Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms
(Supplementary materials)

A. Proof of Simplifying ADMM (Forero et al., 2010)
By KKT condition of (5), there is:

0= X5(8) = A% (0) + n(2wi (¢ +1) = fult +1) = fi(t + 1))

Implies:
wi(t+1) = 2%]()‘?]‘(?5) - )‘?j(t)) + %(fi(t +1)+ fi(t+1)) (27)
Plug (27) into (6)(7):
N6+ 1) = SOG0)+ X (0) + (il +1) = (6 + 1) @8)
N+ 1) = SO0+ M50 + 20t +1) — e+ 1) 9)

If initialize A{;(0) = A?;(0) to be zero vectors for all node pairs (i, j), (28)(29) imply that A%, (¢) = A2;(t) and A%;(t) =
— (), k € {a,b} will hold for all £. (27) becomes:

1
wij(t+1) = S (filt+1) + f;(t +1) (30)

Let Aj;(t) = A%, (t) = A2;(t), (6)(7) can be simplified as:
/\ij(t+1):)‘ij(t)+g(fi(t+1)_fj(t+1)) (31)

Plug (30) into the augmented Lagrangian (3) to simplify it:

L,({f:} {wzja ZO fi, Di) Z Z (/\ij(t))T(fi — f3)
i i=1 je¥; @2)
F 0 D SO+ LB + 3 S LIS + 0) - £1B)
i1 jev. 2 i=1jev;

Since Zfil D jer, Nig(O)f; ZZ 1 2 jew; Aji(t) fi and Agj(t) = —A;i(t), the second term in (32) can be simplified:

i=1je; i=1j€Y;

The last term can be expressed as:

ZZ B+ fi(8) = filB) = (H ( fi®) + £5(6) = fil3)

i=1j€Y; 1=1 ]E"f/
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Therefore, (32) is simplified as:

N

N
Ly ({fi} {wig, A5}) = ZO(fz',Di) +2) )i+ Z > n(lfi - )+ FHOIE) 33

i=1je¥; i=1jev

Define \;(t) = Zje% Aij(t). Based on (31)(33), the original ADMM updates (4)-(7) are simplified as:

ﬁu+w=wgpmou; 1) + 2Xq(t Tﬁ+n§:Hﬂ— (fi(t) + £;®)13

JEY;:

M@+DM@+Z£%%@+DE@+W

B. Proof of Theorem 3.1
Subtract (17) from (15) and (18) from (16):

VO(f(t +1), Dau) = VO(f*, Daut) + VD = A(Y (t +1) = Y*) + (W(t +1) = 01)(D = A) f(t +1)

AW (E+ DD+ A)(fE+1) = f(8) = Onxa oY
Y(t+1)=Y(t)+60vVD - A(f(t+1) - f*) (35)
By convexity of O(fi, D;), for any f and f2, there is:
(ff = FT(VO(f}, Di) = VO(f}, D)) = 0
Let (-,-) r be frobenius inner product of two matrices, there is:
(f(t+1) = f*,VO(f(t +1),Danr) = VO(f*, Dan))r > 0
Substitute VO(f(t 4+ 1), Dayy) — VO(f*, Dayy) from (34):
0<(ft+1) = f*,—VD =AY (t+1) = Y*")p + (f(t+1) = f*,=(W(t+1) —01)(D — A) f(t + 1)) r 36)

HFE+1) = =W+ DD+ A(ft+1) = f(6)r

Consider the right hand side of (36). Since D — A is symmetric and PSD, v/D — A is also a symmetric matrix and by (35),

(Ft+1) = 1 —VD = AV (E+1) =Y ) r = (—VD = A(f(t+1) = ), (Y(E+1) = V")

=GO+ Y)Y+ 1)~V )

Rearrange (36) and use (D — A)f* =0nxd
0> (Z(t+1) = Z*, J(t+ 1)(Z(t+1) = ZO)r + (fE+1) = f* (W(t+1) —00)(D = A)(f(t+1) = [))r
(38)

Suppose 7;(t) > 6 for all ¢, 1, i.e., the diagonal matrix W (¢) — 81 = 0 for all ¢. Since D — A > 0, whose eigenvalues are all
non-negative, the eigenvalues of (W (¢t + 1) — 6I)(D — A) are thus also non-negative, i.e., (W(t+1) —0I)(D — A) = 0
Then for the second term of the RHS of (38), there is:

(fE+1) = (Wt+1) = 00D - A)(f(t+1) = f)r =0
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Therefore,
(ZA+1) =2, Jt+1)(Z(t+1) - Z(t)r <0 (39)

To simplify the notation, for a matrix X, let || X||3 = (X, JX) r, then (39) can be represented as:
1 *12 1 2 1 *12
§||Z(t+ 1) = Z*(|5441) + §||Z(t+ ) = ZWOW5@s1) — §||Z(t) = Z" 5441 <0

implies
12(t+1) = ZO|F 041y < — 120+ 1) = Z7F g0y H1Z() = Z7 150 + 12(1) = 275050y — I1Z(8) = 2713
(40)

Suppose n;(t+1) > n;(t) for all ¢ and 4, i.e., the diagonal matrix W (¢t + 1) — W (¢) > 0 for all ¢. Since D+ A > 0, implies
(W(t+1)—W(@)(D+ A) = 0. Let U = sup|(fi(t) — f¥)&| € R be the finite upper bound of all nodes 4, all iterations ¢

itk

and all components k, then

12(t) = Z*\ B r) = 1Z(t) = Z*|[50) = Te((Z(t) = Z)T (I (t + 1) = J()(Z(t) - Z7))
=Tr((f(t) = )" (W (t+1) = WD + A)(f (1) = ) < U(|ones(N, d)|[§y(o1)(p+a) — o0€S(N, d)[[fy (104 4))

(41)
where ones(V, d) is all one’s matrix of size N X d. By (40)(41):
1Z(t+1) = ZWO 51y < N1Z20) = Z7(150) = 12+ 1) = Z¥|[F 010 “@)
+U2(||0nes(N, d)”%{/(t-;-l)(D-;—A) — |[ones(V, d)||%/V(t)(D+A))
Sum up (42) over t from 0 to +-oco leads to:
DNZE+1) = ZO) 541y < N1Z(0) = Z*|50) = [1Z(+00) = Z* |5+ 43)
+U?([lones(N, d)|[3y(1.00)(p+4) — |lones(N, d)|[%y (o) (p+ )
Since n;(t) < 400, the RHS of (43) is finite, implies that lim;_, o || Z(t + 1) — Z(¢ )HJ(tJrl = 0 must hold.
By the definition of Z(¢), J(t) and || X||3 = (X, JX) r, the following must hold
tijgloo If(t+1) - f(t)H%/V(t-&-l)(D-&-A) =0 (44)
. o 2 _
i [V(+1) Y (@)[F =0 @5)

(45) shows that Y (¢) converges to a stationary point Y'#, along with (16) imply lim; 1, /D — Af(t + 1) = 0. Since
Null(v/D — A) = cl, f(t + 1) must lie in the subspace spanned by 1 as t — oo. To satisfy (44), either of the following two
statements must hold:

o limy oo (f(t+1) = f(t) = Onxa

o lim; oo W(t+ 1) (D + A1 =limy_, oo W(t+ 1) A1+ 1imy 00 S0 7i(E+ 1)Vi = Oy
Since n;(t) > 6 > 0 for all ¢, implies lim;_, | oo Ziv 1 mi(t +1)V; > 0. The second statement can never be true because all
elements of A and W (¢ + 1) are non-negative. Hence f (t) should also converge to a stationary point f s,

).

Now show that the stationary point (Y'*, f*) is (Y*
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Take limit of both sides of (15) (16), substitute f 5Y? yields

VO(f*, D) + VD — AY*® + (W (t + 1) — 01)(D — A)f* = Oy (46)
VD = Af* = 0nxa (47)

By (47), (46) turns into: o
VO(fS, Da”) + MYS =0nx4q (48)

Compare (47)(48) with (17)(18) in Lemma 3.1 and observe that (Y5, f ¢) satisfies the optimality condition (17)(18) and is
thus the optimal point. Therefore, f(t) converges to f* and Y (¢) converges to Y*.
C. Proof of Theorem 3.2

According to the Assumption 3 that O( f;, D;) is strongly convex and has Lipschitz continues gradients for all i € .4, define
diagonal matrices D,,, = diag([my;ma;--- ;my]) € RV*N and Dy, = diag([MZ; M3;--- ; M%]) € RVXN_(20) yield:

(f' = F2VO(f', Dan) = VO(£2, Do) > (f' = f2. D (f* = ) (49)
HVOA(flvDall) - VOA(f27Dall)HF < fszM(fl - f2)>F (50)

Since for any p > 1 and any matrices C, Cy with the same dimensions, there is:

1
IC1 + Cal|F < pl|ChllF + EH@H%

From (34), there is:
IVD =AY (t+1) = Y*)|[3 < ul[VO(f(t + 1), Danr) — VO(f ,Dan) + W(t+1)(D+ A)(f(t+1) - f()3
+ﬁ\I(W(t+1)—9I)<D— A)f(t+ )HF<M7HVO F(t+1), D) = VO(f*, Dan) ||
+u2||W<t+1>(D+A)(f<t+1)—f(t))\lﬁﬁll(W(tH)—91)<D—A)f(t+1)\|%

(51)

Let omin(+), 0max(-) denote the smallest nonzero singular value and the largest singular value of a matrix respectively.

For any matrices C, Cs, let C; = UTVT be SVD of 4, there is:
1C1Ca]% < Tmax(COIICo [
amin(C1)?]|Cal 7 < [|C1Cs|[5 < omax(C1)?]|Cal [
Denote
6max(t + 1) = Umax((W(t + ) )(D - A))
a'min(t + 1) = Umin((W(t + ) - 91)(D - A))
&max(t + 1) = UmaX(W(t 1)(D + A))

Using (50) and (D — A)f* =0, (51) is turned into:

12

Y HF = Yo mm(D A)( )|‘f(t+1)_f*||2DM

2~m21x t+ 1) P max t+ 1) P fx
m'f<t+1>—f<t>II%v<t+1><D+A> egmffD (A)( I+ = Il

1
§||Y(t—|— 1) —
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Adding || f(t +1) — f*\|%,v(t+1)(D+A) at both sides leads to:

Woomn(t 1))y gy

NZ(t +1) = Z*|[5(41) < Oomin (D — A) (t)||12/V(t+1)(D+A)

. (52)
HIf(E+1) = frI1? u?fx‘:{gm;};gll)ljv LW 1)(D4A)
Since 506t D (241
and
5(t+ 1)(“";‘;;5:(7;1223(: f?;M FW(+1)(D+A) < 2W(t+1) —0I)(D— A) +2D,, (54
It implies from (52) that:
¢+ DINZ(E+1) = Z W erny < IFE+D) = FOvernyoray + 17+ 1) = F 13w et -ono-a)+20,, 55)
<|[lZ(t+1) - Z(t)||?](t+1) +IfE+1) - f*||§(W(t+1)701)(D7A)+2Dm
Substituting f I with f (t+ 1) and f 2 with f * and the gradient difference from (34) in (49) leads to:
(fE+1) = VDAYt +1) =Y Ne+ (ft+1) = f* W+ DD+ A)(fE+1) - f(0)r
HIE+1) = f W+ 1) = 00D = AfE+ D)p < —(ft+1) = . Du(fE+1) = f)r
Similar to the proof of Theorem 3.1, using the definition of Z(t + 1), Z*, J(t + 1) and (D — A) f* = 0, there is:
1Z(t+1) = Z*|551) < =112+ 1) = ZO 140y + 12() = Z715 040y — 1+ 1) = f*||§Dm+2(W(t+l)—GI)%)6—)A)

Sum up (55) and (56) gives:

A+ 0+ IZE+1) = Z 54y < 12 = Z7 5041

Let my, = minge v {m;}, Mo = max;ec_4{M;}. One 6(t + 1) that satisfies (53) and (54) could be:

O0min(D — A) 2mo + 20min(t + 1)

i 2M2 G max 1 2 =
1% O'max(t + 1) Megm:(J]r)liA)((;tl)) 4 Umax(t 4 1)

min{—7

D. Proof of Theorem 4.1

In the following proof, use the uppercase letters and lowercase letters to denote random variables and the corresponding
realizations.

Since the modified ADMM is randomized, denote F;(¢) as the random variable of the result that node ¢ broadcasts in ¢-th
iteration, of which the realization is f;(¢). Define F(t) = {F;(t)}}¥., whose realization is { f;(t)} ;.

Let .Zp(0:+)(-) be the joint probability distribution of F'(0 : ) = {F(r)}._,, and F g (-) be the distribution of F'(t), by
chain rule:
Fror) ({F(r)}=) = Fror- 1)({f( MNh2o) - Fea (FORF)N ) =

= Tro(f H Fro (FOEF(r)}Z0)
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For two neighboring datasets D,;; and 15(1” of the network, the ratio of joint probabilities is given by:

From{F () HoolDaw) — Fre)(£(0)|Da) T T (FO{F ()b, Dan)

2 = _ A (57)
Fror){f)Y_olDa)  Fro)(FO)Dan) =7 Frw (fFEF ()b, Dan)

Since f;(0) is randomly selected for all 4, which is independent of dataset, there is .7 (o) (f(0)|Daut) = -F (0 (f(0) |Danr).

First only consider ¢-th iteration, since the primal variable is updated according to (25), by KKT optimality condition,
Vi LY (t)| f,= f.(1) = 0, implies:

€(t) = zm(l)v g Zyng/ mf) Tz — SV, (%VR(fi(t)) +2Xi(t - 1)) -
1
1% jG%(in(t) —filt=1) = f;(t—1))

Given {fi(r)}.Z4, F;(t) and E;(t) will be bijective:

e For any F;(t) with the realization f;(t), 3 an unique F;(t) = ¢;(t) having the form of (58) such that the KKT condition
holds.

e Since the Lagrangian L i (t) is strictly convex (by Assumption 4,5), its minimizer is unique, implies that for any
E;(t) with the realization ¢;(t), 3 an unique F;(t) = f;(t) such that the KKT condition holds.

Since each node 7 generates ¢;(t) independently, f;(t) is also independent from each other. Let .%p, (4)(-) be the distribution
of F;(t), there is:

Trw (fOHS )10, Dan) _ H T, (f (t)l{fv(r)}i*%,f? ) _ Trw(fi{fi(r)}20, Di) (59)

Ty (FOHS 26 Dan) 35 Fruoy (Fo (Y20 D) T (F@I{Fi(r) 1=, Di)

Since two neighboring datasets D,;; and ball only have at most one data point that is different, the second equality hqlds is
because of the fact that this different data point could only be possessed by one node, say node %. Then there is D; = D; for

J# i

Given {fi(r)}.Z4, let g;(-, D;) : R — R denote the one-to-one mapping from E;(t) to F;(t) using dataset D;. Let

ZE,t)(+) be the probability density of E;(t), by Jacobian transformation, there is*:

Trw(fi(0)|Di) = (g7 ' (fit), Dy)) - | det (I gy (fi(t), Di))) (60)

where g; '(fi(t), D;) is the mapping from Fj(t) to FE;(t) using data D; as shown in (58) and J(g; *(f:(t), D;)) is the
Jacobian matrix of it.

Without loss of generality, let D; and D; be only different in the first data point, say (2!, y!) and (2!, §!) respectively. Then
by (59)(60), (57) yields:

Fron) {f ()} ol Dan) _ v1 Fon (90 (fild), H | det( (g, " (fi(t), Di)))|

Fror){f ol Dar) =5 Frn (97 (fz(t i) 1 [ det(J(g; (fi(t)aﬁi))”

“We believe that there is a critical mistake in (Zhang & Zhu, 2017) and the original paper (Chaudhuri et al., 2011) where the objective
perturbation method was proposed. A wrong mapping is used in both work:

T (fi(0)|Di) = F, (g0 ' (fit), Di)) - | det(I(gi " (fi(t), Di)))| ™"

(61)
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D;) and €;(t) = g; ' (fi(t), Ds)

Consider the first part, E;(t) ~ exp{—a;(t)||e||}. let & (t) = g; ' (fi(t), D

T o —1 T T
~ exp(a; (t)([|&@)]| = [le:(D)]])) < exp t)llé(t) —e(®)]]) (62)
,51;[1 T, (95 1(fz(t H g
By (58), Assumptions 4 and the facts that ||z}'||2 < 1 (pre-normalization), y* € {41, —1}.
1 Cc c
ei(t) — et L2yl ()T aDal — g1 2 (4l f < ——~
60 = Ol = g 5 - 12 10wt = 32 G2 al ) < o
(62) can be bounded:
T —1 T
T i t 7Di C i t
g\El(t)(gt_l(f( ) - ) < eXp(Z o ()B ) (63)
t=1 JEi(t) (gt (fl(t)le)) t=1 nz(t)‘/; ¢
Consider the second part, the Jacobian matrix J(g; ' (fi(t), D)) is:
1 O 1
—1 (T Dl = - ”,"itTﬂ n(n\T _ 2 S
o (0 D0) = =g D 2 GO a ) — G RV RGD) L

Let G(t) = g5 (L (@1 i) 22 (2])" — 2" (y} i) af)xi(2])") and H(t) = —J(g; ' (fi(t), Di)), there is:

|det(I (g '(fst), D))l _  |det(H®)|  _ 1 _ 1
|det(I (g7 (fi(t), Dy)))|  [det(H(@®) +G(8)]  [det(I + HE)'G()|  [TTj=i (1 + N (H@#)'G(1)))]

where \;(H(t)"*G(t)) denotes the j-th largest eigenvalue of H(t)~'G(t). Since G(t) has rank at most 2, implies

H(t)~*G(t) also has rank at most 2.
Because 6 is determined such that 2¢; < % (& +20V;), and 0 < n;(t) holds for all node i and iteration ¢, which implies:

C1

1
B (o +amV) 2 9

By Assumptions 4 and 5, the eigenvalue of H (t) and G(t) satisfy:

p
N (H(t)) > 727%@)%]\[ +1>0

Ceq Ccy
I POV < =t
g = CW) = 5 s

Implies:
- a <X\ (H@A)'G1)) < €1
(£ +2n,)Vi) ~ s(HEG0) Bi( L+ 2m;(t)Vi)

By (64):

Lo moen) <t

2 J 2
Since A\in (H () 1G(t)) > —1, there is:
1 1 1

4 e H @) GNP = JdetT + HO GO~ [+ Amin () GO
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Therefore,

| det (I (g; *(filt), T
H\detJ f(t 1;[ -

C1

|—eXp Zan 52 +277l()vz))) (65)

S +2m(t)V>

Since for any real number 2 € [0,0.5], —In(1 — z) < 1.4z. By condition (64), (65) can be bounded with a simper
expression:

T 1 T
| det(@ (g, _(fi(1), D))l _ 2.8¢c1 - 1.4C¢
~ <ex < ex —_— (66)
E [det@(g, "(Fi(0. D) p(; B (st oV = ¢ p(; W(OVB,
Combine (63)(66), (61) can be bounded:
Fron{(f 0 oDan) _ <~/ 1. 40(:1 L Calt) N O
fF(O:T)({f(T)},, 0|Dall ; ( )‘/ZB1)) =€ P(; nl(t)‘/LBz( 4cq +C¥z(t)))

Therefore, the total privacy loss during 7" iterations can be bounded by any /3:

92 mas(y mu.m +ailt)

€N

E. Inference of Attackers when 7,(¢) is Non-private

By KKT optimality condition in each iteration, we have:

1 O 1 C Bl n / n n n
€it) + 5s—rer 2771( Wi B (yz fi(t ) z) zl = _WE ;ylg (yi fi(t>T$i )T

1 p 1

~arv v VEG®) 24t~ 1) — 5 J;V 2f:(t) — fi(t—1) — f;(t—1)).

In this case the attacker can compute the RHS of (67) completely. Furthermore, since E;(t) is zero-mean, over a large
number of iterations we will have S°7_, €i(t) ~ 0 with high probability, which then allows the attacker to determine
the features of the unknown individual up to a scaling factor, i.e., it can determine the second term on the LHS as a scalar
multiplied with z}.



