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Abstract
The sparse inverse covariance estimation prob-
lem is commonly solved using an `1-regularized
Gaussian maximum likelihood estimator known
as “graphical lasso”, but its computational cost
becomes prohibitive for large data sets. A re-
cent line of results showed–under mild assump-
tions–that the graphical lasso estimator can be re-
trieved by soft-thresholding the sample covari-
ance matrix and solving a maximum determi-
nant matrix completion (MDMC) problem. This
paper proves an extension of this result, and
describes a Newton-CG algorithm to efficiently
solve the MDMC problem. Assuming that the
thresholded sample covariance matrix is sparse
with a sparse Cholesky factorization, we prove
that the algorithm converges to an ε-accurate so-
lution in O(n log(1/ε)) time and O(n) memory.
The algorithm is highly efficient in practice: we
solve the associated MDMC problems with as
many as 200,000 variables to 7-9 digits of ac-
curacy in less than an hour on a standard laptop
computer running MATLAB.

1. Introduction
Consider the problem of estimating an n × n covariance
matrix Σ (or its inverse Σ−1) of a n-variate probability dis-
tribution from N independently and identically distributed
samples x1,x2, . . . ,xN drawn from the same probability
distribution. In applications spanning from computer vi-
sion, natural language processing, to economics (Li, 1994;
Manning & Schütze, 1999; Durlauf, 1993), the matrix Σ−1

is often sparse, meaning that its matrix elements are mostly
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zero. For Gaussian distributions, the statistical interpre-
tation of sparsity in Σ−1 is that most of the variables
are pairwise conditionally independent (Meinshausen &
Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al., 2008;
Banerjee et al., 2008).

Imposing sparsity upon Σ−1 can regularize the associ-
ated estimation problem and greatly reduce the number of
samples required. This is particularly important in high-
dimensional settings where n is large, often significantly
larger than the number of samples N � n. One pop-
ular approach regularizes the associated maximum likeli-
hood estimation (MLE) problem by a sparsity-promoting
`1 term, as in

minimize
X�0

trCX − log detX + λ

n∑
i=1

n∑
j=1

|Xi,j |. (1)

Here, C = 1
N

∑N
i=1(xi − x̄)(xi − x̄)T is the sample

covariance matrix with sample mean x̄ = 1
N

∑N
i=1 xi,

and X is the resulting estimator for Σ−1. This approach,
commonly known as the graphical lasso (Friedman et al.,
2008), is known to enjoy a number of statistical guaran-
tees (Rothman et al., 2008; Ravikumar et al., 2011), some
of which are direct extensions of earlier work on the classi-
cal lasso (Obozinski et al., 2008; Negahban & Wainwright,
2008; Wainwright, 2009; Huang & Zhang, 2010). A vari-
ation on this theme is to only impose the `1 penalty on the
off-diagonal elements of X , or to place different weights
λ on the elements of the matrix X , as in the classical
weighted lasso.

While the `1-regularized problem (1) is technically con-
vex, it is commonly considered intractable for large-scale
datasets. The decision variable is an n×nmatrix, so simply
fitting all O(n2) variables into memory is already a signif-
icant issue. General-purpose algorithms have either pro-
hibitively high complexity or slow convergence. In prac-
tice, (1) is solved using problem-specific algorithms. The
state-of-the-art include GLASSO (Friedman et al., 2008),
QUIC (Hsieh et al., 2014), and its “big-data” extension
BIG-QUIC (Hsieh et al., 2013). These algorithms use be-
tween O(n) and O(n3) time and between O(n2) and O(n)
memory per iteration, but the number of iterations needed
to converge to an accurate solution can be very large.

http://alum.mit.edu/www/ryz
http://alum.mit.edu/www/ryz
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1.1. Graphical lasso, soft-thresholding, and MDMC

The high practical cost of graphical lasso has inspired a
number of heuristics, which enjoy less guarantees but are
significantly cheaper to use. Indeed, heuristics are often the
only viable option once n exceeds the order of a few tens
of thousands.

One simple idea is to threshold the sample covariance ma-
trix C: to examine all of its elements and keep only the
ones whose magnitudes exceed some threshold. In a re-
cent line of work (Mazumder & Hastie, 2012; Sojoudi,
2016; Fattahi & Sojoudi, 2017; Fattahi et al., 2018), this
simple heuristic was shown to enjoy some surprising guar-
antees. In particular, (Sojoudi, 2016; Fattahi & Sojoudi,
2017) proved that when the lasso weight is imposed over
only the off-diagonal elements of X that—under some as-
sumptions—the sparsity pattern of the associated graphi-
cal lasso estimator can be recovered by performing a soft-
thresholding operation on C, as in

(Cλ)i,j =


Ci,j i = j,

Ci,j − λ Ci,j > λ, i 6= j,

0 |Ci,j | ≤ λ i 6= j,

Ci,j + λ −λ ≤ Ci,j i 6= j,

(2)

and recovering the sparsity pattern

G = {(i, j) ∈ {1, . . . , n}2 : (Cλ)i,j 6= 0}. (3)

The associated graph (also denoted as G when there is no
ambiguity) is obtained by viewing each nonzero element
(i, j) in G as an edge between the i-th and j-th vertex in an
undirected graph on n nodes. Moreover, they showed that
the estimator X can be recovered by solving a version of
(1) in which the sparsity pattern G is explicitly imposed, as
in

minimize
X�0

trCλX − log detX (4)

subject to Xi,j = 0 ∀(i, j) /∈ G.

Recovering the exact value of X (and not just its spar-
sity pattern) is important because it provides a shrinkage
MLE when the true MLE is ill-defined; for Gaussian fields,
its nonzero values encode the partial correlations between
variables. Problem (4) is named the maximum determinant
matrix completion (MDMC) in the literature, for reasons
explained below. The problem has a recursive closed-form
solution whenever the graph of G is acyclic (i.e. a tree or
forest) (Fattahi & Sojoudi, 2017), or more generally, if it
is chordal (Fattahi et al., 2018). It is worth emphasizing
that the closed-form solution is extremely fast to evaluate:
a chordal example in (Fattahi et al., 2018) with 13,659 vari-
ables took just ≈ 5 seconds to solve on a laptop computer.

The assumptions needed for graphical lasso to be equiv-
alent to thresolding are hard to check but relatively mild.

Indeed, (Fattahi & Sojoudi, 2017) proves that they are auto-
matically satisfied whenever λ is sufficiently large relative
to the sample covariance matrix. Their numerical study
found “sufficiently large” to be a fairly loose criterion in
practice, particularly in view of the fact that large values
of λ are needed to induce a sufficiently sparse estimate of
Σ−1, e.g. with ≈ 10n nonzero elements.

However, the requirement for G to be chordal is very
strong. Aside from trivial chordal graphs like trees and
cliques, thresholding will produce a chordal graph with
probability zero. When G is nonchordal, no closed-form
solution exists, and one must resort to an iterative algo-
rithm. The state-of-the-art for nonchordal MDMC is to
embed the nonchordal graph within a chordal graph, and
to solve the resulting problem as a semidefinite program
using an interior-point method.

1.2. Main results

The purpose of this paper is two-fold. First, we derive
an extension of the guarantees derived by (Mazumder &
Hastie, 2012; Sojoudi, 2016; Fattahi & Sojoudi, 2017; Fat-
tahi et al., 2018) for a slightly more general version of the
problem that we call restricted graphical lasso (RGL):

X̂ = minimize
X�0

trCX − log detX (5)

+

n∑
i=1

n∑
j=i+1

λi,j |Xi,j |.

subject to Xi,j = 0 ∀(i, j) /∈ H.

In other words, RGL is (1) penalized by a weighted lasso
penalty λi,j on the off-diagonals, and with an a priori spar-
sity pattern H imposed as an additional constraint. We use
the sparsity pattern H to incorporate prior information on
the structure of the graphical model. For example, if the
sample covariance C is collected over a graph, such as a
communication system or a social network, then far-away
variables can be assumed as pairwise conditionally inde-
pendent (Park & Rilett, 1999; Honorio et al., 2009; Croft
et al., 2010). Including these neighborhood relationships
into H can regularize the statistical problem, as well as re-
duce the numerical cost for a solution.

In Section 2, we describe a procedure to transform RGL (5)
into MDMC (4), in the same style as prior results by (Fat-
tahi & Sojoudi, 2017; Fattahi et al., 2018) for graphical
lasso. More specifically, we soft-threshold the sample co-
variance C and then project this matrix onto the sparsity
pattern H . We give conditions for the resulting sparsity
pattern to be equivalent to the one obtained by solving (5).
Furthermore, we prove that the resulting estimator X can
be recovered by solving the same MDMC problem (4) with
Cλ appropriately modified.
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The second purpose is to describe an efficient algorithm to
solve MCDC when the graph G is nonchordal, based on
the chordal embedding approach of (Dahl et al., 2008; An-
dersen et al., 2010; 2013b). We embed G within a chordal
G̃ ⊃ G, to result in a convex optimization problem over
Sn
G̃

, the space of real symmetric matrices with sparsity pat-
tern G̃. This way, the constraint X ∈ Sn

G̃
is implicitly

imposed, meaning that we simply ignore the nonzero el-
ements not in G̃. Next, we solve an optimization problem
on Sn

G̃
using a custom Newton-CG method. The main idea

is to use an inner conjugate gradients (CG) loop to solve the
Newton subproblem of an outer Newton’s method. The ac-
tual algorithm has a number of features designed to exploit
problem structure, including the sparse chordal property of
G̃, duality, and the ability for CG and Newton to converge
superlinearly; these are outlined in Section 3.

Assuming that the chordal embedding is sparse with |G̃| =
O(n) nonzero elements, we prove in Section 3.4, that our
algorithm converges to an ε-accurate solution of MDMC
(4) in

O(n · log ε−1 · log log ε−1) time and O(n) memory. (6)

Most importantly, the algorithm is highly efficient in prac-
tice. In Section 4, we present computation results on a suite
of test cases. Both synthetic and real-life graphs are consid-
ered. Using our approach, we solve sparse inverse covari-
ance estimation problems containing as many as 200,000
variables, in less than an hour on a laptop computer.

1.3. Related Work

Graphical lasso with prior information. A number of
approaches are available in the literature to introduce prior
information to graphical lasso. The weighted version of
graphical lasso mentioned before is an example, though
RGL will generally be more efficient to solve due to a
reduction in the number of variables. (Egilmez et al.,
2017) introduced a class of graphical lasso in which the
true graphical model is assumed to have Laplacian struc-
ture. This structure commonly appears in signal and image
processing (Milanfar, 2013). For the a priori graph-based
correlation structure described above, (Grechkin et al.,
2015) introduced a pathway graphical lasso method sim-
ilar to RGL.

Algorithms for graphical lasso. Algorithms for graph-
ical lasso are usually based on some mixture of New-
ton (Oztoprak et al., 2012), proximal Newton (Hsieh et al.,
2013; 2014), iterative thresholding (Rolfs et al., 2012), and
(block) coordinate descent (Friedman et al., 2008; Treister
& Turek, 2014). All of these suffer fundamentally from the
need to keep track and act on allO(n2) elements in the ma-
trix X decision variable. Even if the final solution matrix
were sparse with O(n) nonzeros, it is still possible for the

algorithm to traverse through a “dense region” in which the
iterateX must be fully dense. Thresholding heuristics have
been proposed to address issue, but these may adversely af-
fect the outer algorithm and prevent convergence. It is gen-
erally impossible to guarantee a figure lower than O(n2)
time per-iteration, even if the solution contains only O(n)
nonzeros. Most of the algorithms mentioned above actually
have worst-case per-iteration costs of O(n3).

Graphical lasso via thresholding. The elementary esti-
mator for graphical models (EE-GM) (Yang et al., 2014) is
another thresholding-based low-complexity method that is
able to recover the actual graphical lasso estimator. Both
EE-GM and our algorithm have a similar level of perfor-
mance in practice, because both algorithm are bottlenecked
by the initial thresholding step, which is a quadratic O(n2)
time operation.

Algorithms for MDMC. Our algorithm is inspired by a
line of results (Dahl et al., 2008; Andersen et al., 2010;
2013b; Li et al., 2017) for minimizing the log-det penalty
on chordal sparsity patterns, culminating in the CVXOPT
package (Andersen et al., 2013a). These algorithms all
solve the Newton subproblem by explicitly forming and
factoring the fully-dense Newton matrix in O(nm2 +m3)
time, where m = |G̃\G| is the number of edges added
during chordal embedding. By comparison, our algorithm
solves the Newton subproblem iteratively using CG, in
O(n+m) time to machine precision (see Section 3.4).

Notations

Let Rn and Sn be the set of n×1 real vectors, and n×n real
symmetric matrices. We endow Sn with the usual matrix
inner product X • Y = trXY and Euclidean (i.e. Frobe-
nius) norm ‖X‖2F = X •X . Let Sn+ ⊂ Sn and Sn++ ⊂ Sn+
be the associated set of positive semidefinite and positive
definite matrices. We will frequently write X � 0 to mean
X ∈ Sn+ and write X � 0 to mean X ∈ Sn++. Given a
sparsity pattern G, we define SnG ⊆ Sn as the set of n × n
real symmetric matrices with this sparsity pattern.

2. Restricted graphical lasso,
soft-thresholding, and MDMC

Let PH(X) denote the projection operator from Sn onto
SnH , i.e. by setting all Xi,j = 0 if (i, j) /∈ H . Let Cλ be the
sample covariance matrix C individually soft-thresholded
by [λi,j ], as in

(Cλ)i,j =


Ci,j i = j,

Ci,j − λi,j Ci,j > λi,j , i 6= j,

0 |Ci,j | ≤ λi,j i 6= j,

Ci,j + λi,j −λi,j ≤ Ci,j i 6= j,

(7)
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In this section, we state the conditions for PH(Cλ)—the
projection of the soft-thresholded matrix Cλ in (7) onto
H—to have the same sparsity pattern as the RGL estimator
X̂ in (5). Furthermore, the estimator X̂ can be explicitly re-
covered by solving the MDMC problem (4) while replacing
Cλ ← PH(Cλ) and G ← PH(G). For brevity, all proofs
and remarks are omitted; these can be found in the supple-
mentary materials.

Before we state the exact conditions, we begin by adopting
the some definitions and notations from the literature.

Definition 1. (Fattahi & Sojoudi, 2017) Given a matrix
M ∈ Sn, define GM = {(i, j) : Mi,j 6= 0} as its spar-
sity pattern. Then M is called inverse-consistent if there
exists a matrix N ∈ Sn such that

M +N � 0 (8a)
N = 0 ∀(i, j) ∈ GM (8b)

(M +N)−1 ∈ SnGM
(8c)

The matrix N is called an inverse-consistent complement
of M and is denoted by M (c). Furthermore, M is called
sign-consistent if for every (i, j) ∈ GM , the (i, j)-th ele-
ments of M and (M +M (c))−1 have opposite signs.

Moreover, we take the usual matrix max-norm to exclude
the diagonal, as in ‖M‖max = maxi 6=j |Mij |, and adopt
the β(G,α) function defined with respect to the sparsity
pattern G and scalar α > 0

β(G,α) = max
M�0
‖M (c)‖max

s.t. M ∈ SnG and ‖M‖max ≤ α
Mi,i = 1 ∀i ∈ {1, . . . , n}
M is inverse-consistent.

We are now ready to state the conditions for soft-
thresholding to be equivalent to RGL.

Theorem 2. Define Cλ as in (7), define CH = PH(Cλ)
and let GH = {(i, j) : (CH)i,j 6= 0} be its sparsity
pattern. Then GH coincides with sparsity pattern of the
optimal solution X̂ of RGL (5) if the normalized matrix
C̃ = D−1/2CHD

−1/2 where D = diag(CH) satisfies the
following conditions:

1. C̃ is positive definite,

2. C̃ is sign-consistent,

3. Let βH = β
(
GH , ‖C̃‖max

)
. Then

βH ≤ min
(k,l)/∈GH

λk,l − |(CH)k,l|√
(CH)k,k · (CH)l,l

(9)

Proof. See supplementary materials.

Theorem 2 leads to the following corollary, which asserts
that the optimal solution of RGL can be obtained by maxi-
mum determinant matrix completion: computing the matrix
Z � 0 with the largest determinant that “fills-in” the zero
elements of PH(Cλ).

Corollary 3. Suppose that the conditions in Theorem 2 are
satisfied. Define Ẑ as the solution to the following

Ẑ = maximize
Z�0

log detZ (10)

subject to Zi,j = PH(Cλ) for all (i, j)

where [PH(Cλ)]i,j 6= 0

Then Ẑ = X̂−1, where X̂ is the solution of (5).

Proof. See supplementary materials.

Standard manipulations show that (10) is the Lagrangian
dual of (4), thus explaining the etymology of (4) as
MDMC.

3. Proposed Algorithm
This section describes an efficient algorithm to solve
MDMC (4) in which the sparsity pattern G is nonchordal.
If we assume that the input matrix Cλ is sparse, and that
sparse Cholesky factorization is able to solve Cλx = b in
O(n) time, then our algorithm is guaranteed to compute an
ε-accurate solution in O(n log ε−1) time and O(n) mem-
ory.

The algorithm is fundamentally a Newton-CG method, i.e.
Newton’s method in which the Newton search directions
are computed using conjugate gradients (CG). It is devel-
oped from four key insights:

1. Chordal embedding is easy via sparse matrix heuris-
tics. State-of-the-art algorithms for (4) begin by computing
a chordal embedding G̃ forG. The optimal chordal embed-
ding with the fewest number of nonzeros |G̃| is NP-hard to
compute, but a good-enough embedding with O(n) nonze-
ros is sufficient for our purposes. Computing a good G̃
with |G̃| = O(n) is exactly the same problem as finding a
sparse Cholesky factorization Cλ = LLT with O(n) fill-
in. Using heuristics developed for numerical linear algebra,
we are able to find sparse chordal embeddings for graphs
containing millions of edges and hundreds of thousands of
nodes in seconds.

2. Optimize directly on the sparse matrix cone. Using
log-det barriers for sparse matrix cones (Dahl et al., 2008;
Andersen et al., 2010; 2013b; Vandenberghe et al., 2015),
we can optimize directly in the space Sn

G̃
, while ignoring

all matrix elements outside of G̃. If |G̃| = O(n), then
only O(n) decision variables must be explicitly optimized.
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Moreover, each function evaluation, gradient evaluation,
and matrix-vector product with the Hessian can be per-
formed in O(n) time, using the numerical recipes in (An-
dersen et al., 2013b).

3. The dual is easier to solve than the primal. The primal
problem starts with a feasible point X ∈ Sn

G̃
and seeks

to achieve first-order optimality. The dual problem starts
with an infeasible optimal point X /∈ Sn

G̃
satisfying first-

order optimality, and seeks to make it feasible. Feasibility
is easier to achieve than optimality, so the dual problem is
easier to solve than the primal.

4. Conjugate gradients (CG) converges in O(1) itera-
tions. Our main result (Theorem 6) bounds the condition
number of the Newton subproblem to be O(1), indepen-
dent of the problem dimension n and the current accuracy
ε. It is therefore cheaper to solve this subproblem using
CG to machine precision δmach inO(n log δ−1mach) time than
it is to solve for it directly in O(nm2 + m3) time using
Cholesky factorization (Dahl et al., 2008; Andersen et al.,
2010; 2013b). Moreover, CG is an optimal Krylov sub-
space method, and as such, it is often able to exploit clus-
tering in the eigenvalues to converge superlinearly. Finally,
computing the Newton direction to high accuracy further
allows the outer Newton method to also converge quadrat-
ically.

The remainder of this section describes each consideration
in further detail. We state the algorithm explicitly in Sec-
tion 3.5.

3.1. Efficient chordal embedding

Following (Dahl et al., 2008), we begin by reformulating
(4) into a sparse chordal matrix program

X̂ = minimize trCX − log detX (11)

subject to Xi,j = 0 ∀(i, j) ∈ G̃\G.
X ∈ Sn

G̃
.

in which G̃ is a chordal embedding forG: a sparsity pattern
G̃ ⊃ G whose graph contains no induced cycles greater
than three. This can be implemented using standard al-
gorithms for large-and-sparse linear equations, due to the
following result.
Proposition 4. Let C ∈ SnG be a positive definite ma-
trix with sparsity pattern G. Compute its unique lower-
triangular Cholesky factor L satisfying C = LLT . Ignor-
ing perfect numerical cancellation, the sparsity pattern of
L+ LT is a chordal embedding G̃ ⊃ G.

Proof. The original proof is due to (Rose, 1970); see
also (Vandenberghe et al., 2015).

Note that G̃ can be determined directly from G using a

p = amd(C); % fill-reducing ordering
[h,~,~,~,R] = symbfact(C(p,p));
Gt = R+R'; Gt(p,p) = Gt;
m = nnz(R)-nnz(tril(C));

Figure 1. MATLAB code for chordal embedding via its internal
approximate minimum degree ordering. Given a sparse matrix
(C), compute a chordal embedding (Gt) and the number of added
edges (m).

symbolic Cholesky algorithm, which simulates the steps of
Gaussian elimination using Boolean logic. Moreover, we
can substantially reduce the number of edges added toG by
reordering the columns and rows of C using a fill-reducing
ordering.

Corollary 5. Let Π be a permutation matrix. For the same
C ∈ SnG in Proposition 4, compute the unique Cholesky
factor satisfying ΠCΠT = LLT . Ignoring perfect numer-
ical cancellation, the sparsity pattern of Π(L + LT )ΠT is
a chordal embedding G̃ ⊃ G.

The problem of finding the best choice of Π is known
as the fill-minimizing problem, and is NP-complete (Yan-
nakakis, 1981). However, good orderings are easily found
using heuristics developed for numerical linear algebra,
like minimum degree ordering (George & Liu, 1989) and
nested dissection (Gilbert, 1988; Agrawal et al., 1993). If
G admits sparse chordal embeddings, then a good-enough
|G̃| = O(n) will usually be found using a simple mini-
mum degree ordering; see the MATLAB code snippet in
Figure 1.

3.2. Logarithmic barriers for sparse matrix cones

Define the cone of sparse positive semidefinite matrices K,
and the cone of sparse matrices with positive semidefinite
completions K∗, as the following

K = Sn+ ∩ Sn
G̃
,

K∗ = {S •X ≥ 0 : S ∈ SG̃} = PG̃(Sn+).

Then (11) can be posed as the primal-dual pair:

arg min
X∈K
{C •X + f(X) : AT (X) = 0}, (12)

arg max
S∈K∗,y∈Rm

{−f∗(S) : S = C −A(y)}, (13)

where the linear map A : Rm → Sn
G̃\G converts a list of m

variables into the corresponding matrix in G̃\G, and f and
f∗ are the “log-det” barrier functions onK andK∗ as intro-
duced by (Dahl et al., 2008; Andersen et al., 2010; 2013b)

f(X) = − log detX, f∗(S) = − min
X∈K
{S •X + f(X)}.
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Assuming that G̃ is sparse and chordal, the functions f
and f∗, their gradient evaluations, and Hessian matrix-
vector products can all be efficiently evaluated in O(n)
time and O(n) memory, using the numerical recipes de-
scribed in (Andersen et al., 2013b).

3.3. Solving the dual problem

Our algorithm actually solves the dual problem (13), which
can be rewritten as an unconstrained optimization problem

ŷ ≡ arg min
y∈Rm

g(y) ≡ f∗(Cλ −A(y)). (14)

After the solution ŷ is found, we can recover the optimal es-
timator for the primal problem via X̂ = −∇f∗(Cλ−A(y)).
The dual problem (13) is easier to solve than the primal (12)
because the origin y = 0 often lies very close to the solu-
tion ŷ. To see this, note that y = 0 produces a candidate
estimator X̃ = −∇f∗(Cλ) that solves the chordal matrix
completion problem

X̃ = arg min{trCλX − log detX : X ∈ Sn
G̃
},

which is a relaxation of the nonchordal problem posed over
SnG. As observed by previous authors (Dahl et al., 2008),
this relaxation is a high quality guess, and X̃ is often “al-
most feasible” for the original nonchordal problem posed
over SnG, as in X̃ ≈ PG(X̃). Some simple algebra shows
that ‖∇g(0)‖ = ‖X̃ −PG(X̃)‖F , so if X̃ ≈ PG(X̃) holds
true, then the origin y = 0 is close to optimal. Starting
from this point, we can expect Newton’s method to rapidly
converge at a quadratic rate.

3.4. CG converges in O(1) iterations

The most computationally expensive part of Newton’s
method is the solution of the Newton direction ∆y via the
m×m system of equations

∇2g(y)∆y = −∇g(y). (15)

The Hessian matrix ∇2g(y) is fully dense, but matrix-
vector products are linear O(n) time using the algorithms
in Section 3.2. This insight motivates solving (15) using an
iterative Krylov subspace method like conjugate gradients
(CG), which is a matrix-free method that requires a single
matrix-vector product with ∇2g(y) at each iteration (Bar-
rett et al., 1994). Starting from the origin p = 0, the method
converges to an ε-accurate search direction p satisfying

(p−∆y)T∇2g(y)(p−∆y) ≤ ε|∆yT∇g(y)|

in at most ⌈√
κg log(2/ε)

⌉
CG iterations, (16)

where κg = ‖∇2g(y)‖‖∇2g(y)−1‖ is the condition num-
ber of the Hessian matrix (Greenbaum, 1997; Saad, 2003).

Below, we state our main result, which says that the condi-
tion number κg depends polynomially on the problem data
and the quality of the initial point, but is independent of
the problem dimension n and the accuracy of the current
iterate ε.

Theorem 6. At any y satisfying g(y) ≤ g(y0) and
∇g(y)T (y − y0) ≤ φmax, the condition number κg of the
Hessian matrix∇2g(y) is bound

κg ≤ 4

(
1 +

φ2maxλmax(X0)

λmin(X̂)

)2

. (17)

where φmax = g(y0)− g(ŷ) is the initial infeasibility, A =
[vecA1, . . . , vecAm] is the vectorized data matrix, X0 =
−∇f∗(C −A(y0)), and X̂ = −∇f∗(C −A(ŷ)).

Proof. See supplementary materials.

Remark 7. Newton’s method is a descent method, so its k-
th iterate yk trivially satisfies g(yk) ≤ g(y0). Technically,
the condition∇g(yk)T (yk−y0) ≤ φmax can be guaranteed
by enclosing Newton’s method within an outer auxillary
path-following loop; see Section 4.3.5 of (Nesterov, 2013).
In practice, naive Newton’s method will usually satisfy the
condition on its own; see our numerical experiments in Sec-
tion 4.

Applying Theorem 6 to (16) shows that CG solves each
Newton subproblem to ε-accuracy in O(log ε−1) itera-
tions. Multiplying this figure by the O(log log ε−1) New-
ton steps to converge yields a global iteration bound of
O(log ε−1 ·log log ε−1) ≈ O(1) CG iterations. Multiplying
this figure by theO(n) cost of each CG iteration proves the
claimed time complexity in (6). In practice, CG typically
converges much faster than this worst-case bound, due to its
ability to exploit the clustering of eigenvalues in ∇2g(y);
see (Greenbaum, 1997; Saad, 2003). Moreover, accurate
Newton directions are only needed to guarantee quadratic
convergence close to the solution. During the initial New-
ton steps, we may loosen the error tolerance for CG for a
significant speed-up. Inexact Newton steps can be used to
obtain a speed-up of a factor of 2-3.

3.5. The full algorithm

To summarize, we begin by computing a chordal embed-
ding G̃ for the sparsity pattern G of Cλ, using the code
snippet in Figure 1. We use the embedding to reformu-
late (4) as (11), and solve the unconstrained problem ŷ =
miny g(y) defined in (14), using Newton’s method

yk+1 = yk + αk∆yk, ∆yk ≡ −∇2g(yk)−1∇g(yk)

starting at the origin y0 = 0. The function value g(y),
gradient ∇g(y) and Hessian matrix-vector products are all
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Figure 2. CPU time Newton-CG vs QUIC for case study 1.
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Figure 3. CPU time Newton-CG vs QUIC for case study 2.

evaluated using the numerical recipes described by (Ander-
sen et al., 2013b).

At each k-th Newton step, we compute the Newton search
direction ∆yk using conjugate gradients. A loose tolerance
is used when the Newton decrement δk = |∆yTk∇g(yk)| is
large, and a tight tolerance is used when the decrement is
small, implying that the iterate is close to the true solution.
Once a Newton direction ∆yk is computed with a suffi-
ciently large Newton decrement δk, we set the step-size αk
to be the first instance of the sequence {1, ρ, ρ2, ρ3, . . . }
that satisfies the Armijo–Goldstein condition

g(y + α∆y) ≤ g(y) + γα∆yT∇g(y),

in which γ ∈ (0, 0.5) and ρ ∈ (0, 1) are line search param-
eters. Our implementation used γ = 0.01 and ρ = 0.5. We
complete the step and repeat the process, until convergence.

We terminate the outer Newton’s method if the Newton
decrement δk falls below a threshold. This implies either
that the solution has been reached, or that CG is not con-
verging to a good enough ∆yk to make significant progress.
The associated estimator for Σ−1 is recovered by evaluat-
ing X̂ = −∇f∗(Cλ −A(ŷ)).

4. Numerical Results
Finally, we benchmark our algorithm against QUIC (Hsieh
et al., 2014), commonly considered the fastest solver for
graphical lasso or RGL1. We consider two case studies.
The first case study numerically verifies the claimed O(n)
complexity of our MDMC algorithm on problems with a
nearly-banded structure. The second case study performs
the full threshold-MDMC procedure for graphical lasso
and RGL, on graphs collected from real-life applications.
All experiments are performed on a laptop computer with
an Intel Core i7 quad-core 2.50 GHz CPU and 16GB RAM.
The reported results are based on a serial implementation in
MATLAB-R2017b. Both our Newton decrement threshold
and QUIC’s convergence threshold are 10−7.

4.1. Case Study 1: Banded Patterns

The first case study aims to verify the claimed O(n) com-
plexity of our algorithm for MDMC. Here, we avoid the
proposed thresholding step, and focus solely on the MDMC
(4) problem. Each sparsity pattern G is a corrupted banded
matrices with bandwidth 101. The off-diagonal nonzero
elements of C are selected from the uniform distribution
in [−2, 0) and then corrupted to zero with probability 0.3.
The diagonal elements are fixed to 5. Our numerical exper-
iments fix the bandwidth and vary the number of variables
n from 1,000 to 200,000. A time limit of 2 hours is set for
both algorithms.

Figure 2 compares the running time of both algorithms. A
log-log regression results in an empirical time complexity
ofO(n1.1) for our algorithm, andO(n2) for QUIC. The ex-
tra 0.1 in the exponent is most likely an artifact our MAT-
LAB implementation. In either case, QUIC’s quadratic
complexity limits it to n = 1.5 × 104. By contrast, our
algorithm solves an instance with n = 2× 105 in less than
33 minutes. The resulting solutions are extremely accurate,
with optimality and feasibility gaps of less than 10−16 and
10−7, respectively.

4.2. Case Study 2: Real-Life Graphs

The second case study aims to benchmark the full
thresholding-MDMC procedure for sparse inverse covari-
ance estimation on real-life graphs. The actual graphs (i.e.
the sparsity patterns) for Σ−1 are chosen from SuiteSparse
Matrix Collection (Davis & Hu, 2011)—a publicly avail-
able dataset for large-and-sparse matrices collected from
real-world applications. Our chosen graphs vary in size
from n = 3918 to n = 201062, and are taken from ap-

1Two other widely-used algorithms are GLASSO (Friedman
et al., 2008) and BIGQUIC (Hsieh et al., 2013). On a serial ma-
chine and for the problem sizes that we consider, we found both
to be slower than QUIC.
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Newton-CG QUIC
# file name type n m m/n sec gap feas sec diff. gap speed-up
1 freeFlyingRobot-7 GL 3918 20196 5.15 28.9 5.7e-17 2.3e-7 31.0 3.9e-4 1.07
1 freeFlyingRobot-7 RGL 3918 20196 5.15 12.1 6.5e-17 2.9e-8 38.7 3.8e-5 3.20
2 freeFlyingRobot-14 GL 5985 27185 4.56 23.5 5.4e-17 1.1e-7 78.3 3.8e-4 3.33
2 freeFlyingRobot-14 RGL 5985 27185 4.56 19.0 6.0e-17 1.7e-8 97.0 3.8e-5 5.11
3 cryg10000 GL 10000 170113 17.0 17.3 5.9e-17 5.2e-9 360.3 1.5e-3 20.83
3 cryg10000 RGL 10000 170113 17.0 18.5 6.3e-17 1.0e-7 364.1 1.9e-5 19.68
4 epb1 GL 14734 264832 18.0 81.6 5.6e-17 4.3e-8 723.5 5.1e-4 8.86
4 epb1 RGL 14734 264832 18.0 44.2 6.2e-17 3.3e-8 1076.4 4.2e-4 24.35
5 bloweya GL 30004 10001 0.33 295.8 5.6e-17 9.4e-9 ∗ ∗ ∗
5 bloweya RGL 30004 10001 0.33 75.0 5.5e-17 3.6e-9 ∗ ∗ ∗
6 juba40k GL 40337 18123 0.44 373.3 5.6e-17 2.6e-9 ∗ ∗ ∗
6 juba40k RGL 40337 18123 0.44 341.1 5.9e-17 2.7e-7 ∗ ∗ ∗
7 bayer01 GL 57735 671293 11.6 2181.3 5.7e-17 5.2e-9 ∗ ∗ ∗
7 bayer01 RGL 57735 671293 11.6 589.1 6.4e-17 1.0e-7 ∗ ∗ ∗
8 hcircuit GL 105676 58906 0.55 2732.6 5.8e-17 9.0e-9 ∗ ∗ ∗
8 hcircuit RGL 105676 58906 0.55 1454.9 6.3e-17 7.3e-8 ∗ ∗ ∗
9 co2010 RGL 201062 1022633 5.08 4012.5 6.3e-17 4.6e-8 ∗ ∗ ∗

Table 1. Details of case study 2. Here, “n” is the size of the covariance matrix, “m” is the number of edges added to make its sparsity
graph chordal, “sec” is the running time in seconds, “gap” is the optimality gap, “feas” is the feasibility the solution, “diff. gap” is the
difference in duality gaps for the two different methods, and “speed-up” is the fact speed-up over QUIC achieved by our algorithm.

plications in chemical processes, material science, graph
problems, optimal control and model reduction, thermal
processes and circuit simulations.

For each sparsity pattern G, we design a corresponding
Σ−1 as follows. For each (i, j) ∈ G, we select (Σ−1)i,j =
(Σ−1)j,i from the uniform distribution in [−1, 1], and then
corrupt it to zero with probability 0.3. Then, we set each
diagonal to (Σ−1)i,i = 1 +

∑
j |(Σ−1)i,j |. Using this Σ,

we generate N = 5000 samples i.i.d. as x1, . . . ,xN ∼
N (0,Σ). This results in a sample covariance matrix C =
1
N

∑N
i=1 xix

T
i .

We solve graphical lasso and RGL with the C described
above using our proposed soft-thresholding-MDMC algo-
rithm and QUIC, in order to estimate Σ−1. In the case
of RGL, we assume that the graph G is known a priori,
while noting that 30% of the elements of Σ−1 have been
corrupted to zero. Our goal here is to discover the location
of these corrupted elements. In all of our simulations, the
threshold λ is set so that the number of nonzero elements
in the the estimator is roughly the same as the ground truth.
We limit both algorithms to 3 hours of CPU time.

Figure 3 compares the CPU time of both two algorithms
for this case study; the specific details are provided in Ta-
ble 1. A log-log regression results in an empirical time
complexity of O(n1.64) and O(n1.55) for graphical lasso
and RGL using our algorithm, and O(n2.46) and O(n2.52)
for the same using QUIC. The exponents of our algorithm
are ≥ 1 due to the initial soft-thresholding step, which is
quadratic-time on a serial computer, but ≤ 2 because pro-
cedure is dominated by the solution of the MDMC. Both
algorithms solve graphs with n ≤ 1.5 × 104 within the al-
lotted time limit, though our algorithm is 11 times faster on
average. Only our algorithm is able to solve the estimation
problem with n ≈ 2× 105 in a little more than an hour.

To check whether thresholding-MDMC really does solve
graphical lasso and RGL, we substitute the two sets of
estimators back into their original problems (1) and (5).
The corresponding objective values have a relative differ-
ence ≤ 4 × 10−4, suggesting that both sets of estima-
tors are about equally optimal. This observation verifies
our claims in Theorem 2 and Corollary 3 that (1) and (5):
thresholding-MDMC does indeed solve graphical lasso and
RGL.

5. Conclusions
Graphical lasso is a widely-used approach for estimating a
covariance matrix with a sparse inverse from limited sam-
ples. In this paper, we consider a slightly more general
formulation called restricted graphical lasso (RGL), which
additionally enforces a prior sparsity pattern to the estima-
tion. We describe an efficient approach that substantially
reduces the cost of solving RGL: 1) soft-thresholding the
sample covariance matrix and projecting onto the prior pat-
tern, to recover the estimator’s sparsity pattern; and 2) solv-
ing a maximum determinant matrix completion (MDMC)
problem, to recover the estimator’s numerical values. The
first step is quadratic O(n2) time and memory but embar-
rassingly parallelizable. If the resulting sparsity pattern is
sparse and chordal, then the second step can be performed
using the Newton-CG algorithm described in this paper in
linear O(n) time and memory. The algorithm is tested on
both synthetic and real-life data, solving instances with as
many as 200,000 variables to 7-9 digits of accuracy within
an hour on a standard laptop computer.
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