifiers, also referred to as
halfspaces or linear threshold functions, is a central tool in
machine learning. By embedding a learning problem into
a higher-dimensional space, linear classifiers (over the ex-
panded space) can capture surprisingly strong classes, such
as polynomial threshold functions (see, for example, the
discussion in (Hellerstein & Servedio, 2007)). The “kernel
trick” (see, e.g, (Shalev-Shwartz & Ben-David, 2014)) can
allow for efficient solutions even over very high (or infinite)
dimensional embeddings. Many of the known (distribution-
free) PAC learning algorithms can be derived by learning
linear threshold functions (Hellerstein & Servedio, 2007).

Recall that in metric-fair learning, we aim to learn a proba-
bilistic classifier, or a predictor, that outputs a real value in
[0, 1]. We interpret the output as the probability of assigning
the label 1. We are thus in the setting of regression. We show
polynomial-time relaxed-PACF learning algorithms for /in-
ear regression and for logistic regression. See Appendix
D.2 for full and formal details.

5.1. Linear Regression

Linear regression, the task of learning linear predictors, is an
important and well-studied problem in the machine learning
literature. In terms of accuracy, this is an appealing class
when we expect a linear relationship between the probability
of the label being 1 and the distance from a hyperplane.
Taking the domain X to be the unit ball, we define the class
of linear predictors as:

Hip € {x = (14 (w,x))/2: [[w] < 1}.

We restrict w to the unit ball to guarantee that (w,x) €
[—1, 1]. We then invoke a linear transformation so that the
final prediction is in [0, 1], as required. Restricting the pre-
dictor’s output to the range [0, 1] is important. In particular,
it means that a linear predictor must be (1/2)-Lipschitz,
which might not be appropriate for certain classification
tasks (see the discussion of logistic regression below).

We show a relaxed PACF learning algorithm for Hy;,:

Theorem 5.1 Hy;, is relaxed PACF learnable with sample
and time complexities Ofpoly(é, é, %, log %) For every
v € 10,1) and o/ = (-~ —7'), the accuracy of the
learned predictor approaches (or beats) the most accurate

(o, ")-approximately MF predictor.

Algorithm overview. Since the Rademacher complexity of
(bounded) linear functions is small (Kakade et al., 2009),
Theorem 4.1 implies that empirical approximate metric-
fairness on the training set generalizes to the underlying
population. Thus, given the metric and a training set, our
task is to find a linear predictor that is as accurate as possible,
conditioned on the empirical fairness constraint. We use
H = Hy;, to denote the class of linear predictors defined
above. Fixing desired fairness parameters a,y € (0, 1),
let Hov C H be the subset of linear functions that are
also (o, y)-approximately MF on the training set. Given
a training set S of m labeled examples, we would like to
solve the following optimization problem:

argmin errg(h) subjectto h € HeY
heH

Observe, however, that H 7 is not a convex set. This is a
consequence of the “0/1” metric-fairness loss. Thus, we
do not know how to solve the above optimization problem
efficiently. Instead, we will further constrain the predictor
h by bounding its ¢1 MF loss. For a predictor h let its
(empirical) ¢; MF violation {s(h) be given by:

Es(hy = Y

(z,a")eM(S)

max (0, |h(z) — h(z")| — d(z,2")) .

For 7 € [0, 1], we take fIZl C H to be the set of linear
predictors h s.t. £s(h) < 7. For any fixed 7, this is a
convex set, agd we can find the most (empirically) accurate
predictor in Hj in polynomial time. For fairness, we show
that small ¢; fairness loss also implies the standard notion of
approximate metric-fairness (with related parameters «, ).
For accuracy, we also show that approximate metric-fairness
(with smaller fairness parameters) implies small ¢; loss.
Thus, optimizing over predictors whose ¢; loss is bounded
gives a predictor that is competitive with (a certain class
of) approximately MF predictors. In particular for 7,0 €
[0,1) we have: H7~%7 C H]. C H*"". Thus, by picking
T = « -y we guarantee (empirical) («,y)-approximate
metric-fairness. Moreover, for any choice of o, the set
over which we optimize contains all of the predictors that
are ((ary — o), 0)-approximately MF. Thus, our (empirical)
accuracy is competitive with all such predictors, and we
obtain a relaxed PACF algorithm. The empirical fairness
and accuracy guarantees generalize beyond the training set
by Theorem 4.1 (fairness-generalization) and a standard
uniform convergence argument for accuracy.

5.2. Logistic Regression

Logistic regression is another appealing class. Here, the pre-
diction need not a be a linear function of the distance from
a hyperplane. Rather, we allow the use of a sigmoid func-

tion ¢e . [_1, ].} — [07 ].] deﬁned as ¢E(Z) = m
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(which is continuous and ¢-Lipschitz). The class of logistic
predictors is formed by composing a linear function with a
sigmoidal transfer function:

Hyp & {x ¢ ((w,x): |w| <1, 0€0,L]} (2

The sigmoidal transfer function gives the predictor the
power to exhibit sharper transitions from low predictions
to high predictions around a certain distance (or decision)
threshold. For example, suppose a distance from the hyper-
plane provides a quality score for candidates with respect to
a certain task. Suppose also that an employer wants to hire
candidates whose quality scores are above some threshold
n € [—1,+1]. The class Hy ;, can give probabilities close
to 0 to candidates whose quality scores are under n — 1/L,
and probabilities close to 1 to candidates whose quality
scores are over 1 + 1/L. Linear predictors, on the other
hand, need to be (1/2)-Lipschitz (since we restrict their out-
put to be in [0, 1], see Section 5.1). Logistic predictors seem
considerably better-suited to this type of scenario. Indeed,
the class H 1, can achieve good accuracy on linearly sepa-
rable data whose margin (i.e. the expected distance from the
hyperplane) is larger than 1 /L. Moreover, similarly to linear
threshold functions, logistic regression can be applied after
embedding the learning problem into a higher-dimensional
space. For example, in the “quality score” example above,
the score could be computed by a low-degree polynomial.

Our primary technical contribution is a polynomial-time
relaxed PACF learner for H 4 ;, where L is constant.

Theorem 5.2 For every constant L > 0, Hy 1, is re-
laxed PACF learnable with sample and time complexi-
ties ofpoly(%, i, 1 log $). For every v’ € [0,1) and
o = (a-v —~"), the learned predictor’s accuracy ap-

proaches the best (¢, ~')-approximately MF predictor.

More generally, our algorithm is exponential in the param-
eter L. Recall that we expect to have good accuracy on
linearly separable data whose margins are larger than (1/L).
Thus, one can interpret the algorithm as having runtime that
is exponential in the reciprocal of the (expected) margin.

Algorithm overview. We note that fair learning of logistic
predictors is considerably more challenging than the linear
case because the sigmoidal transfer function specifies non-
convex fairness constraints. In standard logistic regression,
polynomial-time learning is achieved by replacing the stan-
dard loss with a convex logistic loss. In metric-fair learning,
however, it not clear how to replace the sigmoidal transfer
function by a convex surrogate.

To overcome these barriers, we use improper learning. We
embed the linear problem at hand into a higher-dimensional
space, where logistic predictors and their fairness constraints
can be approximated by convex expressions. To do so, we

use a beautiful result of Shalev-Schwartz et al. (Shalev-
Shwartz et al., 2011) that presents a particular infinite-
dimensional kernel space where our fairness constraints
can be made convex.

In particular, we replace the problem of PACF learning H j,
with the problem of PACF learning Hp, a class of linear
predictors with norm bounded by B in a RHKS defined by
Vovk’s infinite-dimension polynomial kernel, k(x,2’) =
(1 — (z,2))"". We learn the linear predictor in this RHKS
using the result of Theorem 5.1 to obtain a relaxed PACF
algorithm for Hp. We use the kernel trick to argue that
the sample complexity is m = O(B/(€')?), where ¢ =
min(e, €q, €4), and the time complexity is poly(m).

For every B > 0, we can thus learn a linear predictor (in
the above RHKS) that is (empirically) sufficiently fair, and
whose (empirical) accuracy is competitive with all the linear
predictors with norm bounded by B that are ((ay — 0) ,0)-
approximately MF, for any choice of 0. To prove PACF
learnability of Hy 1, we build on the polynomial approx-
imation result of Shalev-Schwartz er al. (Shalev-Shwartz
et al., 2011) to show that taking B to be sufficiently large
ensures that the accuracy of the set of («, v)-AMF predic-
tors in Hy ;, is comparable to the accuracy of the set of
(at,v)-AMF predictors in H g. This requires a choice of B
that is exp(O(L - In(L/€")), which is where the exponential
dependence on L comes in.

6. Hardness of Perfect Metric-Fairness

As discussed above, perfect metric-fairness does not gener-
alize from a training set to the underlying population. For
example, consider a very small subset of the population
that isn’t represented in the training set. A classifier that
discriminates against this small subset might be perfectly
metric-fair on the training set. The failure of generalization
poses serious challenges to constructing learning algorithms.
Indeed, we show that perfect metric-fairness can make sim-
ple learning tasks computationally intractable (with respect
to a particular metric).

We present a natural learning problem and a metric where,
even though a perfectly fair and perfectly accurate sim-
ple (linear) classifier exists, it cannot be found by any
polynomial-time learning algorithm that is perfectly metric-
fair. Indeed, any such algorithm can only find trivial classi-
fiers with error rate approaching 1/2 (not much better than
random guessing). The learner can tell that a particular
(linear) classifier is empirically perfectly fair (and perfectly
accurate). However, even though the classifier is perfectly
fair on the underlying distribution, the (polynomial-time)
learner cannot certify that this is the case, and thus it has to
settle for outputting a trivial classifier. We note that there
does exist an exponential-time perfectly metric-fair learning
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algorithm with a competitive accuracy guarantee (see foot-
note 5 in the full version). The issue is the computational
complexity of this task. In contrast, the relaxed notion of
approximate metric-fairness does allow for polynomial-time
relaxed-PACF learning algorithms that obtain competitive
accuracy for this task (as it does for a rich class of learning
problems, see Section 5).

We present an overview of the hard learning task and dis-
cuss its consequences below. See Appendix E and Theorem
E.1 for a more formal description. Since we want to ar-
gue about computational intractability, we need to make
computational assumptions (in particular, if P = N P, then
perfectly metric-fair learning would be tractable). We will
make the minimal cryptographic hardness assumption that
one-way functions exist (see, e.g, (Goldreich, 2001)).

Simplified construction. For this sketch, we take a uniform
distribution D over a domain X = {4-1}". For an item (or
individual) z € X, its label will be given by the linear
classifier w(z) = x;. Note that the linear classifier w
indeed is perfectly accurate.*

To argue that fair learning is intractable, we construct two
metrics dy and dy that are computationally indistinguish-
able: no polynomial-time algorithm can tell them apart
(even given the explicit description of the metric).> We
construct these metrics so that dy does not allow any non-
trivial accuracy, whereas dy essentially imposes no fairness
constraints. Thus, w is a perfectly fair and perfectly ac-
curate classifier w.r.t. dy. Now, since a polynomial-time
learning algorithm A cannot tell dy; and dy apart, it has to
output the same (distribution on) classifiers given either of
these two metrics. If A, given dy, outputs a classifier with
non-trivial accuracy, then it violates perfect metric-fairness.
Thus, when given di7, A must (with high probability) output
a classifier with error close to 1/2. This remains the case
even when A is given the metric dy (by indistinguishabil-
ity), despite the fact perfect metric-fairness under dy allows
for perfect accuracy.

We construct the metrics as follows. The metric dy gives
every pair of individuals x, 2’ € X distance 1. The metric
dy, on the other hand, partitions the items in X" into dis-
joint pairs (z, 2") where the label of x is 1, the label of z’
is —1, but the distance between z and z’ is 0.° Thus, the

“Note that the expected margin in this distribution is small
compared to the norms of the examples. This is for simplicity and
readability. The full hardness result is shown (in a very similar
manner) for data where the margins are large. In particular, this
means that the class of predictors Hy,;, can achieve good accuracy
with constant L. See Appendix E.

SMore formally, we construct two distribution on metrics, such
that no polynomial-time algorithm can tell whether a given metric
was sampled from the first distribution or from the second. For
readability, we mostly ignore this distinction in this sketch.

6Formally, dy is a pseudometric, since it has distinct items at

metric dy assigns to each item x € X a “hidden counter-
part” z’ that is identical to x, but has the opposite label.
The distance between any two distinct elements that are
not “hidden counterparts” is 1 (as in dy ). The metric dy
specifies that hidden counterparts (x, ') are identical, and
thus any perfectly metric-fair classifier 4 must treat them
identically. Since z and z’ have opposing labels, h’s av-
erage error on the pair must be 1/2. The support of D is
partitioned into disjoint hidden counterparts, and thus we
conclude that errp(h) = 1/2. Note that this is true re-
gardless of h’s complexity (in particular, it also rules out
improper learning). We construct the metrics using a crypto-
graphic pseudorandom generator (PRG), which specifies the
hidden counterparts (in dy;) or their absence (in dy). See
the full version for details.

Discussion. We make several remarks about the above re-
sult. First, note that the data distribution is fixed, and the
optimal classifier is linear and simple: it only considers a
single coordinate. This makes the hardness result sharper:
without fairness, the learning task is trivial (indeed, since
the classifier is fixed there is nothing to learn). It is the
fairness constraint (and only the fairness constraint) that
leads to intractability. The computational hardness of per-
fectly fair learning applies also to improper learning. Finally,
the metrics for which we show hardness are arguably con-
trived (though we note they do obey the triangle inequality).
This rules out perfectly metric-fair learners that work for
any given metric. A natural direction for future work is
restricting the choice of metric, which may make perfectly
metric-fair learning feasible.

distance 0. We can make dy be a true metric by replacing the
distance 0 with an arbitrarily small positive quantity. The hardness
result is essentially unchanged.
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