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Abstract
In order to make good decision under uncertainty
an agent must learn from observations. To do
so, two of the most common frameworks are
Contextual Bandits and Markov Decision Pro-
cesses (MDPs). In this paper, we study whether
there exist algorithms for the more general frame-
work (MDP) which automatically provide the
best performance bounds for the specific prob-
lem at hand without user intervention and with-
out modifying the algorithm. In particular, it is
found that a very minor variant of a recently pro-
posed reinforcement learning algorithm for MDPs
already matches the best possible regret bound
Õ(
√
SAT ) in the dominant term if deployed on

a tabular Contextual Bandit problem despite the
agent being agnostic to such setting.

1. Introduction
For reinforcement learning (RL) to realize its huge poten-
tial benefit, we must create reinforcement learning algo-
rithms that do not require extensive expertise and problem-
dependent fine-tuning to achieve high performance in a
particular domain of interest. Much exciting research is
advancing this vision, such as alleviating the need for fea-
ture engineering using deep neural networks, and making
it easier to specify the desired behavior through inverse re-
inforcement learning and reward design (Mnih et al., 2013;
Abbeel & Ng, 2004). Here instead we consider the theoreti-
cal aspects of a key but understudied issue: what decision
process framework to use, and how that choice impacts the
resulting performance.

In reinforcement learning (learning to make good decisions
under uncertainty), there are three common frameworks
that allow learning from observations: multi-armed bandits
(MABs) and contextual MABs, Markov decision processes
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(MDPs) and partially observable MDPs (POMDPs). Ban-
dits assume that the actions taken do not impact the next
state, MDPs assume actions impact the next state but the
state is a sufficient statistic of prior history, and POMDPs
assume that the true Markov state is latent, and in general
the next state can depend on the full history of prior ac-
tions and observations. It is known that these three decision
process frameworks differ significantly in computational
complexity and statistical efficiency. In particular, when
the decision process model is unknown and an agent must
perform reinforcement learning, existing theoretical bounds
illustrate that the best results possible in bandits, contex-
tual bandits, MDPs and POMDPs may significantly differ.
For example there exist upper bounds on the regret of algo-
rithms for discrete state and action contextual bandits which
scale as Õ(

√
SAT ) (see (Bubeck & Cesa-Bianchi, 2012))

and lower bounds on the regret of algorithms for episodic
discrete state and action MDPs which scale as Ω(

√
HSAT )

(Osband & Van Roy, 2016), here indicating there is a gap
of at least a factor of

√
H between the regret possible in

the two settings. Such work suggests that to obtain good
performance, it is of significant interest to have algorithms
that either implicitly or explicitly use the simplest setting
(of bandits, MDPs, POMDPs) that captures the domain of
interest during reinforcement learning,

As (outside of simulated domains) the true decision pro-
cess properties are unknown, choosing whether to model a
problem using the bandit, MDP or POMDP frameworks is
typically far from trivial. A software engineer working on
a product recommendation engine may not know whether
the product recommendations have a significant impact on
the customers’ later states and preferences, such that the
engineer should model the problem as a MDP instead of a
bandit in order to be able to use a reinforcement learning al-
gorithm to learn a policy that best maximizes revenue. This
may result in requiring prohibitive amounts of interaction
data to learn a good decision policy. Ideally an engineer
should be able to write down a problem in a very general
way and be confident that the algorithm will inherit the best
performance of the underlying domain and problem.

Here we work to create RL algorithms with strong setting
/ framework dependent bounds. Our hope is to create re-
inforcement learning methods that perform as well as the
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underlying process allows but without the algorithm user
having to specify in advance the process framework (bandit
/ MDP / POMDP) which is often unknown. In doing so we
hope to alleviate the burden on the users, allowing them to
inherit the benefits of more complex policies if the situa-
tion allows, without performance being harmed if the true
process is simpler than the one specified.

Precisely here we consider the challenge of creating MDP
algorithms that can inherit the best properties of tabular
contextual bandits if the RL algorithm is operating in such
setting. Our aim is similar in motivation to problem depen-
dent theoretical analyses, that seek to provide tighter perfor-
mance bounds by including an explicit dependence on some
property of the domain, such as the mixing rate (Auer &
Ortner, 2006), or the difference in rewards or optimal state-
action values (Auer et al., 2002; Agrawal & Goyal, 2012;
Even-Dar et al., 2006). However, existing problem depen-
dent research has not yet enabled strong process-dependent
learning bounds (e.g. bounds that depend on whether the do-
main is a MDP or a bandit). Prior problem dependent results
are limited for our setting of interest because they typically
make restrictive assumptions on the subset of Markov de-
cision processes for which they hold (e.g., highly mixing
for (Auer & Ortner, 2006)), require the user to explicitly
provide domain properties (Bartlett & Tewari, 2009) or the
provided bound does not yield strong guarantees when the
MDP algorithm is deployed on a simpler bandit process
(Maillard et al., 2014). A work with more similar intentions
to ours is (Bubeck & Slivkins, 2012) where the authors
propose an algorithm whose regret is optimal both for adver-
sarial rewards and for stochastic rewards; by contrast here
we consider a change in the learning framework (MDPs vs
Bandits).

Perhaps the most closely related work is the recently in-
troduced contextual decision process research (Jiang et al.,
2017). The authors provide probably approximately cor-
rect (PAC) results for generic CDPs as a function of their
Bellman rank; however their resulting bounds for tabular
MDPs and CMABs do not provide the best or near-best
PAC bounds (both have a worse dependence on the horizon).
In contrast our work considers an algorithm for which we
can achieve a near-optimal performance on MDPs and the
best regret upper bound in the dominant terms for tabular
contextual bandits.

In other words, we can use an MDP RL algorithm and if the
real world is a bandit, the MDP RL algorithm automatically
scales in performance about as well as a near-optimal al-
gorithm that was designed specifically for bandit problems.
Precisely, a small variant of UBEV (Dann et al., 2017) yields
a
√
SAT regret term if the MDP it is acting in is actually a

tabular contextual bandit regardless of the prescribed MDP
horizon H . Prior work in provably efficient RL algorithms

(Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al.,
2017) provide regret or PAC guarantees which depend on
the MDP horizon H or diameter D for episodic and infinite-
horizon MDPs, respectively. H is the MDP horizon and is
specified to the algorithm. Therefore these analyses do not
imply that “H” can be removed if the H-horizon MDP is
actually generated from a CMAB problem.

The key insight of our analysis is to show that due to the
bandit structure, the optimistic value function converges
to the optimal value function fast enough that the regret
bound terms due to the MDP framework contribute only to
lower order terms with a logarithmic time dependence. In
the rest of the paper, we first outline the setting, introduce
the algorithm, and then provide our theoretical results and
proofs before discussing future directions.

2. Notation and Setup
A finite horizon MDP is defined by a tuple M =
〈 S,A, p, r,H〉 , where S is the state space, A is the ac-
tion space, p : S × A × S → R is the transition function
where p(s′ | s, a) is the probability of transitioning to state
s′ after taking action a in state s. The mean reward func-
tion r : S × A → R ∈ [0, 1] is the average instantaneous
reward collected upon playing action a in state s, denoted
by r(s, a). The agent interacts with the environment in a
sequence of episodes k ∈ [1, . . . ,K], each of a horizon
of H time steps before resetting. As the optimal policy
in finite-horizon domains is generally time-step-dependent,
on each episode the agent selects a πk which maps states
s and timesteps t to actions. A policy πk induces a value
function for every state s and timestep t ∈ [H] defined as
V πkt (st) = E

∑H
i=t r(si, πk(si, i)) which is the expected re-

turn until the end of the episode (the expectation is over the
states si encountered in the MDP). We denote the optimal
policy with π∗ and its value function as V ∗t (s) and define the

range of a vector V : rng V
def
= maxs V (s)−mins V (s).

There are multiple formal measures of RL algorithm perfor-
mance. We focus on regret, which is frequently used in RL
and very widely used in bandit research. Let the regret of
the algorithm up to episodeK from any sequence of starting
states s1k, s2k, . . . be:

Regret(K)
def
=
∑
k

V ∗1 (s1k)− V πk1 (s1k). (1)

Since the policies depend on the history of observations,
the regret is a random variable. Here we focus on a high
probability bound on the regret.

We use the Õ(·) notation to indicate a quantity that depends
on (·) up to a polylog expression of a quantity at most poly-
nomial in S,A, T,K,H, 1δ . We use the .,&,' notation to
mean ≤,≥,=, respectively, up to a numerical constant.
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Algorithm 1 UBEV-S for Stationary Episodic MDPs
1: Input: failure tolerance δ ∈ (0, 1]
2: n(s, a) = l(s, a) = m(s′, s, a) = 0 ∀s′, s, a ∈ S × S ×A; ṼH+1(s) = 0 ∀s ∈ S; φ+ = 0
3: for k = 1, 2, . . . do
4: for t = H,H − 1, . . . , 1 do
5: for s ∈ S do
6: for a ∈ A do
7: φ =

√
2 ln ln(max{e,n(s,a)})+ln(27HSA/δ)

n(s,a)

8: r̂ = l(s,a)
n(s,a) , V̂next = m(·,s,a)>Ṽt+1

n(s,a)

9: Q(a) = min{1, r̂ + φ}+ min{maxs Ṽt+1(s), V̂next + min{(H − t), (rng Ṽt+1 + φ+)}φ}
10: end for
11: πk(s, t) = arg maxaQ(a); Ṽt(s) = Q(πk(s, t)); φ+ = max{4

√
SH2φ(s, πk(s, t)), φ+}

12: end for
13: end for
14: s1 ∼ p0
15: for t=1,. . . H do
16: at = πk(st, t); rt ∼ pR(st, at); st+1 ∼ pP (st, at)
17: n(st, at) + +; m(st+1, st, at) + +; l(st, at)+ = rt
18: end for
19: end for

3. Mapping Contextual Bandits to MDPs
Tabular contextual multi-armed bandits are a generalization
of the multiarmed bandit problem. They prescribe a set
of contexts or states and the expected reward of an action
depends on the state and action, r(s, a). They can be alter-
natively viewed as a simplification of MDPs in which the
next state is independent of the prior state and action. Let
MC be an episodic MDP with horizon H which is actually
a contextual bandit problem: the transition probability is
identical p(s′|s, a) = µ(s′) for all states and actions, where
µ is a fixed stationary distribution over states. Note that
when doing RL in aMC the agent does not know the tran-
sition model and therefore does not know the MDP can be
viewed as a contextual bandit.

4. UBEV for Stationary MDPs
In this section we introduce the UBEV-S algorithm which is
a slight variant of UBEV (Dann et al., 2017), a recent PAC
algorithm designed for episodic non-stationary MDPs. Here
we focus on a regret analysis due to its popularity in the
bandit literature.

A large fraction of the literature for episodic MDPs con-
siders stationary environments. If the MDP is truly sta-
tionary (i.e., with time-independent rewards and transition
dynamics) then this assumption can be leveraged to produce√
H-tighter regret bounds. For the purpose of our analysis

on CMABs the rationale for removing the non-stationarity
from UBEV is the following: if the MDP is transient the
agent cannot “assume” that the same state s gives identical

expected rewards r(s, a) if visited at different timesteps,
say t1 and t2. As a consequence, it would treat the same
“context” s visited at t1 and t2 as different entities. We there-
fore adapt UBEV to handle stationary MDPs and modify the
exploration bonus slightly. This second change preserves
the original bounds in the MDP setting and enables us to
obtain stronger bounds in the bandit setting. We call the
resulting algorithm UBEV-S (Algorithm 1). Lines 4 through
13 refers to the planning step and lines 14 through 18 to the
execution of the chosen policy in the MDP. UBEV-S is a
minor variant of UBEV and it can be analyzed in the same
way as the original UBEV to obtain a regret bound whose
leading order term is Õ(H

√
SAT ) on a generic (albeit sta-

tionary) MDP1. We outline such analysis in the appendix
(in section A.4). The main difference from UBEV in (Dann
et al., 2017) and UBEV-S here is the stated stationarity of the
MDP. In stationary MDPs the transition dynamics p(s′|s, a)
and rewards r(s, a) are assumed to be time-independent for
a fixed (s, a) pair. This allows data aggregation for the same
state-action pair (s, a) from different timesteps t in order
to estimate the rewards and system dynamics, as seen in
lines 2, 7, 8, 17. As a result, UBEV-S is more efficient on
stationary environments because it does not need to estimate
r and p for different timesteps but it will not handle transient
MDPs as UBEV . This ultimately leads to a saving of

√
H in

the leading order regret term if the MDPs is time-invariant.

The other minor change is to make the exploration bonus

1Notice the difference in notation. Here T is the time elapsed;
in (Dann et al., 2017) it is the number of episodes elapsed. The
two differ by a factor of H .
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(Algorithm 1 Line 9) depend on the range of the optimistic
value function (rng Ṽt+1)φ(s, a) (defined in Algorithm 1)
of the successor states. In contrast UBEV used a fixed over-
estimate (H − t)φ(s, a). A bonus dependent on the actual
Ṽ πkt+1 is the typical approach used in similar works (e.g.
(Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al.,
2017)). The rationale here is that if rng Ṽt+1 is very small
then the agent is not “too uncertain” about that transition,
hence the exploration bonus should be smaller. Although
this does not improve the MDP regret bound (which only
considers a worst-case scenario), better practical perfor-
mance should be expected and it will have important bene-
fits for our bandit analysis. For the exploration bonus to be
valid we require that optimism be guaranteed on any MDP.
We ensure this by adding a correction term φ+ which varies
in different (s, a) pairs and is an estimate of the uncertainty
of rng Ṽt+1. The correction term φ+ is continuously up-
dated in line 11 of Algorithm 1 so that φ+ keeps track of
the largest bonus / confidence interval which is related to
the least visited (s, a) pair (in subsequent states) under the
agent’s policy. In the appendix (section A.3) we carefully
justify why this choice guarantees optimism on any MDP.
This change does not affect the regret bound for stationary
MDPs since our exploration bonus is still upper bounded by
Hφ(s, a) (this is the upper bound used to obtain the result
on MDPs).

5. Theoretical Result
In this section we present the main result of the paper, which
is an upper bound on the regret of UBEV-S onMC .
Theorem 1. If UBEV-S is run on an H-horizon MDP with
S states and A actions where the successor states s′ is
sampled from a fixed distribution µ then with probability at
least 1− δ the regret is bounded by the minimum between:

Õ

(
√
SAT +

S2AH2
√
H

√
µmin

+
SAH2

µmin

)
︸ ︷︷ ︸

CMAB Analysis

(2)

and

Õ
(
H
√
SAT + S2AH2 + S

√
SAH3

)
︸ ︷︷ ︸

MDP Analysis

(3)

jointly for all timesteps T .

Notice that equation 2 is obtained by the analysis that we
discuss in this main paper while equation 3 is the regret
bound that UBEV-S would achieve in any episodic stationary
MDP (detailed the appendix). SinceMC is an MDP, the
tighter bound applies.

The significance of this result is that the leading order term
matches the lower bound Ω(

√
SAT ) previously established

for tabular contextual bandit problems. The lower order

terms of Equation 2 depend upon µmin
def
= mins µ(s),

which is the lowest probability of visiting any given context.

Put differently, for T sufficiently large and not too small
µmin, the leading order term dominates and the bound
matches the lower bound for contextual bandits up to
polylog(·) factor. Problems where a large T is most critical
for the regret are those where the optimal actions are barely
distinguishable from the suboptimal ones. Our result shows
that in this case there is little penalty for using a more gen-
eral approach like UBEV-S which is designed for MDPs and
is unaware of the problem structure. By the time the agent
has identified which actions have maximum instantaneous
reward the structure of the underlying problem is already
clear to the agent. The key insight to obtain the result of
theorem 1 is to examine the rate at which the optimistic
value function Ṽ πkt converges to the true one V ∗t . While
such convergence does not necessarily occur in a generic
MDP, the highly mixing nature of contextual bandits en-
sures that enough information is collected in every context
/ state that convergence of the value function does occur
for all states. The rate of convergence is high enough that
the “price” for using an MDP algorithm on CMABs gets
transferred to lower order terms without any T dependence.

6. Analysis onMC

We begin our analysis by looking at the main source of
regret for UBEV-S when deployed on a generic MDP. We
do this to identify the leading order term contributing to
the regret. Next, we provide a tighter analysis of such term
when the process is a CMAB.

Optimistic RL agents work by computing with high proba-
bility an optimistic value function Ṽ πk1 (s0) for any starting
state s0. This overestimates the true optimal value function
V ∗1 (s0) and allows to estimate the regret of an agent by
evaluating the same policy on two different MDPs which
get closer and closer to each other as more data is collected:

Regret(K)
def
=
∑
k

V ∗1 (s0)− V πk1 (s0)

Opt.

≤
∑
k

Ṽ πk1 (s0)− V πk1 (s0)

=
∑
k≤K

∑
t∈[H]

∑
s,a

wtk(s, a) (r̃k(s, a)− r(s, a))

︸ ︷︷ ︸
Õ(
√
SAT)

+
∑
k≤K

∑
t∈[H]

∑
s,a

wtk(s, a) (p̃k(s, a)− p(s, a))
>
Ṽ πkt+1︸ ︷︷ ︸

Õ(H
√
SAT)

(4)
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In the above expression the last equality follows from a
standard decomposition, see for example lemma E.15 in
(Dann et al., 2017). We indicated with p̃k(s, a) the op-
timistic transition probability vector implicitly computed
by UBEV-S along with the optimistic value function Ṽ πkt .
Here wtk(s, a) is the probability of visiting state s and tak-
ing action a there at timestep t of the k-th episodes. Finally,
r̃k(s, a) is the instantaneous optimistic reward collected
upon taking action a in state s.

Below each term we have reported the regret that UBEV-S
would obtain on a generic MDP. Estimating the rewards
alone implies a regret contribution of order Õ(

√
SAT ),

which is what a (near) optimal CMAB algorithm achieves.
Thus, to obtain a tighter bound onMC we need to address
the regret due to the transition dynamics which is of order
Õ(H

√
SAT ) for UBEV-S on a generic MDP. A careful

examination of the proof for that regret bound of that term
reveals that H appears because it is a deterministic upper
bound on the range of Ṽ πkt and V ∗t . The optimistic value
function is a random variable, but under the assumption that
r(s, a) ∈ [0, 1] the agent maintains an optimistic estimate of
such reward with the same constraint r̃(s, a) ∈ [0, 1], lead-
ing to rng Ṽ πkt ≤ H when the rewards are summed over
H timesteps; likewise V ∗t ≤ H . As we show next,MC is
characterized by rng V ∗t ≤ 1, which means there is not a
big advantage for being in one context (i.e., state) versus
another. This happens because the agent’s current mistake
only affects the instantaneous reward; the agent can never
make “costly mistakes” that lead it to a sequence of contexts
/ states with low payoff as a result of that mistake as may
happen on a generic MDP. Unfortunately this consideration
need not be true in the “optimistic” MDP that the agent
computes, that is, it is not true that rng Ṽ πk ≤ 1. However,
we can relate rng Ṽ πkt to rng V ∗t and show that rng Ṽ πkt is
of order 1 plus a quantity that shrinks fast enough so that
the regret contribution due to uncertain system dynamics is
of the same order as the rewards plus a term that does not
depend on

√
T .

Remark: the convergence of the optimistic value function
to the true one is not a property generally enjoyed by these
algorithms, see for example (Bartlett & Tewari, 2009) for
an extensive discussion for UCRL2 -style approaches in the
infinite horizon case. However, said convergence does occur
here due to the highly mixing nature of the contextual bandit
problem.

6.1. Range of the True Value Function

On MC a policy that greedily maximizes the instanta-

neous reward is optimal. Let st
def
= arg maxV ∗t (s) and

st
def
= arg minV ∗t (s) and recall that the transition dynam-

ics P (s, a) = µ depends nor on the action a nor on the

current state s:{
V ∗t (st) = maxa

(
r(st, a) + µ>V ∗t+1

)
V ∗t (st) = maxa

(
r(st, a) + µ>V ∗t+1

) (5)

Since the rewards are bounded r(·, ·) ∈ [0, 1] subtracting
the two equations in 5 yields:

rng V ∗t = max
a

r(st, a)−max
a

r(st, a) ≤ 1. (6)

6.2. Range of the Optimistic Value Function

Now we relate rng Ṽ πkt to rng V ∗t by a quantity that is
naturally shrinking. Our reasoning assumes that we are
outside the failure event so that confidence intervals hold
(confidence intervals are essentially the same as UBEV and
are discussed in the appendix in section A.1). We use the
notation nk(s, a) to indicate the number of visit to the (s, a)
pair at the beginning of the k-th episode.

Lemma 1. If UBEV-S is run onMC then outside of the
failure event it holds that:

rng Ṽ πkt ≤ 1 + Õ

(
H
√
S√

min(s′,t′) nk(s′, πk(s′, t′))

)
. (7)

Proof. We denote by p̂k(s, a) the maximum likelihood vec-
tor for the transitions from (s, a). For simplicity redefine
stk = arg mins Ṽ

πk
t (s) and stk = arg maxs Ṽ

πk
t (s). Ne-

glecting the reward r̃k(s, πk(s, t)) and the optimistic bonus
φ while planning at timestep t (line 9 of the algorithm)
yields a lower bound on the optimistic value function:

min
s
Ṽ πkt (s)

def
= Ṽ πkt (stk) ≥ p̂k(stk, πk(stk, t))

>Ṽ πkt+1.

(8)

Recalling that r̃(s, a) ≤ 1, an upper bound on Ṽ πkt can also
be obtained (from planning in line 9):

max
s
Ṽ πkt (s)

def
= Ṽ πkt (stk)

≤ 1︸︷︷︸
Reward

+p̂k(stk, πk(stk, t))
>Ṽ πkt+1 +Hφ (sk, πk(sk, t))︸ ︷︷ ︸

Bonus
(Overestimate)

.

(9)

Subtracting 8 from 9 yields (a) below:

rng Ṽ πkt
def
= max

s
Ṽ πkt (s)−min

s
Ṽ πkt (s) ≤

(a)

≤1 +
(
p̂k(stk, πk(stk, t))

> − p̂k(stk, πk(stk, t))
>) Ṽ πkt+1

+Hφ (sk, πk(sk, t))

(b)

≤1 + ‖p̂k(stk, πk(stk, t))− p̂k(stk, πk(stk, t))‖1‖Ṽ
πk
t+1‖∞

+Hφ (sk, πk(sk, t))
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(c)

≤1 +H‖p̂k(stk, πk(stk, t))− µ‖1
+H‖p̂k(stk, πk(stk, t))− µ‖1+Hφ (sk, πk(sk, t))

(10)

In (b) we used Holder’s inequality and the hard bound
rng Ṽ πkt+1 ≤ H coupled with the triangle inequality for step
(c). Before continuing the development we pause and no-
tice that we have upper bounded rng Ṽ πkt by 1 plus two
concentration terms (for the transition probabilities) and the
optimistic bonus, which are quantities that are shrinking on
MC . In particular, being outside of the failure event ensures
a bound on the system dynamics (this is made precise by
referring to the concentration inequality of the failure event
FL1

k as explained in our appendix in section A.1):

‖p̂k(s, a))− µ‖1= Õ

(√
S

nk(s, a)

)
(11)

The exploration bonus defined in line 7 of algorithm 1 is
also similar in magnitude:

Hφ(s, a) = Õ

(
H√

nk(s, a)

)
(12)

By definition, min(s′,t′) nk(s′, πk(s′, t′)) ≤ nk(s, πk(s, t))
for any s, t pair which allows us to combine equation 11
and 12 above to rewrite 10 as:

1 + Õ

(
H

√
S + 1√

min(s′,t′) nk(s′, πk(s′, t′))

)
(13)

which can be simplified to obtain the statement.

6.3. Regret Analysis onMC

Lemma 1 shows that the optimistic value function onMC

is of order 1 plus a quantity which is related to the confi-
dence interval of the least visited (s, a) pair under the policy
selected by the agent. OnMC we know that the states are
sampled from µ. This ensures that all states are going to
be visited at a linear rate so that min(s′,t′) nk(s′, πk(s′, t′))
must be increasing at a linear rate. The above consideration
together with lemma 1 allows us to sketch the analysis that
leads to the result of theorem 1.

6.3.1. REGRET DECOMPOSITION

Outside of the failure event we can use optimism to justify
the first inequality below that leads to the regret decomposi-
tion for the first K episodes:

REGRET(K)
def
=

K∑
k=1

V π
∗

1 (s)− V πk1 (s)

Optimism

≤
K∑
k=1

Ṽ πk1 (s)− V πk1 (s)

=

K∑
k=1

∑
t∈[H]

∑
(s,a)

wtk(s, a)

(
(r̃(s, a)− r(s, a))︸ ︷︷ ︸

Reward Estimation and Optimism

+

+ (p̃(s, a)− p̂(s, a))
>
Ṽ πkt+1︸ ︷︷ ︸

Transition Dynamics Optimism

+ (p̂(s, a)− p(s, a))
>
V ∗t+1︸ ︷︷ ︸

Transition Dynamics Estimation

+ (p̂(s, a)− p(s, a))
>
(
Ṽ πkt+1 − V ∗t+1

)
︸ ︷︷ ︸

Lower Order Term

)
.

(14)

The decomposition is standard in recent RL literature (Azar
et al., 2017; Dann et al., 2017).

6.3.2. THE “GOOD” EPISODES ONMC

In the original paper (Dann et al., 2017), the authors intro-
duce the notion of “nice” and “friendly” episodes to relate
the probability of visiting a state-action pair wtk(s, a) to
the actual number of visits there nk(s, a) (the latter is a
random variable). Here we do a similar distinction directly
for a regret analysis (as opposed to a PAC analysis) and we
leverage the structure of MC . In particular we partition
the set of all episodes into two, namely the set G of good
episodes and the set of episodes that are “not good”. Under
good episodes we require that:

nk(s, a) ≥ 1

4

∑
i<k

∑
τ∈[H]

wτi(s, a) (15)

holds true for all states s and actions a chosen by the agent’s
policy. In other words, we require that the number of visits
nk(s, a) to the (s, a) pair is at least 1

4 times its expectation.
In lemma 12 in the appendix we examine the regret under
non-good episodes, which can be bounded by Õ(SAH

2

µmin
).

6.3.3. REGRET BOUND FOR THE OPTIMISTIC
TRANSITION DYNAMICS (LEADING ORDER
TERM)

Equipped with lemma 1 we are ready to bound the leading
order term contributing to the regret under good episodes.
This is the regret due to the optimistic transition dynamics
which appear in equation 14. While planning for state s and
timestep t (see line 9 of Algorithm 1), UBEV-S implicitly
finds an optimistic transition dynamics p̃k(s, a). In par-
ticular the “optimistic” MDP satisfies the following upper
bound on p̃k(s, a)>Ṽ πkt+1:

line 9
≤ p̂k(s, a)>Ṽ πkt+1 + (rng Ṽ πkt+1 + φ+)φtk(s, a). (16)

Notice that line 9 of the algorithm provides additional con-
straints enforced by taking min{·, ·}, but equation 16 al-
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ways remains an upper bound. Rearranging the inequality
above and summing over the “good episodes”, the timesteps
t ∈ [H] and all the (s, a) pairs yields an upper bound on the
regret due to the optimistic transition dynamics that appears
in equation 14:∑

k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a) (p̃k(s, a)− p̂k(s, a))
>
Ṽ πkt+1

≤
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)(rng Ṽ πkt+1 + φ+)φtk(s, a).

(17)

Next, notice that the correction factor φ+ is updated in
line 11 of the algorithm and depends on the state with the
lowest visit count min(s′,t′) nk(s′, πk(s′, t′)). This implies
the following upper bound on φ+.

φ+ .
H2
√
S√

min(s′,t′) nk(s′, πk(s′, t′))
polylog(·). (18)

At this point we can substitute the definition of φtk(s, a)
(line 7 of Algorithm 1) and put all the constants and logarith-
mic quantities in polylog(·) to upper bound 17 as follows:

.
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)
rng Ṽ πkt+1√
nk(s, a)

polylog(·)

+
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)
√
SH2 polylog(·)√

min(s′,t′) nk(s′, πk(s′, t′))× nk(s, a)
.

(19)

Finally we substitute lemma 1:

.
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)
1√

nk(s, a)︸ ︷︷ ︸
Leading Order Term

polylog(·)

+
∑
k∈G
t∈[H]
(s,a)

wtk(s, a)
√
SH2 polylog(·)√

min(s′,t′) nk(s′, πk(s′, t′))× nk(s, a)

︸ ︷︷ ︸
Lower Order Term

.

(20)

and apply Cauchy-Schwartz to get (omitting polylog(·) fac-
tors):

√√√√√√
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)

︸ ︷︷ ︸
≤T

√√√√√√√
∑
k∈G

∑
t∈[H]

∑
(s,a)

wtk(s, a)

nk(s, a)︸ ︷︷ ︸
Õ(SA)

+

√
SH2

√√√√√√√√√
∑
k∈G
t∈[H]
(s,a)

wtk(s, a)

nk(s, a)

︸ ︷︷ ︸
Õ(SA)

√√√√√√√√√
∑
k∈G
t∈[H]
(s,a)

wtk(s, a)

min
(s′,t′)

nk(s′, πk(s′, t′))

︸ ︷︷ ︸
(?)

.

(21)

The sum of the “visitation ratios” wtk(s,a)
nk(s,a)

under good

episodes can be bounded in the usual way by Õ(SA) by us-
ing a pigeonhole argument and will not be discussed further
(details are in the appendix). To bound (?) we need to work
a little more. The main problem is that the ratio

wtk(s, a)

min(s′,t′) nk(s′, πk(s′, t′))
(22)

is a ratio between the visitation probability of a certain
state (s, a) pair and the visit count of a different pair. For a
general MDP these two quantities are not related as there
can be states that are clearly suboptimal and are visited
finitely often by PAC algorithms. As a result,

√
(?) can

grow like
√
T and it is not a lower order term. This is

the key step where we leverage the underlying structure
of the problem. With contextual bandits all contexts are
going to be visited with probability at least µmin. Since the
analysis is under good episodes, for a fixed (s′, t′) pair we
know that nk(s′, πk(s′, t′)) must increase by at least 1

4µmin
every episodes. There are only S ×A possible candidates
for the (s′, a′) pair with the lowest visit count. Recalling∑
t∈[H]

∑
(s,a) wtk(s, a) = H , the final result then follows

by pigeonhole (the computation is in the appendix).

(?) =
∑
k∈G

H

min(s′,t′) nk(s′, πk(s′, t′))
= Õ

(
SAH

µmin

)
.

(23)

This completes the sketch of the regret bound for the “Opti-
mistic Transition Dynamics” with a regret contribution of
order:

Õ

(√
SAT +

√
SHH2 × SA

√
µmin

)
. (24)

Remark: Although for simplicity we conduct here the anal-
ysis for the regret only, UBEV-S is still a uniformly-PAC
algorithm and strong PAC guarantees can be obtained on
MC as well. The analysis for the regret due to the rewards,
the estimation of the transition dynamics and the lower oder
term can be found in the appendix. Together with the re-
gret in non-good episodes they imply the regret bound of
theorem 1.

7. Discussion, Related Work and Future Work
A natural question is whether there is something special
about the UBEV algorithm, or if other MDP RL algorithms
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with theoretical bounds can also be shown to have prov-
ably better or optimal regret bounds on contextual bandit
problems. While we focused on UBEV because it matched
(in the dominant terms) the best regret bounds for contex-
tual bandits when run in such settings, we do think other
MDP algorithms can yield strong (though not optimal) re-
gret bounds when run in contextual bandits. For example,
(Jiang et al., 2017) proposes OLIVE, a probably approxi-
mately correct algorithm with bounds for a broad number of
settings which can potentially adapt to a CMAB problem if
the Bellman rank is known. If the bellman rank is not known
in advance (as is our case) a way around this issue is to use
the “doubling trick”. However, the resulting PAC bound of
OLIVE on CMABs would scale in a way which is subopti-
mal in H . Another interesting candidate for our analysis on
CMABs is given in (Bartlett & Tewari, 2009) the authors
propose REGAL, a UCRL2-variant which can potentially
achieve a Õ(S

√
AT ) bound on CMABs while retaining a

worst-case Õ(DS
√
AT ) regret in generic MDPs (here D

is the MDP diameter). The simplification on CMABs fol-
lows directly from the computation of the span (which is
equivalent to the range here) of the optimal bias vector. Still,
this result is not completely satisfactory because the lower
bound is not achieved and REGAL must know the range of
the bias vector in advance. Another noteworthy variant of
UCRL2 is discussed in (Maillard et al., 2014). There the
authors introduce a new norm and its dual (instead of the
classical 1-norm and∞-norm, respectively) to better cap-
ture the effect of the MDP transition dynamics. The result
that they obtain does depend on a measure of the MDP com-
plexity (constant C in their regret bound). This is essentially
the variance of the value function, soC = O(1) on CMABs;
despite moving in the right direction, the resulting bound is
still of order Õ(DS

√
AT ) on CMABs.

By contrast, our analysis of vanilla UCRL2 (Jaksch et al.,
2010) (see appendix C for extensive details) shows an im-
proved regret bound of Õ(S

√
AT ) if UCRL2 is run on

CMABs which is better (although not optimal) than the
UCRL2 worst-case bound for MDPs Õ(DS

√
AT ). The

key insight to obtain this result is that the MDP diameter
D is an upper bound to a key quantity in the analysis of
UCRL2 , and can be more tightly bounded in contextual
bandit domains. This analysis suggests that if an algorithm
for infinite-horizon MDPs is constructed using

√
S-tighter

confidence intervals like in UBEV or UCBVI from (Azar
et al., 2017) then a bound of order Õ(

√
SAT ) should be

achievable on an infinite horizonMC .

This work raises a number of interesting questions, in partic-
ular whether similar results are possible for other pairings of
algorithms and domains: can we have algorithms designed
for partially observable reinforcement learning that inherit
the best performance of the setting they operate in, whether
it is a bandit, contextual bandit, MDP or POMDP? As a step

towards such exploration, we analyzed whether a MDP RL
algorithm operating in a multi-armed bandit could match the
upper bound on regret for such settings. In a multi-armed
bandit there are no states, and the reward is solely a function
of the arm (action) played. Regret for MABs must scale at
least as Ω(

√
AT ), the lower bound for such setting. In our

preliminary investigations, our analysis of UCRL2 when op-
erating in a MAB (still in section C in the appendix) yielded
an additional

√
S dependence. It is a very interesting ques-

tion whether existing or new MDP algorithms that explicitly
or implicitly perform state aggregation (Mandel et al., 2016;
Doshi-Velez, 2009) can yield a performance that matches
the dominant terms of a bandit-specific regret analysis. An-
other important question is whether similar analyses are
possible for reinforcement learning algorithms designed for
very large or infinite state spaces, as well as an empirical in-
vestigation to see whether existing RL algorithms for more
complex settings experimentally match algorithms designed
for simpler settings when executing in said simpler settings.

Finally, our analysis for UBEV-S highlights a dependence on
the minimum visitation probability µmin which is absent in
bandit analyses. We think that this can be avoided by a more
careful design of the exploration bonus that re-weights the
next-state uncertainty by the transition probability estimated
empirically, see for example (Dann & Brunskill, 2015; Azar
et al., 2017). For simplicity in this paper we focused on
tabular bandits and therefore UBEV-S cannot handle general
Contextual Bandits which use function approximations (e.g,
(Abbasi-Yadkori et al., 2011)).

8. Conclusion
The ultimate goal of Reinforcement Learning is to design
algorithms that can learn online and achieve the best perfor-
mance afforded by the difficulty of the underlying domain.
In this work we have introduced a minor variant of an exist-
ing RL algorithm that automatically provides strong regret
guarantees whether it is deployed in a MDP or if the domain
actually belongs to a simpler setting, a tabular contextual
bandit, matching the lower bound in the dominant terms in
the second setting. Note that the algorithm is not informed
of this structure. This work suggests that already existing
RL algorithms can inherit tighter theoretical guarantees if
the domain turns out to have additional structure and yields
many interesting next steps for the analysis and creation
of algorithms for other settings, particularly the function
approximation case.
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A. UBEV-S for Stationary Environments
We mostly use the same notation as in (Dann et al., 2017) and provide the supporting results for UBEV-S . The assumption
of stationary environment is enforced through time aggregation. Let ntk(s, a) be the visit count to state-action (s, a) at
timestep t up to the start of the k-th episode and let wtk(s, a) be the probability of visiting state s and taking action a there
at timestep t during the k-th episode. Then we defined the corresponding aggregated quantities as:

nk(s, a)
def
=
∑
t∈[H]

ntk(s, a). (25)

and
wk(s, a)

def
=
∑
t∈[H]

wtk(s, a). (26)

A.1. Failure Events and Their Probabilities

The analysis of the “failure events” can be carried out in a way identical to (Dann et al., 2017). In particular we use the
same “failure events” FNk , F

CN
k , FVk , F

P
k , F

L1
k , FRk defined in section E.2 in the appendix of (Dann et al., 2017) but with

ntk(s, a) replaced by nk(s, a) whenever it appears. We notice that with UBEV-S we could potentially save a factor of H in
each argument of the log terms that appears in each concentration inequality because we do not need to do a final union
bound over the H timesteps, resulting in slightly tighter concentration inequalities. The total failure probability of UBEV-S
can then be upper bounded by δ by using Corollary E.1,E.2,E.3,E.4,E.5 in (Dann et al., 2017) (still with ntk(s, a) replaced
by nk(s, a)). If during the execution of UBEV-S none of FNk , F

CN
k , FVk , F

P
k , F

L1
k , FRk occur in any episode k we say that

that we are outside of the failure event.

A.2. The “Good” Set

We now introduce the set Ltk. The construction is due to (Dann et al., 2017) although we modify it here for our to handle
the regret framework (as opposed to PAC) under stationary dynamics. The idea is to partition the state-action space at each
episode into two episodes, the set of episodes that have been visited sufficiently often (so that we can lower bound these
visits by their expectations using standard concentration inequalities) and the set of (s, a) that were not visited often enough
to cause high regret. In particular:

Definition 1 (The Good Set). The set Lk is defined as:

Lk
def
=
{

(s, a) ∈ S ×A :
1

4

∑
j≤k

wj(s, a) ≥ H ln
9SA

δ

}
. (27)

The above definition enables the following lemma that relates the number of visits to a state to its expectation:

Lemma 2 (Visitation Ratio). Outside the failure event if (s, a) ∈ Lk then

nk(s, a) ≥ 1

4

∑
j≤k

wj(s, a) (28)

holds.

Proof. Outside the failure event FN (see (Dann et al., 2017)) justifies the first passage below:

nk(s, a) ≥ 1

2

∑
j≤k

wj(s, a)−H ln
9SA

δ
(29)

=
1

4

∑
j≤k

wj(s, a) +
1

4

∑
j≤k

wj(s, a)−H ln
9SA

δ
≥ 1

4

∑
j≤k

wj(s, a). (30)

while the second inequality holds because (s, a) ∈ Lk by assumption.

Finally, the following lemma ensures that if (s, a) 6∈ Lk then it will contribute very little to the regret:
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Lemma 3 (Minimal Contribution). It holds that:

K∑
k=1

H∑
t=1

∑
(s,a)6∈Lk

wtk(s, a) = Õ (SAH) (31)

Proof. By definition 1, if (s, a) 6∈ Lk then

1

4

∑
t∈[H]

∑
j≤k

wtj(s, a) < H ln
9SA

δ
(32)

holds. Now sum over the (s, a) pairs not in Ltk, the timesteps t and episodes k to obtain:

K∑
k=1

H∑
t=1

∑
(s,a)6∈Ltk

wtk(s, a) =
∑
s,a

H∑
t=1

K∑
k=1

wtk(s, a)1{(s, a) 6∈ Ltk} ≤
∑
s,a

(
4H ln

9SA

δ

)
= Õ (SAH) (33)

A.3. Ensuring Optimism for UBEV-S on Stationary Episodic MDPs

One of the limitation of UBEV as described in (Dann et al., 2017) is that the exploration bonus (H − t)φ does not explicitly
depend on (the range of) the value function of the successor but only on its upper bound (H − t)φ, leading to an “excess of
optimism” in certain classes of problems. To remedy this, we propose to use rng Ṽ πkt+1 instead of H − t. While performing
optimistic planning to compute Ṽ πkt+1, however, it is not guaranteed that rng Ṽ πkt+1 ≥ rng V ∗t+1 and optimism may not be
guaranteed. To remedy this we add the correction term φ+ as described in the main text so that our exploration bonus for the
system dynamics reads:

min{H − t, rng Ṽ πkt+1 + φ+}φ. (34)

For this to be a valid exploration bonus we need to show it still guarantees optimism. To this aim we begin with the following
lemma which guarantees that φ+ accounts for the potentially inaccurate estimate of the value function.

Lemma 4. Outside of the failure event ∀s, t, k it holds that:

Ṽ πkt (s)− V πkt (s) ≤ 4
√
SH2 max

(s′,t′)
φ(s′, πk(s′, t′))

def
= φ+

Proof. Outside of the failure event it holds that:

Ṽ πkt (s)− V πkt (s)
a
= E

H∑
i=t

(r̃i(si, ai)− ri(si, ai)) + (p̃i(si, ai)− pi(si, ai))> Ṽ πkt+1

b
= E

H∑
i=t

(r̃i(si, ai)− r̂i(si, ai)) + (r̂i(si, ai)− ri(si, ai)) + (p̃i(si, ai)− pi(si, ai))> Ṽ πkt+1

c
≤ E

H∑
i=t

2φ(si, ai) + (p̃i(si, ai)− p̂i(si, ai))> Ṽ πkt+1 + (p̂i(si, ai)− pi(si, ai))> Ṽ πkt+1

d
≤ E

H∑
i=t

2φ(si, ai) +Hφ(si, ai) + ‖p̂i(si, ai)− pi(si, ai)‖1‖Ṽ πkt+1‖∞

e
≤ E

H∑
i=t

2φ(si, ai) +Hφ(si, ai) + 4
√
SHφ(si, ai)

f

≤ 4
√
SH2 max

(s′,t′)
φ(s′, πk(s′, t′))

def
= φ+.

(a) using lemma E.15 in (Dann et al., 2017)
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(b) by adding and subtracting r̂i

(c) by adding and subtracting p̂i and using the fact that we are outside the failure event FRk for the rewards and that the
confidence interval for the rewards is the same as the exploration bonus φ(·, ·)

(d) by Holder’s inequality and using again the upper bound Hφ(s, a) for the exploration bonus for the system dynamics 34

(e) since we are outside the failure event for the transition probabilities FL1 and ‖Ṽ πkt+1‖∞≤ H

(f) by taking max

Lemma 4 provides a tool to estimate the uncertainty in the value of the policy. We use this to construct an extra bonus to
overestimate the range of the value function (this is needed in lemma 6 to guarantee optimism).

Lemma 5. If Ṽ πkt (s) ≥ V ∗t (s) for all states then outside of the failure event it holds that:

rng Ṽ πkt + φ+ ≥ rng V ∗t (35)

Proof.

rng Ṽ πkt + φ+ = max
s
Ṽ πkt (s)−min

s
Ṽ πkt (s) + φ+

≥ max
s
Ṽ πkt (s)− Ṽ πkt (arg min

s
V ∗t (s)) + φ+

≥ max
s
Ṽ πkt (s)− V πkt (arg min

s
V ∗t (s))

≥ max
s
Ṽ πkt (s)− V ∗t (arg min

s
V ∗t (s))

≥ max
s
V ∗t (s)−min

s
V ∗t (s) = rng V ∗t

where the middle inequality follows from lemma 4.

Lemma 6. Outside of the failure event UBEV-S ensures optimism for all timesteps t, states s and episodes k:

Ṽ πkt (s) ≥ V ∗t (s), ∀s, t.

Proof. We proceed by induction. By construction of the algorithm, the computed policy satisfies ∀s, t, k:

Ṽ πkt (s) = max
a

(
min(1, r̂k(s, a) + φ(s, a)) + min(max Ṽ πkt+1, p̂k(s, a)T Ṽ πkt+1 + min(rng Ṽ πkt+1 + φ+, H − t)φ(s, a))

)
.

(36)

If the second minimum in 36 is attained by max Ṽ πkt+1 then optimism is guaranteed by the inductive hypothesis. If the
minimum is attained by

p̂k(s, a)T Ṽ πkt+1 + min(rng Ṽ πkt+1 + φ+, H − t)φ(s, a))

then two cases are possible.

Case I It holds that
rng Ṽ πkt+1 + φ+ ≥ H − t

so that the bonus becomes p̂k(s, a)T Ṽ πkt+1 + (H − t)φ(s, a) and the procedure gives an identical result as the original UBEV
in (Dann et al., 2017) and optimism is ensured.
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Case II It holds that
rng Ṽ πkt+1 + φ+ < H − t.

However in such case lemma 5 can be applied (we are outside of the failure event and Ṽ πkt+1(s) ≥ V ∗t+1(s) by the inductive
hypothesis) to ensure rng Ṽ πkt+1 + φ+ ≥ rng V ∗t+1. This immediately implies that:

p̂k(s, a)T Ṽ πkt+1 +
(

rng Ṽ πkt+1 + φ+
)
φ(s, a)

≥ p̂k(s, a)TV ∗t+1 + rng V ∗t+1φ(s, a)

≥ p(s, a)TV ∗t+1.

where the last inequality follows from being outside of the failure event (in particular, outside of FVk ). This holds for every
state and action for a given timestep, proving the inductive step and guaranteeing optimism.

A.4. Regret Bounds of UBEV-S on Episodic Stationary MDPs

We now derive a high probability worst case regret upper bound when UBEV-S is run on a stationary episodic MDP.

Theorem 2 (UBEV-S Regret). With probability at least 1− δ the regret of UBEV-S is upper bounded by

Õ(H
√
SAT + S2AH2 + S

√
SAH3) (37)

jointly for all timesteps T .

Proof. Outside the failure event UBEV-S is optimistic (lemma 6) which justifies the first passage below (the expansion in
the last equality is standard, see for example the derivation of the main result in (Dann et al., 2017)):

REGRET(K)
def
=

K∑
k=1

V π
∗

1 (s)− V πk1 (s)

Optimism

≤
K∑
k=1

Ṽ πk1 (s)− V πk1 (s) =

K∑
k=1

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

(
(r̃(s, a)− r(s, a))︸ ︷︷ ︸

Reward Estimation and Optimism

+

+ (p̃(s, a)− p̂(s, a))
>
Ṽ πkt+1︸ ︷︷ ︸

Transition Dynamics Optimism

+ (p̂(s, a)− p(s, a))
>
V ∗t+1︸ ︷︷ ︸

Transition Dynamics Estimation

+ (p̂(s, a)− p(s, a))
>
(
Ṽ πkt+1 − V ∗t+1

)
︸ ︷︷ ︸

Lower Order Term

)
+

K∑
k=1

∑
t∈[H]

∑
(s,a) 6∈Lk

wtk(s, a)H

(38)

Corollary 3 ensures
∑K
k=1

∑
t∈[H]

∑
(s,a) 6∈Lk wtk(s, a)H = Õ(SAH2); the theorem is then proved by invoking lemmata

7,8,9.

Lemma 7. Outside the failure event for UBEV-S it holds that:∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(P̂k − P )(s, a, t)V ∗t+1

∣∣∣ = Õ
(
H
√
SAT

)

Proof. The following inequalities hold true up to a constant:

∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(P̂k − P )(s, a, t)V ∗t+1

∣∣∣ a. H
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
2 llnp(nk(s, a)) + ln( 27SA

δ )

nk(s, a)

b

. H
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)
polylog(·)

c
= Õ

(
H
√
SAT

)
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(a) using the definition of failure event (in particular of FVk ) and that rng V ∗t ≤ H, ∀t

(b) since nk(s, a) ≤ T

(c) using lemma 16.

Lemma 8. Outside the failure event for UBEV-S it holds that:∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(
|(r̃k − r)(s, a, t)|+

∣∣∣(P̃k − P̂k)(s, a)Ṽ πkt+1

∣∣∣) ≤ Õ (H√SAT) .
Proof. Let (s̃k, t̃k) = arg maxs,t φk(s, πk(s, t)) = arg mins,t nk(s, πk(s, t)).∑

k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(
|(r̃k − r)(s, a, t)|+

∣∣∣(P̃k − P̂k)(s, a)Ṽ πkt+1

∣∣∣)
a

.
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)φk (s, πk(s, t))
(

1 + min{rng Ṽ πkt+1 + φ+, H}
)

b

.
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)φk (s, πk(s, t))H

c

.
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)H

√
1

nk(s, a)
polylog(·) = Õ

(
H
√
SAT

)

(a) using the definition of failure event (in particular of FRk ) and of exploration bonus

(b) is using the crude upper bound H

(c) is using lemma 16

Lemma 9. Outside the failure event for UBEV-S it holds that:∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(p̂k − p)(s, a, t)(Ṽ πkt+1 − V ∗t+1)

∣∣∣ = Õ
(
S2AH2 + S

√
SAH3

)

Proof. We can write the following sequence of upper bounds:∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(p̂k − p)(s, a, t)(Ṽ πkt+1 − V ∗t+1)

∣∣∣ .
(a)

.
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∑
st+1

(√
p(st+1 | s, πk(s, t))

nk(s, πk(s, t))
+

1

nk(s, a)

)(
Ṽ πkt+1(st+1)− V ∗t+1(st+1)

)
polylog

(b)

.
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
√
S

√∑
st+1

p(st+1 | s, πk(s, t))(Ṽ πkt+1(st+1)− V ∗t+1(st+1))2

nk(s, πk(s, t))
polylog

+ SH
∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, πk(s, t))

nk(s, πk(s, t))
polylog

(c)

.
√
S

√√√√∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

nk(s, a)
×

√∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∑
st+1

p(st+1 | s, πk(s, t))(Ṽ πkt+1(st+1)− V ∗t+1(st+1))2


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+ Õ(S2AH)

(d)

. Õ
(
S
√
A
)
×

√∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∑
st+1

p(st+1 | s, πk(s, t))(Ṽ πkt+1(st+1)− V ∗t+1(st+1))2

+ Õ(S2AH)

(e)

. Õ
(
S
√
A
)
×

√∑
k

∑
t∈[H]

Est+1∼π̃k(Ṽ πkt+1(st+1)− V ∗t+1(st+1))2

+ Õ(S2AH)

(f)

. Õ
(
S
√
A
)
×

√√√√√∑
k

∑
t∈[H]

Est+1∼π̃k

 ∑
τ=t+1,...,H

E(sτ ,aτ )∼π̃k|st+1
min{

√
SH√

nk(sτ , aτ )
, H} × polylog

2

+ Õ(S2AH)

(g)

. Õ
(
S
√
A
)
×

√√√√√H
∑
k

∑
t∈[H]

Est+1∼π̃k

∑
τ=t+1,...,H

(
E(sτ ,aτ )∼π̃k|st+1

min{
√
SH√

nk(sτ , aτ )
, H} × polylog

)2

+ Õ(S2AH)

(h)

. Õ
(
S
√
A
)
×

√√√√H
∑
k

∑
t∈[H]

Est+1∼π̃k

∑
τ=t+1,...,H

E(sτ ,aτ )∼π̃k|st+1
min{

√
SH√

nk(sτ , aτ )
, H}2 + Õ(S2AH)

(i)

. Õ
(
S
√
A
)
×

√√√√H
∑
k

∑
t∈[H]

∑
τ=t+1,...,H

E(sτ ,aτ )∼π̃k min{
√
SH√

nk(sτ , aτ )
, H}2 + Õ(S2AH)

(j)

. Õ
(
S
√
A
)
×

√√√√H2
∑
k

∑
τ=1,...,H

E(sτ ,aτ )∼π̃k min{
√
SH√

nk(sτ , aτ )
, H}2 + Õ(S2AH)

(k)

. Õ
(
S
√
A
)
×

√√√√H2
∑
k

∑
τ=1,...,H

(
E(sτ ,aτ )∼π̃k
(sτ ,aτ )∈Lk

min{
√
SH√

nk(sτ , aτ )
, H}2 + E(sτ ,aτ )∼π̃k

(sτ ,aτ )6∈Lk
min{

√
SH√

nk(sτ , aτ )
, H}2

)
+ Õ(S2AH)

(l)

. Õ
(
S
√
A
)
×

√√√√H2
∑
k

∑
τ=1,...,H

(
E(sτ ,aτ )∼π̃k
(sτ ,aτ )∈Lk

SH2

nk(sτ , aτ )
+ E(sτ ,aτ )∼π̃k

(sτ ,aτ )6∈Lk
H2

)
+ Õ(S2AH)

(m)

. Õ
(
S
√
A
)
×

√√√√√H2
∑
k

∑
τ=1,...,H

SH2 ×
∑

(sτ ,aτ )∈Lk

wτk(sτ , aτ )

nk(sτ , aτ )
+H2 ×

∑
(sτ ,aτ )6∈Lk

wτk(sτ , aτ )

+ Õ(S2AH)

(n)

. Õ
(
S
√
A
)
×
√
H2 × (SH2 × SA+H2 × SAH2) + Õ(S2AH)

= Õ
(
S2AH2 + S

√
SAH3 + S2AH

)
= Õ

(
S2AH2 + S

√
SAH3

)

(a) holds since we are outside of the failure event, and in particular of FP (see (Dann et al., 2017) for the definition)

(b) is using Cauchy-Schwartz on the first term and
(
Ṽ πkt+1(s′)− V ∗t+1(s′)

)
≤ H on the second

(c) is again Cauchy-Schwartz on the first term and lemma 17 on the second

(d) is using lemma 17 on the first term

(e) by definition of conditional expectation

(f) is using lemma 10

(g) is using (a1 + · · ·+ an)2 ≤ n× (a21 + · · ·+ a2n)
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(h) is Jensen’s inequality

(i) is the definition of conditional expectation

(j) makes the inner summation start at τ = 1 instead of τ = t+ 1 and the summation over t gives the additional H factor

(k) is splitting the expectation over states in Lk and not in Lk (this passage is an equality)

(l) chooses one of the maxes for each term

(m) re-expresses the expectation using the visitation probabilities wτk

(n) makes use of lemma 17 and lemma 3

Lemma 10. Outside of the failure event for UBEV-S it holds that

Ṽ πkt (st)− V πkt (st) ≤
∑

τ=t,...,H

E(sτ ,aτ )∼π̃k|st min{
√
SH√

nk(sτ , aτ )
, H} × polylog (39)

Proof.

Ṽ πkt (sτ )− V πkt (st) = (40)

=
∑

τ=t,...H

E(sτ ,aτ )∼π̃k|st min

{
(r̃(sτ , aτ )− r(sτ , aτ ))︸ ︷︷ ︸
Reward Estimation and Optimism

+ (p̃(sτ , aτ )− p̂(sτ , aτ ))
>
Ṽ πkτ+1︸ ︷︷ ︸

Transition Dynamics Optimism

+ (p̂(sτ , aτ )− p(sτ , aτ ))
>
V ∗τ+1︸ ︷︷ ︸

Transition Dynamics Estimation

+

(41)

(p̂(sτ , aτ )− p(sτ , aτ ))
>
(
Ṽ πkτ+1 − V ∗τ+1

)
︸ ︷︷ ︸

Lower Order Term

, H

}
× polylog (42)

≤
∑

τ=t,...,H

E(sτ ,aτ )∼π̃k|st min{
√
SH√

nk(sτ , aτ )
, H} × polylog (43)

In the above expression we explicitly wrote the minimum min{·, H} since the estimation error and the bonus cannot exceed
H in each of the (sτ , aτ ) pairs. Here the dominant term is the “Lower Order Term” which we bound trivially using the fact
that we are outside the event FL1 (see (Dann et al., 2017)) and the value function is always bounded by H .

B. Regret Bounds for UBEV-S onMC

B.1. The Good Episodes onMC

In (Dann et al., 2017) the authors use the notion of nice episodes. The goal is ensure that
∑
k∈[K]

∑
t wtk(s, a) ≈ nK(s, a)

holds. We will do the same here directly using the regret framework and the properties ofMC . To this aim we define the
Good Episodes as follows:
Definition 2. OnMC an episode k is good if the failure event does not occur and

nk(s, πk(s, t)) ≥ 1

4

∑
i<k

∑
τ∈[H]

wτi(s, πk(s, t)) (44)

holds for all state s and timesteps t.

Proposition 1. If k is a good episode it holds that

nk(s, πk(s, t)) ≥ 1

8

∑
i≤k

∑
τ∈[H]

wτi(s, πk(s, t)) (45)

for all states s and timesteps t ∈ [H].
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Remark: this differs from the definition because the summation on the right hand side includes k.

Proof. Directly by the definition of being outside the failure event FNk :

nk(s, a) ≥ 1

2

∑
i<k

∑
t∈[H]

wti(s, a)−H ln
9SA

δ

for every state s and action a. This can be satisfied under good episodes only if

1

4

∑
i<k

∑
t∈[H]

wti(s, a) ≥ H ln
9SA

δ
≥ 2H

holds true. This implies
1

8

∑
i<k

∑
t∈[H]

wti(s, a) ≥ H ≥
∑
t∈[H]

wtk(s, a).

and finally

nk(s, a) ≥ 1

4

∑
i<k

∑
t∈[H]

wti(s, a) ≥ 1

8

∑
i<k

∑
t∈[H]

wti(s, a) +
∑
t∈[H]

wtk(s, a) ≥ 1

8

∑
i≤k

∑
t∈[H]

wti(s, a)

which is the statement.

Next we prove a bound on the number of non-good episodes.

Lemma 11 (Number of Non-Good Episodes). Outside of the failure event UBEV-S can have at most:

Õ

(
SAH

µmin

)
non-good episodes if run onMC .

Proof. If the episode is non-good and the failure event does not occur then:

nk(s, πk(s, t)) <
1

4

∑
i<k

∑
τ∈[H]

wτi(s, πk(s, t)) (46)

must hold. However, since the failure event does not occur then we can use the definition of being outside the failure event
FNk :

nk(s, a) ≥ 1

2

∑
i<k

∑
t∈[H]

wti(s, a)−H ln
9SA

δ
. (47)

Together they imply:

1

4

∑
i<k

∑
τ∈[H]

wτi(s, πk(s, t)) ≥ nk(s, πk(s, t)) ≥ 1

2

∑
i<k

∑
t∈[H]

wti(s, πk(s, t))−H ln
9SA

δ
. (48)

and so
1

4

∑
i<k

∑
τ∈[H]

wτi(s, πk(s, t)) ≤ H ln
9SA

δ
. (49)

must be true during non-good episodes. Each time UBEV-S chooses action a = πk(s, t) in state s we must have
wtk(s, πk(s, t)) ≥ µmin. Therefore, equation 49 can occur 4H

µmin
ln 9SA

δ episodes for a given (s, a) pair. Since there are at
most S ×A pairs of states and actions we can have at most

Õ

(
SAH

µmin

)
non-good episodes.
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Lemma 12 (Regret under Non-Good Episodes). Outside of the failure event onMC UBEV-S can have a regret of at most:

Õ

(
SAH2

µmin

)
due to non-good episodes.

Proof. Directly from the number of non-good episodes onMC (lemma 11), each of which has a regret of at most H .

B.2. Regret Bounds of UBEV-S onMC

Here we compute the regret of UBEV-S when run onMC .

Theorem 1. If UBEV-S is run on an H-horizon MDP with S states and A actions where the successor states s′ is sampled
from a fixed distribution µ then with probability at least 1− δ the regret is bounded by the minimum between:

Õ

(
√
SAT +

S2AH2
√
H

√
µmin

+
SAH2

µmin

)
︸ ︷︷ ︸

CMAB Analysis

(50)

and
Õ
(
H
√
SAT + S2AH2 + S

√
SAH3

)
︸ ︷︷ ︸

MDP Analysis

(51)

jointly for all timesteps T .

Proof. Using optimism of the algorithm we can write for any initial state s:

K∑
k=1

V ∗1 (s)− V πk1 (s) ≤
K∑
k=1

Ṽ πk1 (s)− V πk1 (s) (52)

Next, by partitioning into the set of good episodes G and those that are non-good we obtain:

≤
∑
k∈G

Ṽ πk1 (s)− V πk1 (s) +
∑
k 6∈G

Ṽ πk1 (s)− V πk1 (s) (53)

From lemma 11 the regret due to non-good episodes is at most:

Õ

(
SAH2

µmin

)
. (54)

which is an upper bound on the regret induced by states not in Lk. Thus it remains to bound the regret in good episodes∑
k∈G Ṽ

πk
1 (s)− V πk1 (s) for states (s, a) ∈ Lk which can be upper bounded by∑

k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(
|(r̃k − r)(s, a, t)|+

∣∣∣(P̃k − P̂k)(s, a, t)Ṽ πkt+1

∣∣∣)+ (55)

+
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(∣∣∣(P̂k − P )(s, a, t)V ∗t+1

∣∣∣+
∣∣∣(P̂k − P )(s, a, t)(V ∗t+1 − Ṽ

πk
t+1)

∣∣∣) (56)

as explained for example in Lemma E.8 [Optimality Gap Bound On Friendly Episodes] of (Dann et al., 2017). The result
then follows from combining lemma 13, 14 and 15, which bound each contribution outlined above. The min between two
results in the final regret bound follows by considering the minimum between the analysis here and the one for a generic
MDP.

Lemma 13. The following bound holds true onMC:∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(P̂k − P )(s, a, t)V ∗t+1

∣∣∣ = Õ
(√

SAT
)
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Proof. The following inequalities hold true up to a constant:

∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(P̂k − P )(s, a, t)V ∗t+1

∣∣∣ a. ∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
2 llnp(nk(s, a)) + ln( 27SA

δ )

nk(s, a)

b

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)
polylog(·)

c
= Õ

(√
SAT

)
(a) using the definition of failure event (in particular of FVk ) and that rng V ∗t ≤ 1, ∀t for a contextual bandit problem as

explained in the main text of this manuscript

(b) since nk(s, a) ≤ T

(c) using lemma 16.

In lemma 1 in the main paper we show that rng Ṽ πk is upper bounded by 1 plus a term that depends on the state with the
lowest visit count. That is the key to obtain the result below:

Lemma 14. OnMC it holds that:∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(
|(r̃k − r)(s, a, t)|+

∣∣∣(P̃k − P̂k)(s, a)Ṽ πkt+1

∣∣∣) ≤ Õ(√SAT +H2
√
SH × SA

√
µmin

)
.

Proof. Let (s̃k, t̃k) = arg maxs,t φk(s, πk(s, t)) = arg mins,t nk(s, πk(s, t)).∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
(
|(r̃k − r)(s, a, t)|+

∣∣∣(P̃k − P̂k)(s, a)Ṽ πkt+1

∣∣∣)
a

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)φk (s, πk(s, t))
(

1 + rng Ṽ πkt+1 + φ+
)

b

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)φk (s, πk(s, t))
(

1 +
(

1 +H2
√
Sφ
(
s̃k, πk(s̃k, t̃k)

)))
c

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)

(
1 + 1 +H2

√
S

√
1

nk(s̃k, πk(s̃k, t̃k))

)
polylog(·)

d

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)
polylog(·) +H2

√
S
∑
k≤K

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)

√
1

nk(s̃k, πk(s̃k))
polylog(·)

e
= Õ

(√
SAT +H2

√
SH × SA

√
µmin

)
.

(a) using the definition of failure event (in particular of FRk ) and of exploration bonus

(b) is using lemma 1 in the main text

(c) is using the definition of φk and the fact that nk(·, ·) ≤ T to put all the log terms into polylog(·)

(d) is just splitting the two contributions

(e) is using lemma 16 and 17
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Lemma 15. Outside the failure event onMC it holds that:

∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(p̂k − p)(s, a, t)(V ∗t+1 − Ṽ

πk
t+1)

∣∣∣ = Õ

(√
HS2AH2

√
µmin

)

Proof. Using the definition (s̃k, t̃k) = max(s′,t′) φk(s′, πk(s′, t′))∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
∣∣∣(p̂k − p)(s, a, t)(V ∗t+1 − Ṽ

πk
t+1)

∣∣∣
a

.
∑
k≤K

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)‖(p̂k − p)(s, a)‖1‖V ∗t+1 − Ṽ
πk
t+1‖∞

b

.
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
S

nk(s, πk(s, t))
‖V ∗t+1 − Ṽ

πk
t+1‖∞polylog(·)

c

. SH2
∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, πk(s, t))

√
1

nk(s̃k, πk(s̃k, t̃k))
polylog(·)

d
= SH2 × Õ

(
SA
√
H

√
µmin

)

(a) is Holder’s inequality

(b) holds since we are under the good episodes which by definition are outside of the failure event and in particular outside
of (FL1k )

(c) holds because Ṽ πkt+1 − V ∗t+1 ≤ Ṽ
πk
t+1 − V

πk
t+1 (pointwise) and so we can use lemma 4.

(d) by lemma 17

B.3. Auxiliary Lemmas

Lemma 16. The following holds true:

∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)
polylog(·) = Õ

(√
SAT

)
(57)

Proof.

∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)
polylog(·)

a

.
√∑

k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√√√√∑
k

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)
1

nk(s, a)
polylog(·)

= Õ
(√

SAT
)

(a) by Cauchy-Schwartz
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(b) by a standard pigeonhole argument, see for example (Dann et al., 2017) for a sketch.

Lemma 17. The following holds true:

∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)

√
1

nk(s̃k, πk(s̃k, t̃k))
polylog(·) = Õ

(
SA
√
H

√
µmin

)
(58)

Proof.

∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

√
1

nk(s, a)

√
1

nk(s̃k, πk(s̃k, t̃k))
polylog(·)

a

.

√√√√∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

nk(s, a)

√√√√∑
k∈G

∑
t∈[H]

∑
(s,a)∈Lk

wtk(s, a)

nk(s̃k, πk(s̃k, t̃k))
polylog(·)

b

.
√
SA

√∑
k∈G

H

nk(s̃k, πk(s̃k, t̃k))
polylog(·)

c

.
√
SA

√∑
k∈G

H∑
i≤k
∑
τ∈[H] wτi(s̃k, πk(s̃k, t̃k))

polylog(·)

d

. Õ

(
SA
√
H

√
µmin

)
(59)

(a) by Cauchy-Schwartz

(b) by a pigeonhole argument, see for example lemma E.5 of (Dann et al., 2017) and
∑
t∈[H]

∑
(s,a)∈Lk wtk(s, a) = H

(c) since we are in the good episodes (so using the definition of good episodes)

(d) by lemma 18. The lemma is applied with the sequence xk = (s̃k, πk(s̃k, t̃k)) which lives in X = S ×A; the function
ai(x) is defined as

∑
τ∈[H] wτi(x) and satisfies ai(xi) ≥ µmin by construction.

Lemma 18. Let {x}i=1,2,...,K be a sequence with xi ∈ X where X is a set with cardinality |X|. Let {ai(x)}i=1,2,...,K be
a sequence of functions taking values ≥ 0 and such that ai(xi) ≥ amin > 0. Then

K∑
k=1

1∑
i≤k ai(xk)

= Õ

(
|X|
amin

)
(60)

holds.

Proof. Define the set:
Kx = {i ≤ K : xi = x} (61)

Intuitively, this is “the set of episodes where x occurred”. Then the following sequence of inequalities holds true:

K∑
k=1

1∑
i≤k ai(xk)

a
=
∑
x

K∑
k=1

1 (x = xk)∑
i≤k ai(x)
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b
=
∑
x

∑
k∈Kx

1∑
i≤k ai(x)

c
≤
∑
x

∑
k∈Kx

1∑
i∈Kx,i≤k ai(x)

d
≤
∑
x

∑
k∈Kx

1∑
i∈Kx,i≤k amin

e
≤
∑
x

K∑
k=1

1

kamin

=
∑
x

Õ

(
1

amin

)
= Õ

(
|X|
amin

)

(a) holds since
∑
x 1 (x = xk) = 1

(b) by definition of Kx

(c) holds by monotonicity since we are only adding the values for ai(x) if x occurred in episode i, that is, if xi = x

(d) by definition, if x occurred in episode i then ai(x) = ai(xi) ≥ amin

(e) holds because by construction
∑
k∈Kx

1∑
i∈Kx,i≤k amin

= 1
amin

(
1 + 1

2 + 1
3 + · · ·+ 1

|Kx|

)
≤

1
amin

(
1 + 1

2 + 1
3 + · · ·+ 1

K

)
= 1

amin

∑K
k=1

1
k

C. UCRL2 Appendix
C.1. Main Results

Here we present our results for UCRL2 . We make use of the notion of hitting time Thit which is the largest time to transition
between any two states under any policy (TM

∗

hit refers to the optimal policy). We prove a more general version than a
reduction to MABs, in particular we use an MDP with maximum rewards achievable everywhere (certainly satisfied by
MABs).

Proposition 2. Assume that in every state there exists an action a∗(s) that achieves the maximum instantaneous reward
r∗ = maxs,a r(s, a), i.e., r∗ = r̄(s, a∗(s)) ∀s and that the MDP has a finite maximum mean hitting time Thit under any
policy. For any initial state (s) and any T ≥ 1, with probability at least 1− δ − o(δ) the regret of UCRL2 on such MDP is
bounded by:

Õ
(√

SAT +
√
SThit(SA)2TM

π∗

hit +DSA
)
.

Proof. in We use the same notation as in the original UCRL2 paper (Jaksch et al., 2010). We show that:

1. the bias vector ‖wk‖∞ is going to ≈ 0 sufficiently fast so that:

2. the leading order term of the regret
∑
k vk(P̃k −Pk)wk does not depend on T except for a logarithmic factor. We

assume that confidence intervals are not failing; failure of confidence intervals is addressed separately in the UCRL2
paper (Jaksch et al., 2010).

Bounding the bias vector We will be assuming throughout that the bias vector has been centered appropriately such that:
‖wk‖∞= maxswk(s) −minswk(s) at every step k. This is easily obtained by forcing, for example, minswk(s) = 0.
We write Vk,i to indicate the value function vector at the beginning of the i-th iteration of extended value iteration in episode
k with Vk,0 the zero vector. Let sk = maxswk(s) and sk = minswk(s). Clearly sk and sk are the maximizer and the
minimizer, respectively, for the value function Vk,i upon convergence (so when index i is the last step of extended value
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iteration). Let s̃k = arg max r̃(s, πk(sk)) be the state where the agent anticipates the highest optimistic rewards when
following an i-step optimal policy πk. The plan is to show that:

‖wk‖∞= w(sk)−w(sk) = Vk,i(sk)− Vk,i(sk) . TM
π∗

hit

√
7 log(2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}
.

This quantity may initially be bigger then the diameter D provided in the UCRL2 paper (Jaksch et al., 2010) but crucially it
depends on the visit count to a state s̃k so it shrinks quickly if we visit such state often enough.

To prove the bound we use an argument similar to that used in (Jaksch et al., 2010) to bound the value function with the
diameter. Recall that by following any policy we can get to state sk in at most TM

π∗

hit steps in expectation. Also, Vk,i(sk)
is the total expected i-step reward of an optimal non-stationary i-step policy evaluated on the optimistic MDP starting
from state sk. Since we are outside the failure event, the optimal policy π∗ and the true MDP is a feasible solution to

extended value iteration. Now, if Vk,i(sk)− Vk,i(sk) & TM
π∗

hit

√
7 log(

2Atk
δ )

2max{1,Nk(s̃k,πk(s̃k))} then an improved value for Vk,i(sk)

could be achieved by the following nonstationary policy: first follow π∗ (the true optimal policy) which takes at most
dTMπ∗

hit e steps on average to get to sk. Then follow the optimal i-step policy from sk. At most dTMπ∗

hit e of the rewards of
the policy from sk are missed, but ≥ r∗ is collected at every step up to sk due to non-failing confidence intervals. The
rewards missed are by assumption ≤ maxs r̃(s, πk(s)) = r̃(s̃, πk(s̃)). Together this implies that the agent loses at most
dTMπ∗

hit e (r̃(s̃, πk(s̃))− r∗) before reaching sk. Thus:

‖wk‖∞ = w(sk)−w(sk)

= Vk,i(sk)− Vk,i(sk)

≤ dTM
π∗

hit e (r̃(s̃, πk(s̃))− r∗)

a
≤ dTM

π∗

hit e

r̂(s̃, πk(s̃))− r∗ +

√
7 log(2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}


b
≤ dTM

π∗

hit e

r̄(s̃, πk(s̃))− r∗ + 2

√
7 log( 2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}


c
≤ dTM

π∗

hit e

r∗ − r∗ + 2

√
7 log( 2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}


= 2dTM

π∗

hit e

√
7 log(2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}
. (62)

In the above inequalities:

(a) follows from non-failing confidence interval for (s̃, πk(s̃k)), which allows us to go from the optimistic reward r̃ to the
empirical estimate r̂.

(b) follows again from non-failing confidence interval for (s̃, πk(s̃k)). This time it allows us to go from the empirical
reward r̂ to the actual expected reward r̄.

(c) is using r̄(s, a) ≤ r∗.

Bounding the Main Regret Term We now focus on the leading order term in the regret (see (Jaksch et al., 2010)):

∑
k

vk(P̃k −Pk)wk ≤
∑
k

∑
s,a

vk(s, a)
∥∥∥P̃k −Pk

∥∥∥
1
‖wk‖∞
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a

.
∑
k

∑
s,a

vk(s, a)

√
14S log( 2Atk

δ )

max{1, Nk(s, πk(s))}
∗ 2dTM

π∗

hit e

√
7 log(2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}

. dTM
π∗

hit e
∑
k

∑
s,a

vk(s, a)

√
14S log( 2Atk

δ )

max{1, Nk(s, πk(s))}

√
7 log(2Atk

δ )

2 max{1, Nk(s̃k, πk(s̃k))}

. TM
π∗

hit

√
S log

(
2AT

δ

)∑
k

∑
s,a

√
vk(s, a)

max{1, Nk(s, πk(s)}

√
vk(s, a)

max{1, Nk(s̃k, πk(s̃k)}

b

. TM
π∗

hit

√
S log

(
2AT

δ

)∑
k

∑
s,a

√
vk(s, a)

max{1, Nk(s̃k, πk(s̃k)}

c

. TM
π∗

hit

√
S log

(
2AT

δ

)√∑
k

∑
s,a

1

√√√√∑
k

∑
s,a

vk(s, a)

max{1, Nk(s̃k, πk(s̃k)}

d

. Õ
(√

SSATM
π∗

hit

)√
Thit

√√√√∑
k

∑
s,a

vk(s, a)

Thit max{1, Nk(s̃k, πk(s̃k)}

e
= Õ

(√
SSATM

π∗

hit

√
Thit ∗ SA

)
w.p. > 1− δ

= Õ
(√

S(SA)2TM
π∗

hit

√
Thit

)
w.p. > 1− δ

In (a) we used the previously computed upper bound to the norm of the value function. In (b) we used that√
vk(s,a)

max{1,Nk(s,πk(s)} ≤ 1 since UCRL2 starts a new episode once a counter for a certain (s, a) pair is doubled. In (c)

we used Cauchy-Schwartz and in (d) we bound the number of episodes by Õ(SA) according to proposition 18 in (Jaksch
et al., 2010). We finally use lemma 21 in (e). This is the step where Thit <∞ is crucial because we are comparing the visits
to (s, a) to the counter for the past visits to a different state-action pair Nk(s̃k, πk(s̃k)). Notice that the bound holds with
high probability uniformly across all timesteps.

Bounding the Lower Order Regret Term We now bound the lower order term
∑
k vk(Pk − I)wk. Equation 62

guarantees that the bias vector can be written as ‖wk‖∞≤ 2dTMπ∗

hit e
√

7 log(
2Atk
δ )

2max{1,Nk(s̃k,πk(s̃k))} which gives

T∑
t=1

‖wk(t)‖2∞ ≤ Õ
(
S2A2

(
TM

π∗

hit

)2
Thit

)
def
= Õ(M)

by lemma 20. Finally lemma 19 with B = 0 and the above definition for M guarantees that outside the failure event:

∑
k

vk(Pk − I)wk = Õ

(√
S2A2

(
TM

π∗

hit

)2
Thit +DSA

)
= Õ

(
SATM

π∗

hit

√
Thit +DSA

)
holds true.

Summing up the Regret Contributions Together the bound obtained in the previous paragraphs and the bound for the
rewards in (Jaksch et al., 2010): ∑

k

vk(P̃k −Pk)wk = Õ
(√

S(SA)2TM
π∗

hit

√
Thit

)
∑
k

vk(Pk − I)wk = Õ
(
SATM

π∗

hit

√
Thit +DSA

)
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k

vk(s, a)|r̃k(s, a)− r(s, a)| = Õ
(√

SAT
)

along with other lower order terms concludes our regret bound. Finally union bound between the “failure events” considered
in this analysis which has measure o(δ) and those considered in the original analysis of UCRL2 , which also have measure δ,
concludes the proof.

For completeness we examine what happens if the rewards on MABs are known exactly

Proposition 3. Assume that in every state there exists an action a∗(s) that achieves the maximum reward r∗ =
maxs,a r(s, a), i.e., r∗ = r̄(s, a∗(s)), ∀s and suppose that UCRL2 uses the true expected rewards in its internal com-
putations. For any initial state (s) and any T ≥ 1 the regret of UCRL2 on such MDP is exactly zero jointly for all
timesteps.

Proof. Consider running extended value iteration to compute the optimistic policy for UCRL2 . For any optimistic transition
probability matrix P̃k it holds that P̃k1 = 1 since 1 is a right eigenvector of any transition probability matrix. Now
we show that extended value iteration as detailed in (Jaksch et al., 2010) must converge in two steps. Let Rπ be the
reward vector induced by the agent’s policy; we have that after the first step the value function is Ṽ = maxπ R̃π = r∗1
since maxa r̃(s, a) = maxa r̄(s, a) = r∗ ∀s. After the second update the value function reads: maxπ Rπ + PπṼ =
maxπ Rπ + r∗1 = 2r∗1. Extended value iteration now has converged (see (Jaksch et al., 2010) for the termination
conditions) finding the optimistic policy π(s) = arg maxa r̃(s, a) = arg maxa r̄(s, a) = π∗(s) ∀s and thus we have that
the optimistic policy coincides with the optimal policy. This argument depends neither on the world dynamics nor on the
data collected; since it can be applied at every episodes by induction we have that UCRL2 always follows an optimal policy,
achieving zero regret.

Finally we examine what happens onMC .

Proposition 4. Assume that UCRL2 is run on an MDP where P (s′ | s, a) = µ(s′), ∀s, a, s′, i.e., the successors are
sampled from a fixed underlying distribution. For any initial state s ∈ S and any T ≥ 1, with probability 1− δ − o(δ) the
regret of UCRL2 is bounded by

Õ
(
S
√
AT +DS3A2

√
Thit

)
.

The proof idea is the following. Since there is a positive visitation frequency to every state, the agent can collect sufficient
data in all states. The value function is not converging to uniform but it will be eventually bounded by a constant of order 1
which is the maximum reward attainable in one step. This is similar to setting D ≈ 1 in the original regret bound for UCRL2
given in (Jaksch et al., 2010). In short, a value of ≈ 1 quickly becomes an (over)estimate of the optimistic value function
from the agent’s viewpoint.

Proof. We use the same notation as in the original UCRL2 paper (Jaksch et al., 2010). We show that 1) the bias vector
‖wk‖∞ is going to ≈ 1 sufficiently fast so that 2) the leading order term of the regret

∑
k vk(P̃k − Pk)wk is of order

S
√
AT plus terms that do not depend on T except for a logarithmic factor.

Bounding the bias vector We now bound the bias vector ‖wk‖∞= maxswk(s) − minswk(s) at step k. Let sk =
maxswk(s) and sk = minswk(s). Using equation (13) in (Jaksch et al., 2010) we know that upon termination of extended
value iteration:

max
s

wk(s) = wk(sk) ≤ r̃k(sk, πk(sk))− ρ̃k + P̃k(sk, πk(sk))Twk +
1√
Tk
, (63)

where ρ̃ is the average per-step reward of the optimistic policy on the optimistic MDP. The 1√
Tk

term is a ”planning error”
which follows from prematurely stopping extended value iteration to save computations.

A lower bound on wk(sk) is given below, where µ denotes the true underlying distribution where the states are sampled
from:
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min
s

wk(s) = wk(sk)

≥ r̃k(sk, πk(sk))− ρ̃k + P̃k(sk, πk(sk))Twk −
1√
Tk

a
≥ r̄k(sk, πk(sk))− ρ̃k + µTwk −

1√
Tk

≥ −ρ̃k + µTwk −
1√
Tk

assuming non-failing confidence intervals and recalling that the rewards are all positive. Failure of confidence intervals
is dealt separately in the UCRL2 paper (Jaksch et al., 2010). We observe that (a) follows from the fact that the agent is
maximizing over the rewards and the transition model within their respective confidence intervals.

Hence we have that the difference in the optimistic value function is:

‖wk‖∞ = wk(sk)−wk(sk)

≤ r̃(sk, πk(sk)) +
(
P̃k(sk, πk(sk))− µ

)T
wk +

2√
Tk

a
≤ 1 +

∥∥∥P̃k(sk, πk(sk))− µ
∥∥∥
1
‖wk‖∞+

2√
Tk

b
≤ 1 +

√
14S log 2ATk

δ

2 max{1, Nk(sk, πk(sk))}
‖wk‖∞+

2√
Tk

c

. 1 +D

√
14S log 2ATk

δ

2 max{1, Nk(sk, πk(sk))}
(64)

where D is the diameter. Notice that we very crudely upper bounded 2√
Tk
≤ 2, while in fact it very rapidly decreases to

zero. We have used Holder’s inequality in a); in b) we used that the dynamics are the same everywhere and confidence
intervals hold; finally in c) we bound the bias vector with the diameter.

Bounding the Main Regret Term The leading order term in the regret becomes:

∑
k

vk(P̃k −Pk)wk ≤
∑
k

∑
s,a

vk(s, a)
∥∥∥P̃k −Pk

∥∥∥
1
‖wk‖∞

.
∑
k

∑
s,a

vk(s, a)

√
14S log 2ATk

δ

2 max{1, Nk(s, π̃k(s))}

1 +D

√
14S log 2ATk

2δ

2 max{1, Nk(sk, π̃k(sk))}


.
∑
k

∑
s,a

vk(s, a)

√
14S log 2ATk

δ

max{1, Nk(s, π̃k(s))}

+D
∑
k

∑
s,a

vk(s, a)

√
14S log 2ATk

δ

max{1, Nk(s, π̃k(s))}
14S log 2ATk

δ

max{1, Nk(sk, π̃k(sk))}

a

. S
√
AT log

2AT

δ
+ 28DS

∑
k

∑
s,a

log
2ATk
δ

√
vk(s, a)

max{1, Nk(s, π̃k(s))}
vk(s, a)

max{1, Nk(sk, π̃k(sk))}
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b

. S
√
AT log

2AT

δ
+ 28DS log

2AT

δ

∑
k

∑
s,a

√
vk(s, a)

max{1, Nk(sk, π̃k(sk))}

c

. S
√
AT log

2AT

δ
+ 28DS log

2AT

δ

∑
s,a

√∑
k

1

√∑
k

vk(s, a)

max{1, Nk(sk, π̃k(sk))}


d

. S
√
AT log

2AT

δ
+ 28DS log

2AT

δ

√
SA log2

(
8T

SA

)√
2Thit

∑
s,a

(√∑
k

vk(s, a)

2Thit max{1, Nk(sk, π̃k(sk))}

)
= Õ

(
S
√
AT
)

+ Õ
(
DS3A2

√
Thit

)

with probability at least 1− δ jointly for all time-steps T ≥ SA. This expression is Õ(S
√
AT ) up to polylogarithmic terms

and lower order terms. In step (a) we used equation (20) in (Jaksch et al., 2010) to claim
∑
s,a

∑
k

vk(s,a)√
max{1,Nk(s,a)}

≤

(
√

2 + 1)
√
SAT . In (b) we used the property that UCRL2 terminates the episode when the counts for the visits to some

(s, a) pair doubles, that is, when vk(s, a) = Nk(s, a) so that√
vk(s, a)

max{1, Nk(s, a)}
≤ 1.

holds. In (c) we used Cauchy-Schwartz inequality and in (d) the we bound the maximum number of episodes m ≤
SA log2

(
8T
SA

)
according to Proposition 18 in (Jaksch et al., 2010) and also multiplied and divided by

√
2Thit. In the final

passage lemma 21 was used.

Bounding the Lower Order Regret Term We now bound the lower order term
∑
k vk(Pk − I)wk. Equation 64

guarantees that the bias vector can be written as ‖wk‖∞. 1 +D

√
14S log

2ATk
δ

2max{1,Nk(sk,πk(sk))} which gives:

T∑
t=1

‖wk(t)‖2∞ . T + Õ(D2S3A2Thit)
def
= T + Õ(M)

by lemma 20. Finally lemma 19 with B = O(1) and the above definition for M guarantees that outside the failure event:∑
k

vk(Pk − I)wk = Õ
(√

T +
√
D2S3A2Thit +DSA

)
= Õ

(√
T +DS

3
2A
√
Thit +DSA

)
holds true.

Summing up the Regret Contributions Together the bound obtained in the previous paragraph and the bound for the
rewards in (Jaksch et al., 2010): ∑

k

vk(P̃k −Pk)wk = Õ
(
S
√
AT
)

+ Õ
(
DS3A2

√
Thit

)
∑
k

vk(Pk − I)wk = Õ
(√

T +DS
3
2A
√
Thit +DSA

)
∑
k

vk(s, a)|r̃k(s, a)− r(s, a)| = Õ(
√
SAT )

along with other lower order terms concludes our regret bound. Finally union bound between the “failure events” considered
in this analysis which has measure o(δ) and those considered in the original analysis of UCRL2 , which also have measure δ,
concludes the proof.
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Lemma 19. Consider running UCRL2 on an MDP with finite maximum mean hitting time Thit and let πk(·) the policy
followed during the k-th step. If at every timesteps it holds that:

t∑
j=1

‖wk(j)‖2∞≤ B2t+ Õ(M) (65)

for some constants B,M then ∑
k

vk(Pk − I)wk = Õ(B
√
T +
√
M +DSA)

holds true with probability at least 1− o(δ) jointly for all timesteps t.

Proof. Follow the same step as in (Jaksch et al., 2010) in paragraph 4.3.2 (the true transition matrix). We define Xt
def
=

(p(·|st, at)− est)wk(t)1conf(t)1w(t) where in particular 1conf(t), 1w(t) are the indicators for the event that the confidence
intervals are not failing at tilmestep t and that lemma 21 holds up to time t, respectively. Here we cannot use Azuma-
Hoeffding inequality because we do not have a deterministic bound on the ‖wk‖∞’s which is at the same time stronger
than ‖wk‖∞≤ D. To get around this notice that the above definition for the Xt’s guarantees that Xt is still a sequence of
martingale differences. To obtain a stronger bound than that in (Jaksch et al., 2010) we need to use Bernstein Inequality
which states that if Var(·) indicates the variance and |Xt|≤ D is a martingale difference sequence the following statement
holds true (see for example (Cesa-Bianchi & Lugosi, 2006) lemma A.8):

P

(
T∑
t=1

Xt ≥ ε

)
≤ e
− ε2

2
∑T
t=1 Var(Xt)+2Dε/3 . (66)

A bound on the variance is given below:

T∑
t=1

Var(Xt) ≤
T∑
t=1

E(Xt)
2

≤
T∑
t=1

E((p(·|st, at)− est)
T
wk(t))

2

≤
T∑
t=1

‖(p(·|st, at)− est)
2 ‖1‖wk(t)‖2∞

'
T∑
t=1

‖wk(t)‖2∞≤ B2T + Õ(M)

by hypothesis. We have at most T non-zero terms in the martingale sequence {Xt}t=1,...T . Now choose ε such that the right
hand side of 66 is ≤

(
δ
T

)3
so that a further union bound over T guarantees that the statement of the theorem holds with

probability at least 1− o(δ) uniformly across all timesteps. An ε = Õ(D +
√
B2T +M) suffices implying that together

with the bound in (Jaksch et al., 2010)
∑
k vk(Pk − I)wk ≤

∑T
t=1Xt + Õ(DSA) and outside the failure event:∑

k

vk(Pk − I)wk = Õ(B
√
T +
√
M +DSA)

holds as claimed.

C.2. Convergence of the Bias Vector and Bounds on the Visitation Ratio

Lemma 20. If for UCRL2 at every episode k it holds that:

‖wk‖∞≤ B + C

√
log(2SAtk/δ)

max{1, Nk(sk, π(sk)}
(67)
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for some state sk and some constants B,C on an MDP with Thit <∞ then if k(t) is the episode that contains timestep t
the following two statements hold true with probability at least 1− o(δ) jointly for all timesteps:

T∑
t=1

‖wk(t)‖∞ ≤ BT + CÕ(SA
√
TThit)

T∑
t=1

‖wk(t)‖2∞ . B2T + C2Õ(S2A2Thit)

Proof.

T∑
t=1

‖wk(t)‖∞ ≤ BT +

T∑
t=1

C

√
log(2SAtk/δ)

max{1, Nk(t)(sk(t), π(sk(t))}

≤ BT + C
√
T

√√√√ T∑
t=1

log(2SAtk/δ)

max{1, Nk(t)(sk(t), π(sk(t))}

≤ BT + C
√
T log(2SAT/δ)

√√√√ T∑
t=1

1

max{1, Nk(t)(sk(t), π(sk(t))}

≤ BT + C
√
TThit log(2SAT/δ)

√√√√∑
k

∑
s,a

vk(s, a)

Thit max{1, Nk(sk, π(sk)}

≤ BT + CÕ(SA
√
TThit)

where we used that (tk+1 − 1)− (tk) =
∑
s,a vk(s, a) and lemma 21 in the final passage. Since it holds that

‖wk‖2∞. B2 + C2 log(2SAtk/δ)

max{1, Nk(sk, π(sk)}

the second statement of the theorem is justified as follows:

T∑
t=1

‖wk(t)‖2∞ . B2T + C2
T∑
t=1

log(2SAtk/δ)

max{1, Nk(t)(sk(t), π(sk(t))}

≤ BT + C2 log(2SAT/δ)
∑
k

tk+1−1∑
t=tk

1

max{1, Nk(t)(sk(t), π(sk(t))}

≤ BT + C2 log(2SAT/δ)Thit
∑
k

∑
s,a

vk(s, a)

Thit max{1, Nk(sk, π(sk)}

≤ BT + Õ(C2ThitS
2A2)

where again we used that (tk+1 − 1)− (tk) =
∑
s,a vk(s, a) and lemma 21 in the final passage.

Lemma 21. Consider running UCRL2 on an MDP with finite maximum mean hitting time Thit, and let sk1 , sk2 be two
states and πk(·) the policy followed during the k-th step. If T ≥ SA then√∑

k

vk(sk1 , π(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
= Õ

(√
SA
)

(68)

with probability at least 1− o(δ) jointly for all timesteps.
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Proof. We notice that T ≥ SA is required to use Proposition 18 in (Jaksch et al., 2010) which bounds the number of
episodes as a function of time. Let the number of episodes up to time T be m. We have the following:

√√√√ m∑
k

vk(sk1 , π(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}

a
≤
√
mEYk +

⌈(
c+

√
c2 + 4mc

)⌉
w.p. ¿ 1− δ

≤ Õ
(√

SA
)

w.p. ¿ 1− δ

Before explaining (a), we mention that {Yk}k=1,...,m are i.i.d geometric random variables with success probability = 1
2

and thus EYk = 2. Furthermore, the constant c = log 6SAT 3

δ2 and according to Proposition 18 of (Jaksch et al., 2010) we
can bound the number of episodes m ≤ SA log2

(
8T
SA

)
. The final expression depends on T only via a polylog term and the

proof is complete provided that we justify that (a) holds with probability at least 1− o(δ) jointly for all timesteps T . The
plan is to define a new sequence of i.i.d. geometric random variables {Yk}k=1,...,m with success probability p = 1

2 and use

lemma 22 to show that each of the Yk’s first-order stochastically dominates the random variable vk(sk1 ,π(sk1 ))

2Thitmax{1,Nk(sk2 ,π(sk2 ))}
in the sense that

P (Yk > x) ≥ P
(

vk(sk1 , π(sk1)))

2Thit max{1, Nk(sk2 , π(sk2)))}
> x

)
,∀x ∈ R.

In other words, the Yi’s ”stochastically overestimate” the random variables vk(sk1 ,π(sk1 ))

2Thitmax{1,Nk(sk2 ,π(sk2 ))}
which are nor

independent nor identically distributed. This is useful to simplify the problem. Since the bound in lemma 22 holds regardless
of the history, we can claim through Theorem 1.A.3 in (Shaked & Shanthikumar, 2007) that a similar expression holds for
the sum:

P

(
m∑
k

Yk > x

)
≥ P

(
m∑
k

vk(sk1 , π(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
> x

)
,∀x ∈ R.

This justifies the first inequality below where we estimate the tail probability with a confidence interval chosen such that the
final bound hold. In particular c = log 6SAT 3

δ2 :

P

(
m∑
k

vk(sk1 , π(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
> mEYk +

⌈(
c+

√
c2 + 4mc

)⌉)

< P

(
m∑
k

Yk > mEYk +
⌈(
c+

√
c2 + 4mc

)⌉)
< e−c

= e− log 6SAT3

δ2

=
δ2

6SAT 3

With the number of episodes crudely bounded by m ≤ T , union bound over all possible values for m and all possible
timesteps T along with S states and A actions yields that the tail probability is o(δ). For the second inequality we have used
lemma 24. This is similar to Hoeffding inequality but modified for geometric random variables, which are not bounded. The
lemma is applied with ε >

⌈(
c+
√
c2 + 4mc

)⌉
= Õ(

√
SA).

Lemma 22. Consider running UCRL2 on an MDP with Thit <∞. Let sk1 , sk2 be two states and let πk(·) be the policy
followed during the k-th step. Finally, let Yk be a geometric random variable with parameter (success probability) = 1

2 .
Then

P (Yk > x) ≥ P
(

vk(sk1 , π(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
> x

)
,∀x ∈ R
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and the bound holds even when conditioned on any random variable vj(sj1 ,π(sj1 ))

2Thitmax{1,Nj(sj2 ,π(sj2 ))}
for j < k.

Proof. By Markov inequality:

P
( vk(sk1 , πk(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
≥ 1
)
≤ 1

2
E

(
vk(sk1 , πk(sk1))

Thit max{1, Nk(sk2 , π(sk2))}

)
=

1

2
E

(
E

(
vk(sk1 , πk(sk1))

Thit max{1, Nk(sk2 , π(sk2))}
|Nk(sk2 , π(sk2))

))
=

1

2
E

((
Evk(sk1 , πk(sk1))

Thit max{1, Nk(sk2 , π(sk2))}
|Nk(sk2 , π(sk2))

))
≤ 1

2
E (1|Nk(sk2 , π(sk2)))

=
1

2
(69)

where lemma 23 was used for the last inequality. Next we use the above inequality to bound the CDF of
vk(sk1 ,πk(sk1 ))

2Thitmax{1,Nk(sk2 ,π(sk2 ))}
by that of an appropriately defined geometric random variable ∀x ∈ R:

P
( vk(sk1 , πk(sk1))

2Thit max{1, Nk(sk2 , π(sk2))}
≥ x

)
≤
(

1

2

)bxc
= P (Yk > bxc)
= P (Yk > x)

The first passage requires the explanation below. Subdivide the k-th episode into epochs such that each epoch terminates
when the agent visits (sk1 , π(sk1)) roughly 2Thit max{1, Nk(sk2 , π(sk2)) times. During each epoch the agent has at least
1
2 probability of terminating the episode thanks to equation 69. The last equality follows from recognizing the tail probability
of a geometric random variable with success probability 1

2 . Note that this bound hold when we condition on any history
experienced by the agent.

C.3. Auxiliary Lemmas

Lemma 23. Consider running UCRL2 on an MDP with finite maximum mean hitting time Thit, and let sk1 , sk2 be two
states and πk(·) the policy followed during the k-th step. We have that

Evk(sk1 , π(sk1)) ≤ Thit max{1, Nk(sk2 , π(sk2))}.

Proof. Subdivide the k-th episode into epochs such that each epoch terminates when the agent hits sk2 . The last epoch
occurs when the k-th episode terminates. By assumption, each epoch can be at most Thit long in expectation. It follows that
state sk1 can be visited at most Thit times during an epoch, in expectation. Since UCRL2 terminates when the number of
visits to a state-action pairs doubles, there cannot be more than max{1, Nk(sk2 , π(sk2))} epochs within the k-th episode.
By linearity, Evk(sk1 , π(sk1)) ≤ Thit max{1, Nk(sk2 , π(sk2))}.

Lemma 24. Let {Y }i=1,...,m be a sequence of i.i.d. geometric random variables with parameter (success probability) 1
2 .

Then the following statement holds:

P

(
m∑
i

Yk −mEYk < ε

)
< e−

bεc2
2(2m+bεc)

Proof. Notice that
∑m
i Yk can be viewed as a sum of (a random number of) Xk Bernoulli random variables. In particular
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P

(
m∑
i

Yk −mEYk > ε

)
a
= P

(
m∑
i

Yk > 2m+ ε

)

b
= P

b2m+εc∑
i

Xi < m


c
= P

b2m+εc∑
i

Xi −
1

2
b2m+ εc < −1

2
bεc


d
< e−

bεc2
2(2m+bεc)

where:

a) follows because EYk = 2

b) the event that the sum ofm geometric random variables exceeds 2m+ε is the same as the event that b2m+εc Bernoulli
trials give less than m successes

c) is subtracting an identical quantity 1
2b2m+ εc

d) is Hoeffding inequality


