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Abstract

We revisit the inductive matrix completion prob-
lem that aims to recover a rank-r matrix with
ambient dimension d given n features as the side
prior information. The goal is to make use of the
known n features to reduce sample and compu-
tational complexities. We present and analyze
a new gradient-based non-convex optimization
algorithm that converges to the true underlying
matrix at a linear rate with sample complexity
only linearly depending on n and logarithmically
depending on d. To the best of our knowledge,
all previous algorithms either have a quadratic
dependency on the number of features in sample
complexity or a sub-linear computational conver-
gence rate. In addition, we provide experiments
on both synthetic and real world data to demon-
strate the effectiveness of our proposed algorithm.

1. Introduction

Matrix completion method has been used in a wide range of
applications such as collaborative filtering for recommenda-
tion (Koren et al., 2009), multi-label learning (Cabral et al.,
2011) and clustering (Hsieh et al., 2012). In these applica-
tions, every entry is modeled as the inner product between
factors corresponding to the row and column variables. For
example, in movie recommendation, each row factor rep-
resents the latent representation of a user and each column
factor represents the latent representation of a movie.

In many applications of significant interest, besides the par-
tially observed matrix, side information, in the form of
features, is also available. These might correspond to de-
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mographic information (genders, occupation) for users or
product information (genre, director) in a movie recom-
mender system for example. With such features at hand,
one can model an observation as a specific linear interaction
between features to reduce the model complexity. Formally,
let L* € R%*% be the unknown low-rank matrix with rank
r,and let X, € R%*"1 and X € R%2*"2 pe the known
feature matrices with d; > ny > rand da > ngy > r. We
assume the unknown rank-r matrix L* can be represented
by X, M*X}, for some unknown matrix M* € R"™ "2,
Thus instead of learning a large d; X ds matrix L*, we only
need to recover a smaller low-rank matrix M*. This induc-
tive approach has been applied successfully in many appli-
cations including collaborative filtering (Abernethy et al.,
2009; Menon et al., 2011; Chen et al., 2012), multi-label
learning (Xu et al., 2013; Si et al., 2016), semi-supervised
clustering (Yi et al., 2013; Si et al., 2016), gene-disease
prediction (Natarajan & Dhillon, 2014) and blog recommen-
dation (Shin et al., 2015).

From the theoretical point of view, side information allows
us to reduce the overall sample and computational com-
plexities. Xu et al. (2013) and Jain & Dhillon (2013) pio-
neered the theoretical investigation in this direction. Specif-
ically, Xu et al. (2010) adapted the convex relaxation ap-
proach (Candes & Recht, 2009; Candes & Tao, 2010) and
requires only O(rnlognlogd)' samples to recover the un-
derlying matrix, which we believe is tight up to logarithmic
factors. However, the computational cost is usually high be-
cause they need to solve a nuclear norm minimization prob-
lem, which is inherently slow due to its high per-iteration
complexity and non-strongly convex objective function (c.f.
Equation (2) in Xu et al. (2013)), which does not have linear
convergence rate. On the other hand, Jain & Dhillon (2013)
(also see Zhong et al. (2015)) proposed an algorithm which
first does a spectral initialization to obtain a coarse estimate,
then uses alternating minimization to refine the estimate.
Their algorithm has a locally linear rate of convergence but
requires O(r3n? logn log(1/€)) samples, which has an un-
satisfactory quadratic dependency on n and cannot achieve
exact recovery because sample complexity also depends on
the target accuracy e. A natural and open question is:

'For the ease of presentation, we assume di = d2 = d and
n1 = n2 = n when discussing complexities.
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Can we recover the ground truth matrix at a linear rate
with sample complexity linear in n?

In this paper, we answer this question affirmatively. Specifi-
cally, we propose a multi-phase gradient-based algorithm
that converges to the underlying true matrix at a linear rate
with sample complexity linearly depending on n and loga-
rithmically depending on d. Our algorithm is a novel and
highly nontrivial extension of Procrustes Flow (Tu et al.,
2015) in which we add an additional phase to reduce the
variance of gradient estimate, and therefore we call it Multi-
Phase Procrustes Flow. The main challenges and technical
insights are summarized in the following section.

1.1. Main Challenges and Technical Insights

In recent years, a surge of non-convex optimization algo-
rithms for estimating low-rank matrices have been estab-
lished. A typical procedure is first to do a spectral initial-
ization to obtain a coarse estimate, and then to use Burer-
Monteiro factorization (Burer & Monteiro, 2003) with pro-
jected gradient descent (a.k.a., Procrustes flow) on the par-
tially observed entries to recover the underlying matrix,
where the projection is introduced to control the variance of
gradient descent (Tu et al., 2015; Zheng & Lafferty, 2016;
Yi et al., 2016). Our proposed algorithm also follows this
framework. However, direct adaptation does not achieve the
desired statistical and computational rates. Statistically, in
the classical matrix completion setting, after the initializa-
tion phase, the variance of the gradient is at a smaller order
than the magnitude of expected gradient for all iterations.
However, in our setting, because of limited samples, such
uniform bound does not hold. Computationally, the projec-
tion step in the inductive setting is more costly than that
in the classical setting because we need to solve a convex
quadratically-constrained-quadratic-programming (QCQP)
problem (c.f. Section 4).

Our first key observation is that the variance of the gradient
converges to 0 at a faster rate than the magnitude of expecta-
tion of the gradient. Therefore, if the iterate is close enough
to the optimum, say in a ball with radius O(1/n) around
the optimum, the desired uniform bound still holds. Further,
this observation also indicates when we are close to the
optimum, projection step is not needed, i.e., vanilla gradient
descent suffices. Nevertheless, with limited samples, the
spectral initialization cannot directly achieve this goal.

Our second key observation is that after a rough spectral
initialization, if we use fresh samples to calculate the gra-
dient at each iteration, the variance is still small compared
with the expectation of the gradient. In light of this, we add
a new phase to the original algorithm where we use fresh
samples to estimate the gradient at each iteration and use
projected gradient descent to refine our estimation. Though
the projection is costly, we only need O(r logn) iterations

to converge to a ball with radius O(1/n) around the opti-
mum, since gradient descent in our problem enjoys a linear
rate of convergence. Putting all these phases together, we
propose the first gradient-based algorithm that requires only
O (r2nlogn log d) samples and converges to the ground
truth matrix at a linear rate.

Notation. Capital boldface letters such as A are used for
matrices, and [¢] is used to denote the index set {1,2, ..., ¢}.
Denote the d x d identity matrix by I;. Let A; ., A, ;
and A;; be the i-th row, j-th column and (¢, j)-th entry of
matrix A, respectively. Denote the ¢-th largest singular
value of A by oy(A) and its projection onto the index set
Q by Pa(A), i.e., the (i, j)-th entry of Pn(A) is equal to
A;j if (i,7) € Q and zero otherwise. Let ||x||2 be the {5
norm of a d-dimensional vector x € R%. Let [|A||r, [|A||2
be the Frobenius norm and the spectral norm of matrix A
respectively. The largest /5 norm of its rows is defined as
|All2,0c0 = max; ||A;||2. For any two sequences {a,}
and {b,}, we say a,, = O(b,) if there exists a positive
constant C' such that a,, < C'b,,.

2. Related Work
2.1. Low-Rank Matrix Completion

Classical approach for matrix completion relies on convex
relaxation (Candes & Recht, 2009; Candes & Tao, 2010;
Recht, 2011; Chen, 2015; Allen-Zhu et al., 2017), which
can be solved by nuclear norm minimization. Such methods
usually have tight sample complexity (Balcan et al., 2017),
but due to the use of nuclear norm and non-strongly convex
objective function, they cannot achieve linear convergence
rate and often scale cubically with the dimension. Some
faster algorithms have been proposed (Jain & Netrapalli,
2015) but they often incur additional sample complexity.

To reduce the runtime complexity, various non-convex algo-
rithms have been proposed. Jain et al. (2013); Hardt (2014);
Hardt & Wootters (2014); Gu et al. (2016); Gamarnik et al.
(2017) showed that with proper initialization, alternating
minimization enjoys a linear convergence rate. Proofs of
these works often build on a general analytical framework,
noisy-power-method (Hardt & Price, 2014; Balcan et al.,
2016). Nevertheless, the sample complexity often depends
on the inverse of target accuracy. Thus these methods often
cannot recover the ground truth matrix exactly.

Another line of research studies the landscape of optimiza-
tion problem and showed that with proper modification of
objective function, all local minima are global and all saddle
points are strict (Bhojanapalli et al., 2016b; Ge et al., 2016;
2017). Therefore, perturbed gradient descent algorithms can
solve this non-convex problem efficiently (Ge et al., 2015;
Jin et al., 2017; Du et al., 2017a). However, to guarantee
the landscape having nice properties, they all require the



Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

sample complexity scales with the fourth power of the rank,
which is suboptimal.

Lastly, Tu et al. (2015); Zhao et al. (2015); Zheng & Lafferty
(2015); Sun & Luo (2015); Bhojanapalli et al. (2016a);
Zheng & Lafferty (2016); Yiet al. (2016); Wang et al. (2016;
2017); Maet al. (2017); Xu et al. (2017); Zhang et al. (2018)
proposed first-order algorithms to solve low-rank matrix
estimation problems. Similar to Jain et al. (2013); Hardt
& Wootters (2014); Hardt (2014), these algorithms first
use spectral initialization to find a good starting point, but
instead of performing alternating minimization, they use
(projected) gradient descent to refine the initial solution, and
are guaranteed to converge to the global optimum at a linear
rate. Notably, the sample complexity of these algorithms
does not depend on the target accuracy and is only slightly
larger than that of convex programming approaches. Our
proposed algorithm also belongs to this line of research but
with significant innovations in both algorithm and theory
(c.f. Section 1.1).

2.2. Matrix Completion with Side Information

Matrix completion with side information has drawn much at-
tention for improving the performance of traditional matrix
completion methods in various applications. This method
dates back to Jain & Dhillon (2013); Xu et al. (2013), where
they proposed the so-called Inductive Matrix Completion
methods independently. The method is “inductive”, in
that it can be generalized to previously unobserved data
points, which resolves a major drawback in traditional rec-
ommender systems. Extensions to noisy features (Chiang
et al., 2015) and non-linear models (Si et al., 2016) have
been studied and similar formulation has also been extended
to the problem of robust PCA (Chiang et al., 2016; Niranjan
et al., 2017; Xue et al., 2017).

Theoretically, side information allows us to recover the
target matrix with sample complexity depending on the in-
trinsic feature dimension rather than the ambient dimension.
Information theoretically speaking, with known features,
O(rn) samples are sufficient for exact recovery and this
is achieved up to some logarithmic factors by the convex
relaxation based algorithm proposed in Xu et al. (2013).
However, such formulation requires solving a nuclear norm
minimization problem and in general cannot have the lin-
ear convergence. Jain & Dhillon (2013) adopted ideas
from Jain et al. (2013); Hardt (2014); Hardt & Wootters
(2014) to obtain a linear convergent algorithm but it requires
O (r®n?lognlog(1/e)) samples. See Table 1 for a detailed
comparison between our method and two existing inductive
matrix completion algorithms: Maxide (Xu et al., 2013)
and AltMin? (Jain & Dhillon, 2013). It is worth noting that

2Jain & Dhillon (2013) requires a weaker incoherence condi-
tion in that they only assume the features are incoherent. However,

our approach achieves both linear rate of convergence and
sample complexity linear in the feature dimension n.

Table 1. Comparison results of sample complexity and conver-
gence rate for different inductive matrix completion algorithms.

Algorithm Sample Complexity Linear rate?
Maxide
(Xu et al., 2013) 0] (rn lognlog d) No
AltMin 3 9
(Jain & Dhillon, 2013) O(r’n”lognlog(1/e)) Yes
Ours O(r’nlognlogd) Yes

3. Problem Setup and Preliminaries

Recall that our goal is to recover the unknown rank-r ma-
trix L* € R%%92 by learning a lower-dimensional ma-
trix M* € R™*"2 given the side information in terms
of X and Xg. Denote the rank-r singular value de-
composition (SVD) of M* by M* = TSV Let
ol > 05 > ... > of > 0 be the sorted singular values
of M* and k = o} /o be the condition number. Assume
each entry of L* is observed independently with probability
p € (0,1). In particular, for any (¢,7) € [d1] X [d2], we
consider the following Bernoulli observation model

L. — Li;, with probability p;
R otherwise.

Let €2 be the index set of observed entries in L*, i.e., Q) =
{(i,5) € [d1] x [d2] | Li; # *}. Note that restricting on the
observed index set 2, we have Pq (L) = Pq(L*).

@3.1)

In order to fully exploit the side information, following
Xu et al. (2013); Yi et al. (2013); Chiang et al. (2016),
we assume the following standard feasibility condition:
col(Xz) 2 col(L*), col(Xg) 2 col(L*T), where col(A)
represents the column space of matrix A. Intuitively, this
condition suggests that the feature matrices are correlated
to the underlying true low-rank space, so that we could
make use of the feature information to improve our recov-
ery. In other words, we assume L* can be decomposed
as L* = X LM*X;. In addition, without loss of gener-
ality, we assume both feature matrices X and Xy have
orthonormal columns?, i.e., XIXL =1,,, XIEXR =1,,.
It is well-known in matrix completion (Gross, 2011) that
if L* is equal to zero in nearly all of the rows or columns,
recovering L* exactly is impossible unless all of its entries

when additional incoherence condition is imposed, it is unclear
whether their algorithm can reduce the sample complexity or not.

3In practice, one could conduct QR factorization or SVD to
acquire the corresponding orthonormal feature matrices.
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are sampled. Therefore, we impose the standard incoherence
condition on the unknown low-rank matrix L* (Candes &
Recht, 2009; Recht, 2011; Yi et al., 2016). Note that given
feature matrices X, X g, the singular value decomposition
of L* can be formulated as (X, U )E*(XzV) 7.

Assumption 3.1 (Incoherence for L*). The unknown low-
rank matrix L* is pg-incoherent, ie., |[X;U [2.00 <

Vior/di, |XeV |20 < y/por/da.

Furthermore, following Jain & Dhillon (2013); Xu et al.
(2013); Chiang et al. (2016), we impose the following inco-
herence condition on the feature matrices.

Assumption 3.2 (Incoherence for feature matrices). The
feature matrices X7, and X p are both self-incoherent with

parameter 1, i.e, || X200 < Vp1n1/d1, [ Xrll2,00 <

\/H1n2/d2.

With the aid of additional feature information, inductive
matrix completion can be formulated as follows

min

1
MER? Xn2 %HPQ(XLMX;_L)H;

3.2)

subject to rank(M) < r,

where 2 is the index set of observed entries and p =
|2|/(d1d2) denotes the sampling probability in the observa-
tion model. In order to estimate the low-rank matrix M*
more efficiently, following Tu et al. (2015), Zheng & Laf-
ferty (2015) and Yi et al. (2016), we propose to solve the
following factorized non-convex optimization problem

min
UeR™1 %"
VER2XT

1
% [Po(X,UVTXE -L)|2. (33)

Due to the reparameterization M = UV T, the rank con-
straint in (3.2) is automatically guaranteed in (3.3).

4. The Proposed Algorithm

Let U* = U /2 and V* = V X*1/2 be the true fac-
torized matrices. It is obvious that (U*, V*) is the optimal
solution to optimization problem (3.3). However, for any
invertible matrix P € R™", (U*P, V*(P~1)T) is also an
optimal solution. In order to deal with this identifiability
issue, following Tu et al. (2015); Zheng & Lafferty (2016);
Park et al. (2016), we impose an additional regularizer to the
objective function in (3.3) to penalize the scale difference
between U and V. Specifically, we consider the following
regularized optimization problem

min
UeR™ X"
VeRn2X"

1
fo(U, V) i= o [[Pa(XLUVTXG, - L)%

1 2
+ gHUTU -V,
.1

where U € R™*" V € R™"2*" and f, denotes the reg-
ularized sample loss function. Intuitively speaking, the
regularization term encourages the two factorized matrices
U and V to have a similar scale.

We propose a multi-phase gradient-based algorithm to solve
the proposed estimator (4.1), as shown in Algorithm 1. More
specifically, we first randomly split the observed index set €2
into S + 1 independent subsets {Q}5_,, where ) has car-
dinality |€2|/2 and each of the rest has cardinality |Q2|/(25).
In Phase 1, we project the observed matrix L onto the first
subset 2 and perform rank-r SVD on p; ' Pq, (L*) to get
an initial estimator (Uiyir, Vinit), where pg = |Qo|/(d1d2).
We use SVD,.(+) to denote the rank-r SVD.

In Phase 2, we perform projected gradient descent with
resampling (Jain et al., 2013; Jain & Dhillon, 2013) (a.k.a.,
sample splitting), where we use one fresh subset for each
gradient descent update. The projection step guarantees that
each intermediate iterate satisfies the similar incoherence
condition as that of (U*, V*), while the resampling scheme
ensures the independence of the samples used in the current
iteration and the previous iterates. As will be clear in the
next section and in the proofs, the second phase is crucial in
reducing the variance of gradient estimate and ensures the
uniform convergence in the third phase. The constraint sets
C;y and C, associated with the projection are defined as

Ko
X2 Ul 0 < /7 |1 Zai 2}

p
XA Voo0 < /52 | Zil2 .
2
(4
where Zi,; is specified in Phase 1. Let P, (U) be the
projection of U € R™*" onto C;, which can be alterna-

tively regarded as the exact solution to the following convex
quadratically-constrained-quadratic-programming (QCQP)

& = {uern

O

1 N
argmin = |[U - U|2,
UcR"1 X7 2

subject to H (XU

o por “4.3)
5, < dfOlHZinnH%’Vi € [di].

It is worth noting that convex QCQP problem can be solved
approximately and efficiently using interior point methods
(Nemirovskii, 2004). Let P¢, (U, ¢) be the §-approximate
solution to optimization problem (4.3), i.e., | Pc, (U, §) —
Pe, (U)||p < 6. Similarly, the QCQP problem with respect
to V is formulated in a similar way, except that X, (resp.
dy) is replaced with X (resp. dg). Accordingly, we use
Pe, (V) to denote the exact projection, and Pc, (V, d) to be
the J-approximate projection.

In addition, the loss function used in the s-th iteration of
Phase 2 is based on the subset {2, and it is identical to the
loss function in (4.1), except that 2 (resp. p) is replaced
with Q (resp. ps = |Qs]/(d1d2)).
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Finally, in Phase 3, vanilla gradient descent is performed
based on the entire observed matrix P (L*). Provided these
three phases, as will be seen in later analysis, Algorithm
1 is guaranteed to converge to the true factorized matrices
(U*, V*) with a linear rate of convergence.

Algorithm 1 GD for IMC
Input: Observed matrix Pq(L*); feature matrices Xy,
X g; parameter pg = |2|/(2d1d2); step size T, n); number
of iterations .S, T", approximation error ¢.
Randomly split €2 into subsets g, 21, ..., Qg with
|| = |2]/2 and || = |2|/(2S5), for any s € [S]
// Phase 1: Initialization
[Uo, o, Vo] = SVD, (py ' P, (L*))
Uinit = XIﬁOEé/Q; Vinie = Xﬁvozé/z
Zinit = [Uinit; Vinit)
// Phase 2: PGD with subsamples
Uy = Pe, (Uinit, ), Vo = Pe, (Vinit, 0)
for:s=1,2,...,5do
U, = 7361 (Us—l - T]VUfQS (Us—17 VS—1)7 6)
Vs = PCz (Vs—l - anfQS (US—17 Vs—1)7 5)
end for
// Phase 3: Vanilla GD
U =Ug, VO =Vyg
for:t=0,1,..., T —1do
Ut = Ut — 7Vy fo(U, V)
Vt+1 = Vt - TVVfQ(Ut, Vt)
end for
Output: (UT VT)

5. Main Theory

Before presenting the main theoretical results, we note that
the optimal solution to optimization problem (4.1) is not
unique. Therefore, following Tu et al. (2015), we introduce
the so-called Procrustes distance. For simplicity, we let
Z* = [U*; V*] be the stacked true parameter matrix.

Definition 5.1. For any Z € R(+72)X7 et D(Z, Z*)
be the minimal distance between Z and Z* in terms
of the optimal rotation, or more precisely, D(Z,Z*) =
mingeq, ||Z — Z*R|| p, where Q, denotes the set of r-by-
r othorgonal matrices.

In the following discussions, we use d and n to denote
max{dj, ds} and max{ny, na}, respectively. Our main the-
oretical result on Algorithm 1 is presented as follows.

Theorem 5.2. Assume the observed index set (2 follows
Bernoulli model (3.1) and incoherence Assumptions 3.1, 3.2
hold. There exist constants ¢y, o, 3, ¢4, c5 such that under
condition |Q| > ¢; max{uin, pork}uor?s?lognlogd, if
step size n = co/(rof), T = ¢3/o] and approximation
error § = O (1/(rxn?)), after S = O(rx logn) iterations
in Phase 2 and T = O (klog(1/e)) iterations in Phase 3,

with probability at least 1 — cyrklogn/d, the output of
Algorithm 1 satisfies

IM” — M*||p < c5/07e,
where ML = UTVTT and M* = U*V*T,

Theorem 5.2 shows that the overall sample complexity of
Algorithm 1 is O(r?k?nlognlogd). Here, we explicitly
write down the dependency on condition number  in the
O(-) notation for completeness. It is worth noting that our
gradient-based Algorithm 1 achieves both linear rate of con-
vergence and sample complexity linearly depending on n,
compared with convex relaxation based approach (Xu et al.,
2013) whose convergence rate is sublinear (i.e., O(1/+/€))
and alternation minimization (Jain & Dhillon, 2013), which
requires at least O (r3n? log nlog(1/€)) samples.

Theorem 5.2 can be achieved by analyzing the three phases
of Algorithm 1. In the sequel, we are going to provide the
theoretical guarantees of each phase.

Theorem 5.3 (Initialization). Assume the observed index
set {2 follows Bernoulli model (3.1). Suppose Assumptions
3.1, 3.2 hold for the unknown low-rank matrix L* and the
feature matrices X, X g, respectively. For any v € (0, 1),
there exist constants cj, co such that under the condition
Q0| > cipoprr?k®nlogd/~?, with probability at least
1 — ¢2/d, the output of Phase 1 in Algorithm 1 satisfies

D(Z,‘ni[, Z*) < 4’)/\/0';5.

Theorem 5.3 suggests that the output of Initialization Phase
1 is already in a small neighbourhood of the optimum with
radius O(/07). Notably, the sample complexity is linear in
n, in sharp contrast to that of the classical matrix completion
setting which is at least linear in d.

Theorem 5.4 (PGD with subsamples). Under the same con-
ditions as in Theorem 5.3, suppose the output of Phase 1,
Ziyi, satisties D(Ziyy, Z*) < an/07 /2 with constant v <
1/40. There exist constants ¢y, 2, 3, ¢4, 5 such that, if the
total sample size || > 1S -max{pop1rrn, p3ris?}logd,
with step size n = co/(ro}) and approximation error
§ < e34/07/(rk), the final iterate (Ug, Vg) in Phase 2
of Algorithm 1 satisfies

s
2 ) ?or + cyorr/or (5.1)

D*(Zs.Z)< | 1-—
(Zs, )< 167K

with probability at least 1 — ¢5S/d, where Zg = [Ug; Vg].

The last term on the right hand side of (5.1) originates from
the approximation error ¢ when solving the convex QCQP
(4.3) with respect to U (or V). Theorem 5.4 suggests that
under proper initialization, the gradient iteration in Phase
2 converges at a linear rate with contraction parameter 1 —
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O(1/(rk)). Note that the step size is chosen as O(1/(ro7)).
In practice, since o] is unknown, we can approximate o;
by C - ||Uii V;l., |2 and tune the coefficient C.

1ni

Theorem 5.5 (Vanilla GD). Under the same conditions as
in Theorem 5.3, suppose the final iterate (Ug, V) of Phase
2 in Algorithm 1 satisfies D(Zg, Z*) < ¢/} /(1n) with
Zs = [Ug; V| and constant ¢ small enough. Then there
exist constants c1, co, ¢z such that if |Q| > ¢q pop1rnlogd,
with step size 7 = co/07, the output of Phase 3 satisfies

T
D(Z7,Z%) < (1— 71"6) D2(Zg,Z*)

with probability at least 1 — c3/d, where ZT = [UT; VT].

Theorem 5.5 implies that if the final iterate of Phase 2 falls
into a even smaller neighbourhood around the optimum
with radius O(1/n), vanilla gradient descent suffices to
guarantee the linear rate of convergence.

Remark 5.6 (Computational Complexity). The rank-r
SVD in Phase 1 requires O(7|€2|) computation. The run-
time of the gradient computation for the s-th iteration in
the second phase is O(rn|Qs| + r?n), while solving the
convex QCQP subproblem requires O (r?n2d®/? log d) com-
putation if using the path-following interior point method
(Nemirovskii, 2004). Thus to perform S = O(rklogn)
iterations, the overall computational complexity of Phase
2is O(r*n%d®/? log nlog d). The runtime of gradient com-
putation in each iteration of Phase 3 is O(rn|Q2|) and the
total number of iterations required in Phase 3 is T' =
O(klog(1/€)), which implies the overall computational
cost in Phase 3 is O(r®*n? log nlog dlog(1/¢)). Putting all
these pieces together, we conclude the total computational
complexity of Algorithm 1is O(r3n? logn log dlog(1/€) +
r3n2d3/? lognlogd).

6. Experiments

In this section, we compare the proposed gradient-based al-
gorithm with existing inductive matrix completion methods,
including the convex relaxation based approach, Maxide
(Xu et al., 2013) and alternating minimization based algo-
rithm, AltMin (Jain & Dhillon, 2013) on both synthetic and
real datasets. In addition, the standard matrix completion
approach based on non-convex projected gradient descent
(Zheng & Lafferty, 2016) (MC) is compared as a baseline
for simulations and the second real data experiment on gene-
disease prediction, while the Binary Relevance approach
(Boutell et al., 2004) using linear kernel SVM (Chang &
Lin, 2011) (BR-linear) is included as a baseline for the first
real data experiment on multi-label learning. All algorithms
are implemented in Matlab on a machine with Intel 8-core
Core i7 3.40 GHz with 8GB RAM.

6.1. Simulations

For simplicity, we choose dy = ds = d and ny = ns = n.
Additional experiments regarding the rectangular setting
are postponed to the supplemental materials. The un-
known low-rank matrix M* € R"*" is generated such
that M* = U*V* T and the entries of U*, V* € R™*" are
drawn independently from centered Gaussian distribution
with variance 1/n. Let the singular value decomposition of
arandom matrix F € R?”*?be F = Y XY}, where each
entry of F is drawn independently from standard normal
distribution. The feature matrices X1, Xz € R?*" are then
generated as the first n columns of the singular matrices Y,
and Y g respectively. The observed data matrix L follows
from the Bernoulli model (3.1) with the full data matrix
defined by L* = X, M*X},.

To begin with, we investigate the sample complexity of the
proposed gradient-based method. In particular, we consider
the following settings: (i) d = 500,n = 50,7 = 10; (ii)
d = 500,n = 100,r = 5; (iii)) d = 1000,n = 50,7 = b;
(iv) d = 1000, n = 100, 7 = 10. We compute the empirical
probability of successful recovery after 50 repeated trials,
where we regard the trial as successful if the relative er-
ror [|[ X, MTX] — L*||p/||L*| r is less than 107¢. The
experimental results are shown in Figure 1(a). Here, m rep-
resents the total number of observed entries. Under all of the
aforementioned settings, the phase transition happens to be
around m/(nr) = 6, which implies that the optimal sample
complexity for gradient-based inductive matrix completion
approach may be linear in both n and r.

Moreover, we compare our algorithm with the aforemen-
tioned algorithms, including MC, Maxide and AltMin. All
the parameters, such as step size and regularization pa-
rameters, are tuned by 5-fold cross validation. We mea-
sure the performance by the relative reconstruction er-
ror ||L — L*||p/||L*|| 7 under the setting that d = 1000,
n = 100, » = 10 with sampling rate p varied in the range
{2%, 5%, 10%}. For the sake of fairness, we use the same
initialization procedure as in Algorithm 1 for all the com-
pared algorithms. The results are demonstrated in Figures
1(b), 1(c) and 1(d). Here, each effective data pass evaluates
|©2| observed entries. It can be seen that inductive methods
can recover the unknown low-rank matrix L* successfully
using less observed entries compared with the standard ma-
trix completion approach, which proves the effectiveness
of feature information. In addition, our approach achieves
the lowest recovery error with respect to the same number
of effective data passes, and outperforms existing inductive
matrix completion algorithms by a large margin. In addition,
we also plot the relative error with respect to CPU time, and
similar trend in results can be observed. Due to space limit,
these plots are deferred to the supplementary materials. All
these comparison results clearly demonstrate the superiority



Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

> 1 60— o N
[
3 —
3 5
Qo8 5
= o
‘@ 06 2

©
() -
§ E -10
Doa ;
2 —+—d=500, n=50, r=10 £ |—mc
=, —6—d=500, n=100, r=5 S 15 [|—+—Maxide
< d=1000, n=50, r=5 g ||—AltMin
kS —*—d=1000, n=100, r=10 ——ours
g o0—* 20

g g

[} 7}

o o 10

2 o =

< 5}

g 2"

k] S 20

£ £

E -20 E 25 —+—MC

K ——Maxide Kl ——Maxide

S -25 [|——AltMin 3 30—~ AltMin
—o—Ours —©—Ours

20 40 60 80
number of effective data passes

(b) p=2%

m/(n*r)

(a) sample complexity

100

30

20 40 60 80
number of effective data passes

(©) p=>5%

100 20 40 60 80

number of effective data passes

d) p=10%

100

Figure 1. Experimental results on synthetic datasets: (a) Plot of empirical probability of successful recovery versus m/(nr) based on our
proposed algorithm. (b),(c) and (d) Plots of logarithm relative error versus effective data passes for different (inductive) matrix completion
algorithms under the setting d = 1000, n = 100 and » = 10 with different sampling rate p.

Table 2. Experimental results in terms of AP and total running time on NUS-WIDE-OBJECT dataset for multi-label learning via different
methods. p represents the percentage of observed instances. The best averaged AP (the higher the better) is bolded for each setting.

p=10% p=25% p=50%
Dataest Method
averaged AP (std) time (s) averaged AP (std) time (s) averaged AP (std) time (s)
BR-linear  0.3280 (0.0037)  9.72 x 10>  0.3357 (0.0046)  2.77 x 10°  0.3428 (0.0031)  7.15 x 10°
NUS-WIDE = Maxide 0.5349 (0.0034)  3.21 x 101 0.5562 (0.0021)  3.42 x 10  0.5629 (0.0023)  3.27 x 10*
OBJECT  AltMin 0.5265 (0.0031)  1.92 x 10! 0.5536(0.0028)  2.11 x 10  0.5591 (0.0027)  2.03 x 10*
Ours 0.5434 (0.0040)  7.53 x 10°  0.5677 (0.0027)  7.19 x 10°  0.5718 (0.0023)  9.57 x 10°

of our proposed algorithm in terms of computation and is
well aligned with our theory.

6.2. Multi-Label Learning

We also apply our proposed algorithm to multi-label
learning on the image classification dataset NUS-WIDE-
OBJECT obtained from Chua et al. (2009), which is one
of the prominent applications of inductive matrix comple-
tion. Additional experiments on Yahoo datasets (Ueda &
Saito, 2003) are deferred to the supplementary materials.
The NUS-WIDE-OBJECT dataset consists of d; = 30000
images classified by do = 31 object categories, along with
5 types of low-level features extracted from these images.
We construct the feature matrix by further extracting the
top-50 principle components from each type of side infor-
mation, which leads to n; = 250 features in total. Detailed
information regarding the dataset can be found in Chua et al.
(2009). Our goal is to predict the labels associated with
the unseen instances, based on both the side information
as well as the label assignments of the observed instances.
By leveraging the low-rankness property of the unknown
instance-label matrix (Ji et al., 2008; Goldberg et al., 2010),
multi-label learning can be reformulated as an inductive
matrix completion problem (3.2), where L* is the instance-
label matrix, X, represents the feature matrix and Xp, is
set as an identity matrix in this context.

We randomly sample p x 100% instances as the observed
(training) data for each dataset, and treat the remaining
(1 — p) x 100% instances as the unobserved (testing) data,

with p chosen from {10%, 25%, 50%}. We estimate the un-
known matrix of parameters based on the training data, and
report the average precision (AP) (Zhang & Zhou, 2014)
computed from the testing data. Specifically, the average
precision measures the averaged fraction of relevant labels
ranked higher than a specific label. We compare our algo-
rithm with the baseline approach, BR-linear, and existing
inductive matrix completion algorithms, Maxide and Alt-
Min. All the parameters, including the rank r (we tune it
over the grid {5, 10,...,30}), are tuned via 5-fold cross
validation based on the training data. Table 2 depicts the
detailed experimental results. In detail, for each setting of
observed training data, we report the averaged AP over 10
trials and the corresponding standard deviation as well as
the total run time. We can observe from Table 2 that the pro-
posed gradient-based algorithm outperforms the BR-linear
by a large margin. Compared with existing inductive matrix
completion algorithms, our algorithm also achieves signifi-
cantly better results under all of the experimental settings in
terms of both prediction accuracy and running time. This
again illustrates the advantage of our algorithm.

6.3. Gene-Disease Prediction

We further apply our proposed method for predicting gene-
disease associations on the OMIM* data used in Singh-Blom
et al. (2013), which is another successful application of in-
ductive matrix completion. In the context of gene-disease

4OMIM is short for Online Mendelian Inheritance in Man,
which is a public database for human gene-disease studies.
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Figure 2. Experimental results for predicting gene-disease associations: (a) Plot of the probability that a true gene-disease association
is recovered in the top-k predictions based our proposed method for different rank 7; (b) Comparisons of different (inductive) matrix
completion methods based on the empirical cumulative distribution of the rankings with rank » = 200; (c) Comparisons of different
(inductive) matrix completion methods with respect to the standard precision recall measures with rank r» = 200.

association prediction, we let L* € R%1 %92 be the gene-
disease association matrix, such that L;kj = 1if gene ¢ is
associated with disease j; ij = 0 if the association is
unobserved. On this dataset, the association matrix L* is
highly sparse, consisting of d; = 12331 different genes and
do = 3209 different diseases with only 3954 discovered
gene-disease associations. In addition, we obtain the gene
feature matrix X € R%*"1 and disease feature matrix
Xpr € R%*" from Natarajan & Dhillon (2014), where
n1 = 300 gene features and ny = 200 disease features are
extracted respectively. Our objective is to predict potential
genes for certain diseases of interest based on both the ob-
served associations and feature information, which can thus
be formulated as an inductive matrix completion problem.
Following Natarajan & Dhillon (2014), we include an addi-
tional regularization term in (4.1) to take into account the
sparsity of the underlying association matrix

fo(U, V) + X ||Poe (X, UVTX L)%, (6.1)

min
UeR™1 X"
VER’VLZ Xr

where 7 is the supposed rank of L*, €2 stands for the (train-
ing) index set of gene-disease associations, and §2¢ repre-
sents its complement. Note that all the algorithms we stud-
ied here including ours can be directly applied to solve (6.1)
with slight modification. In our experiment, we tune the
regularization parameter A via cross validation and choose
the best value A = 0.5.

To evaluate the performance of our method, we equally split
the known gene-disease associations into three groups and
perform 3-fold cross validation. Specifically, we treat each
group as testing data once and apply our gradient-based
method on the remaining two groups to obtain the estima-
tion matrix of L*. For every gene-disease pair (g, d) in the
testing group, we order all the genes by the corresponding
estimated values associated with disease d, and then record
the ranking of gene ¢ in the list. We use the cumulative dis-
tribution of the rankings (Singh-Blom et al., 2013; Natarajan

& Dhillon, 2014) as the performance measure for evaluation,
i.e., the probability that the ranking is less than a specific
threshold k£ € {1,2,...,100}. The experimental results
with rank 7 varied in the range {10, 30, 50, 100, 200} based
on our method are displayed in Figure 2(a), which indicates
that the rank plays an important role in gene-disease pre-
diction: higher rank leads to better performance. In later
experiments, we choose r = 200 because the performance
of inductive matrix completion on this dataset tends to be
saturated when r = 200.

Moreover, we compare our algorithm with the following al-
gorithms: MC, Maxide and AltMin, which are discussed at
the beginning of Section 6. The comparison results in terms
of the cumulative distribution of the rankings are illustrated
in Figure 2(b). It can be seen that our proposed algorithm
uniformly outperforms other methods over all threshold val-
ues k. In addition, we present the precision-recall curves for
all the methods we compared in Figure 2(c). Here the pre-
cision is defined as the ratio of true recovered gene-disease
associations to the total number of associations we assessed;
and the recall is the fraction of the true gene-disease asso-
ciations that are recovered. Again, the proposed method
dominates other relevant approaches, which suggests that
our method can better serve for biologists to discover new
gene-disease associations.

7. Conclusions and Future Work

In this paper we proposed the first gradient-based non-
convex optimization algorithm for inductive matrix comple-
tion with sample complexity linear in the number of features
and converges to the unknown low-rank matrix at a linear
rate. One possible future direction is to extend our algorithm
to the case with noisy side information (Chiang et al., 2015)
or the agnostic setting, i.e., the underlying matrix has high
rank (Du et al., 2017b). Another direction is to generalize
our approach to non-linear models (Si et al., 2016).
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