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A. Proof of Simplifying ADMM (Forero et al., 2010)
By KKT condition of (5), there is:

0 = λbij(t)− λaij(t) + η(2wij(t+ 1)− fi(t+ 1)− fj(t+ 1))

Implies:

wij(t+ 1) =
1

2η
(λaij(t)− λbij(t)) +

1

2
(fi(t+ 1) + fj(t+ 1)) (27)

Plug (27) into (6)(7):

λaij(t+ 1) =
1

2
(λaij(t) + λbij(t)) +

η

2
(fi(t+ 1)− fj(t+ 1)) (28)

λbij(t+ 1) =
1

2
(λbij(t) + λaij(t)) +

η

2
(fi(t+ 1)− fj(t+ 1)) (29)

If initialize λaij(0) = λbij(0) to be zero vectors for all node pairs (i, j), (28)(29) imply that λaij(t) = λbij(t) and λkji(t) =

−λkij(t), k ∈ {a, b} will hold for all t. (27) becomes:

wij(t+ 1) =
1

2
(fi(t+ 1) + fj(t+ 1)) (30)

Let λij(t) = λaij(t) = λbij(t), (6)(7) can be simplified as:

λij(t+ 1) = λij(t) +
η

2
(fi(t+ 1)− fj(t+ 1)) (31)

Plug (30) into the augmented Lagrangian (3) to simplify it:

Lη({fi}, {wij , λkij}) =

N∑
i=1

O(fi, Di) +

N∑
i=1

∑
j∈Vi

(λij(t))
T (fi − fj)

+

N∑
i=1

∑
j∈Vi

η

2
(||fi −

1

2
(fi(t) + fj(t))||22) +

N∑
i=1

∑
j∈Vi

η

2
(||1

2
(fi(t) + fj(t))− fj ||22)

(32)

Since
∑N
i=1

∑
j∈Vi

λij(t)fj =
∑N
i=1

∑
j∈Vi

λji(t)fi and λij(t) = −λji(t), the second term in (32) can be simplified:

N∑
i=1

∑
j∈Vi

(λij(t))
T (fi − fj) = 2

N∑
i=1

∑
j∈Vi

(λij(t))
T fi

The last term can be expressed as:

N∑
i=1

∑
j∈Vi

η

2
(||1

2
(fi(t) + fj(t))− fj ||22) =

N∑
i=1

∑
j∈Vi

η

2
(||1

2
(fi(t) + fj(t))− fi||22)
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Therefore, (32) is simplified as:

Lη({fi}, {wij , λkij}) =

N∑
i=1

O(fi, Di) + 2

N∑
i=1

∑
j∈Vi

λij(t)
T fi +

N∑
i=1

∑
j∈Vi

η(||fi −
1

2
(fi(t) + fj(t))||22) (33)

Define λi(t) =
∑
j∈Vi

λij(t). Based on (31)(33), the original ADMM updates (4)-(7) are simplified as:

fi(t+ 1) = argmin
fi

O(fi, Di) + 2λi(t)
T fi + η

∑
j∈Vi

||fi −
1

2
(fi(t) + fj(t))||22

λi(t+ 1) = λi(t) +
η

2

∑
j∈Vi

(fi(t+ 1)− fj(t+ 1))

B. Proof of Theorem 3.1
Subtract (17) from (15) and (18) from (16):

∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall) +
√
D −A(Y (t+ 1)− Y ∗) + (W (t+ 1)− θI)(D −A)f̂(t+ 1)

+W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t)) = 0N×d
(34)

Y (t+ 1) = Y (t) + θ
√
D −A(f̂(t+ 1)− f̂∗) (35)

By convexity of O(fi, Di), for any f1
i and f2

i , there is:

(f1
i − f2

i )T (∇O(f1
i , Di)−∇O(f2

i , Di)) ≥ 0

Let 〈·, ·〉F be frobenius inner product of two matrices, there is:

〈f̂(t+ 1)− f̂∗,∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall)〉F ≥ 0

Substitute ∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall) from (34):

0 ≤ 〈f̂(t+ 1)− f̂∗,−
√
D −A(Y (t+ 1)− Y ∗)〉F + 〈f̂(t+ 1)− f̂∗,−(W (t+ 1)− θI)(D −A)f̂(t+ 1)〉F
+〈f̂(t+ 1)− f̂∗,−W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))〉F

(36)

Consider the right hand side of (36). Since D −A is symmetric and PSD,
√
D −A is also a symmetric matrix and by (35),

〈f̂(t+ 1)− f̂∗,−
√
D −A(Y (t+ 1)− Y ∗)〉F = 〈−

√
D −A(f̂(t+ 1)− f̂∗), (Y (t+ 1)− Y ∗)〉F

= −〈1
θ

(Y (t+ 1)− Y (t)), Y (t+ 1)− Y ∗〉F
(37)

Rearrange (36) and use (D −A)f̂∗ = 0N×d

0 ≥ 〈Z(t+ 1)− Z∗, J(t+ 1)(Z(t+ 1)− Z(t))〉F + 〈f̂(t+ 1)− f̂∗, (W (t+ 1)− θI)(D −A)(f̂(t+ 1)− f̂∗)〉F
(38)

Suppose ηi(t) ≥ θ for all t, i, i.e., the diagonal matrix W (t)− θI � 0 for all t. Since D−A � 0, whose eigenvalues are all
non-negative, the eigenvalues of (W (t+ 1)− θI)(D −A) are thus also non-negative, i.e., (W (t+ 1)− θI)(D −A) � 0.
Then for the second term of the RHS of (38), there is:

〈f̂(t+ 1)− f̂∗, (W (t+ 1)− θI)(D −A)(f̂(t+ 1)− f̂∗)〉F ≥ 0
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Therefore,
〈Z(t+ 1)− Z∗, J(t+ 1)(Z(t+ 1)− Z(t))〉F ≤ 0 (39)

To simplify the notation, for a matrix X , let ||X||2J = 〈X, JX〉F , then (39) can be represented as:

1

2
||Z(t+ 1)− Z∗||2J(t+1) +

1

2
||Z(t+ 1)− Z(t)||2J(t+1) −

1

2
||Z(t)− Z∗||2J(t+1) ≤ 0

implies

||Z(t+ 1)− Z(t)||2J(t+1) ≤ −||Z(t+ 1)− Z∗||2J(t+1) + ||Z(t)− Z∗||2J(t) + ||Z(t)− Z∗||2J(t+1) − ||Z(t)− Z∗||2J(t)

(40)

Suppose ηi(t+ 1) ≥ ηi(t) for all t and i, i.e., the diagonal matrix W (t+ 1)−W (t) � 0 for all t. Since D+A � 0, implies
(W (t+ 1)−W (t))(D +A) � 0. Let U = sup

i,t,k
|(fi(t)− f∗c )k| ∈ R be the finite upper bound of all nodes i, all iterations t

and all components k, then

||Z(t)− Z∗||2J(t+1) − ||Z(t)− Z∗||2J(t) = Tr((Z(t)− Z∗)T (J(t+ 1)− J(t))(Z(t)− Z∗))

= Tr((f̂(t)− f̂∗)T (W (t+ 1)−W (t))(D +A)(f̂(t)− f̂∗)) ≤ U2(||ones(N, d)||2W (t+1)(D+A) − ones(N, d)||2W (t)(D+A))
(41)

where ones(N, d) is all one’s matrix of size N × d. By (40)(41):

||Z(t+ 1)− Z(t)||2J(t+1) ≤ ||Z(t)− Z∗||2J(t) − ||Z(t+ 1)− Z∗||2J(t+1)

+U2(||ones(N, d)||2W (t+1)(D+A) − ||ones(N, d)||2W (t)(D+A))
(42)

Sum up (42) over t from 0 to +∞ leads to:

+∞∑
t=0

||Z(t+ 1)− Z(t)||2J(t+1) ≤ ||Z(0)− Z∗||2J(0) − ||Z(+∞)− Z∗||2J(+∞)

+U2(||ones(N, d)||2W (+∞)(D+A) − ||ones(N, d)||2W (0)(D+A))

(43)

Since ηi(t) < +∞, the RHS of (43) is finite, implies that limt→+∞ ||Z(t+ 1)− Z(t)||2J(t+1) = 0 must hold.

By the definition of Z(t), J(t) and ||X||2J = 〈X, JX〉F , the following must hold

lim
t→+∞

||f̂(t+ 1)− f̂(t)||2W (t+1)(D+A) = 0 (44)

lim
t→+∞

||Y (t+ 1)− Y (t)||2F = 0 (45)

(45) shows that Y (t) converges to a stationary point Y s, along with (16) imply limt→+∞
√
D −Af̂(t + 1) = 0. Since

Null(
√
D −A) = c1, f̂(t+ 1) must lie in the subspace spanned by 1 as t→∞. To satisfy (44), either of the following two

statements must hold:

• limt→+∞(f̂(t+ 1)− f̂(t)) = 0N×d

• limt→+∞W (t+ 1)(D +A)1 = limt→+∞W (t+ 1)A1 + limt→+∞
∑N
i=1 ηi(t+ 1)Vi = 0N×1

Since ηi(t) ≥ θ > 0 for all t, implies limt→+∞
∑N
i=1 ηi(t+ 1)Vi > 0. The second statement can never be true because all

elements of A and W (t+ 1) are non-negative. Hence, f̂(t) should also converge to a stationary point f̂s.

Now show that the stationary point (Y s, f̂s) is (Y ∗, f̂∗).
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Take limit of both sides of (15) (16), substitute f̂s, Y s yields

∇Ô(f̂s, Dall) +
√
D −AY s + (W (t+ 1)− θI)(D −A)f̂s = 0N×d (46)

√
D −Af̂s = 0N×d (47)

By (47), (46) turns into:
∇Ô(f̂s, Dall) +

√
D −AY s = 0N×d (48)

Compare (47)(48) with (17)(18) in Lemma 3.1 and observe that (Y s, f̂s) satisfies the optimality condition (17)(18) and is
thus the optimal point. Therefore, f(t) converges to f̂∗ and Y (t) converges to Y ∗.

C. Proof of Theorem 3.2
According to the Assumption 3 that O(fi, Di) is strongly convex and has Lipschitz continues gradients for all i ∈ N , define
diagonal matrices Dm = diag([m1;m2; · · · ;mN ]) ∈ RN×N and DM = diag([M2

1 ;M2
2 ; · · · ;M2

N ]) ∈ RN×N , (20) yield:

〈f̂1 − f̂2,∇Ô(f̂1, Dall)−∇Ô(f̂2, Dall)〉F ≥ 〈f̂1 − f̂2, Dm(f̂1 − f̂2)〉F (49)

||∇Ô(f̂1, Dall)−∇Ô(f̂2, Dall)||2F ≤ 〈f̂1 − f̂2, DM (f̂1 − f̂2)〉F (50)

Since for any µ > 1 and any matrices C1, C2 with the same dimensions, there is:

||C1 + C2||2F ≤ µ||C1||2F +
µ

µ− 1
||C2||2F

From (34), there is:

||
√
D −A(Y (t+ 1)− Y ∗)||2F ≤ µ||∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall) +W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))||2F

+
µ

µ− 1
||(W (t+ 1)− θI)(D −A)f̂(t+ 1)||2F ≤

µ2

µ− 1
||∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall)||2F

+µ2||W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))||2F +
µ

µ− 1
||(W (t+ 1)− θI)(D −A)f̂(t+ 1)||2F

(51)

Let σmin(·), σmax(·) denote the smallest nonzero singular value and the largest singular value of a matrix respectively.

For any matrices C1, C2, let C1 = UΣV T be SVD of C1, there is:

||C1C2||2F ≤ σmax(C1)||C2||2CT1

σmin(C1)2||C2||2F ≤ ||C1C2||2F ≤ σmax(C1)2||C2||2F

Denote
σ̄max(t+ 1) = σmax((W (t+ 1)− θI)(D −A))

σ̄min(t+ 1) = σmin((W (t+ 1)− θI)(D −A))

σ̃max(t+ 1) = σmax(W (t+ 1)(D +A))

Using (50) and (D −A)f̂∗ = 0, (51) is turned into:

1

θ
||Y (t+ 1)− Y ∗||2F ≤

µ2

θσmin(D −A)(µ− 1)
||f̂(t+ 1)− f̂∗||2DM

+
µ2σ̃max(t+ 1)

θσmin(D −A)
||f̂(t+ 1)− f̂(t)||2W (t+1)(D+A) +

µσ̄max(t+ 1)2

θσmin(D −A)(µ− 1)
||(f̂(t+ 1)− f̂∗)||2F
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Adding ||f̂(t+ 1)− f̂∗||2W (t+1)(D+A) at both sides leads to:

||Z(t+ 1)− Z∗||2J(t+1) ≤
µ2σ̃max(t+ 1)

θσmin(D −A)
||f̂(t+ 1)− f̂(t)||2W (t+1)(D+A)

+||f̂(t+ 1)− f̂∗||2µ2DM+µσ̄max(t+1)2IN
θσmin(D−A)(µ−1)

+W (t+1)(D+A)

(52)

Since
δ(t+ 1)µ2σ̃max(t+ 1)

θσmin(D −A)
≤ 1 (53)

and

δ(t+ 1)(
µσ̄max(t+ 1)2IN + µ2DM

θσmin(D −A)(µ− 1)
+W (t+ 1)(D +A)) � 2(W (t+ 1)− θI)(D −A) + 2Dm (54)

It implies from (52) that:

δ(t+ 1)||Z(t+ 1)− Z∗||2J(t+1) ≤ ||f̂(t+ 1)− f̂(t)||2W (t+1)(D+A) + ||f̂(t+ 1)− f̂∗||22(W (t+1)−θI)(D−A)+2Dm

≤ ||Z(t+ 1)− Z(t)||2J(t+1) + ||f̂(t+ 1)− f̂∗||22(W (t+1)−θI)(D−A)+2Dm

(55)

Substituting f̂1 with f̂(t+ 1) and f̂2 with f̂∗ and the gradient difference from (34) in (49) leads to:

〈f̂(t+ 1)− f̂∗,
√
D −A(Y (t+ 1)− Y ∗)〉F + 〈f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))〉F

+〈f̂(t+ 1)− f̂∗, (W (t+ 1)− θI)(D −A)f̂(t+ 1)〉F ≤ −〈f̂(t+ 1)− f̂∗, Dm(f̂(t+ 1)− f̂∗)〉F

Similar to the proof of Theorem 3.1, using the definition of Z(t+ 1), Z∗, J(t+ 1) and (D −A)f̂∗ = 0, there is:

||Z(t+ 1)− Z∗||2J(t+1) ≤ −||Z(t+ 1)− Z(t)||2J(t+1) + ||Z(t)− Z∗||2J(t+1) − ||f̂(t+ 1)− f̂∗||22Dm+2(W (t+1)−θI)(D−A)

(56)

Sum up (55) and (56) gives:

(1 + δ(t+ 1))||Z(t+ 1)− Z∗||2J(t+1) ≤ ||Z(t)− Z∗||2J(t+1)

Let mo = mini∈N {mi}, MO = maxi∈N {Mi}. One δ(t+ 1) that satisfies (53) and (54) could be:

min{θσmin(D −A)

µ2σ̃max(t+ 1)
,

2mo + 2σ̄min(t+ 1)
µ2M2

O+µσ̄max(t+1)2

θσmin(D−A)(µ−1) + σ̃max(t+ 1)
}

D. Proof of Theorem 4.1
In the following proof, use the uppercase letters and lowercase letters to denote random variables and the corresponding
realizations.

Since the modified ADMM is randomized, denote Fi(t) as the random variable of the result that node i broadcasts in t-th
iteration, of which the realization is fi(t). Define F (t) = {Fi(t)}Ni=1 whose realization is {fi(t)}Ni=1.

Let FF (0:t)(·) be the joint probability distribution of F (0 : t) = {F (r)}tr=0, and FF (t)(·) be the distribution of F (t), by
chain rule:

FF (0:T )({f(r)}Tr=0) = FF (0:T−1)({f(r)}T−1
r=0 ) ·FF (T )(f(T )|{f(r)}T−1

r=0 ) = · · ·

= FF (0)(f(0)) ·
T∏
t=1

FF (t)(f(t)|{f(r)}t−1
r=0)
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For two neighboring datasets Dall and D̂all of the network, the ratio of joint probabilities is given by:

FF (0:T )({f(r)}Tr=0|Dall)

FF (0:T )({f(r)}Tr=0|D̂all)
=

FF (0)(f(0)|Dall)

FF (0)(f(0)|D̂all)
·
T∏
t=1

FF (t)(f(t)|{f(r)}t−1
r=0, Dall)

FF (t)(f(t)|{f(r)}t−1
r=0, D̂all)

(57)

Since fi(0) is randomly selected for all i, which is independent of dataset, there is FF (0)(f(0)|Dall) = FF (0)(f(0)|D̂all).

First only consider t-th iteration, since the primal variable is updated according to (25), by KKT optimality condition,
∇fiL

priv
i (t)|fi=fi(t) = 0, implies:

εi(t) = − 1

2ηi(t)Vi

C

Bi

Bi∑
n=1

yni L ′(yni fi(t)
Txni )xni −

1

2ηi(t)Vi
(
ρ

N
∇R(fi(t)) + 2λi(t− 1))

− 1

2Vi

∑
j∈Vi

(2fi(t)− fi(t− 1)− fj(t− 1))

(58)

Given {fi(r)}t−1
r=0, Fi(t) and Ei(t) will be bijective:

• For any Fi(t) with the realization fi(t), ∃ an unique Ei(t) = εi(t) having the form of (58) such that the KKT condition
holds.

• Since the Lagrangian Lprivi (t) is strictly convex (by Assumption 4,5), its minimizer is unique, implies that for any
Ei(t) with the realization εi(t), ∃ an unique Fi(t) = fi(t) such that the KKT condition holds.

Since each node i generates εi(t) independently, fi(t) is also independent from each other. Let FFi(t)(·) be the distribution
of Fi(t), there is:

FF (t)(f(t)|{f(r)}t−1
r=0, Dall)

FF (t)(f(t)|{f(r)}t−1
r=0, D̂all)

=

N∏
v=1

FFv(t)(fv(t)|{fv(r)}t−1
r=0, Dv)

FFv(t)(fv(t)|{fv(r)}t−1
r=0, D̂v)

=
FFi(t)(fi(t)|{fi(r)}

t−1
r=0, Di)

FFi(t)(fi(t)|{fi(r)}
t−1
r=0, D̂i)

(59)

Since two neighboring datasets Dall and D̂all only have at most one data point that is different, the second equality holds is
because of the fact that this different data point could only be possessed by one node, say node i. Then there is Dj = D̂j for
j 6= i.

Given {fi(r)}t−1
r=0, let gt(·, Di) : Rd → Rd denote the one-to-one mapping from Ei(t) to Fi(t) using dataset Di. Let

FEi(t)(·) be the probability density of Ei(t), by Jacobian transformation, there is4:

FFi(t)(fi(t)|Di) = FEi(t)(g
−1
t (fi(t), Di)) · | det(J(g−1

t (fi(t), Di)))| (60)

where g−1
t (fi(t), Di) is the mapping from Fi(t) to Ei(t) using data Di as shown in (58) and J(g−1

t (fi(t), Di)) is the
Jacobian matrix of it.

Without loss of generality, let Di and D̂i be only different in the first data point, say (x1
i , y

1
i ) and (x̂1

i , ŷ
1
i ) respectively. Then

by (59)(60), (57) yields:

FF (0:T )({f(r)}Tr=0|Dall)

FF (0:T )({f(r)}Tr=0|D̂all)
=

T∏
t=1

FEi(t)(g
−1
t (fi(t), Di))

FEi(t)(g
−1
t (fi(t), D̂i))

·
T∏
t=1

|det(J(g−1
t (fi(t), Di)))|

|det(J(g−1
t (fi(t), D̂i)))|

(61)

4We believe that there is a critical mistake in (Zhang & Zhu, 2017) and the original paper (Chaudhuri et al., 2011) where the objective
perturbation method was proposed. A wrong mapping is used in both work:

FFi(t)(fi(t)|Di) = FEi(t)(g
−1
t (fi(t), Di)) · | det(J(g−1

t (fi(t), Di)))|−1
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Consider the first part, Ei(t) ∼ exp{−αi(t)||ε||}, let ε̂i(t) = g−1
t (fi(t), D̂i) and εi(t) = g−1

t (fi(t), Di)

T∏
t=1

FEi(t)(g
−1
t (fi(t), Di))

FEi(t)(g
−1
t (fi(t), D̂i))

=

T∏
t=1

exp(αi(t)(||ε̂i(t)|| − ||εi(t)||)) ≤ exp(

T∑
t=1

αi(t)||ε̂i(t)− εi(t)||) (62)

By (58), Assumptions 4 and the facts that ||xni ||2 ≤ 1 (pre-normalization), yni ∈ {+1,−1}.

||ε̂i(t)− εi(t)|| =
1

2ηi(t)Vi

C

Bi
· ||y1

iL
′(y1

i fi(t)
Tx1

i )x
1
i − ŷ1

iL
′(ŷ1

i fi(t)
T x̂1

i )x̂
1
i || ≤

C

ηi(t)ViBi

(62) can be bounded:
T∏
t=1

FEi(t)(g
−1
t (fi(t), Di))

FEi(t)(g
−1
t (fi(t), D̂i))

≤ exp(

T∑
t=1

Cαi(t)

ηi(t)ViBi
) (63)

Consider the second part, the Jacobian matrix J(g−1
t (fi(t), Di)) is:

J(g−1
t (fi(t), Di)) = − 1

2ηi(t)Vi

C

Bi

Bi∑
n=1

L ′′(yni fi(t)
Txni )xni (xni )T − 1

2ηi(t)Vi

ρ

N
∇2R(fi(t))− Id

Let G(t) = C
2ηi(t)ViBi

(L ′′(ŷ1
i fi(t)

T x̂1
i )x̂

1
i (x̂

1
i )
T −L ′′(y1

i fi(t)
Tx1

i )x
1
i (x

1
i )
T ) and H(t) = −J(g−1

t (fi(t), Di)), there is:

|det(J(g−1
t (fi(t), Di)))|

|det(J(g−1
t (fi(t), D̂i)))|

=
|det(H(t))|

|det(H(t) +G(t))|
=

1

|det(I +H(t)−1G(t))|
=

1

|
∏r
j=1(1 + λj(H(t)−1G(t)))|

where λj(H(t)−1G(t)) denotes the j-th largest eigenvalue of H(t)−1G(t). Since G(t) has rank at most 2, implies
H(t)−1G(t) also has rank at most 2.

Because θ is determined such that 2c1 <
Bi
C ( ρN + 2θVi), and θ ≤ ηi(t) holds for all node i and iteration t, which implies:

c1
Bi
C ( ρN + 2ηi(t)Vi)

<
1

2
(64)

By Assumptions 4 and 5, the eigenvalue of H(t) and G(t) satisfy:

λj(H(t)) ≥ ρ

2ηi(t)ViN
+ 1 > 0

− Cc1
2ηi(t)ViBi

≤ λj(G(t)) ≤ Cc1
2ηi(t)ViBi

Implies:

− c1
Bi
C ( ρN + 2ηi(t)Vi)

≤ λj(H(t)−1G(t)) ≤ c1
Bi
C ( ρN + 2ηi(t)Vi)

By (64):

−1

2
≤ λj(H(t)−1G(t)) ≤ 1

2

Since λmin(H(t)−1G(t)) > −1, there is:

1

|1 + λmax(H(t)−1G(t))|2
≤ 1

|det(I +H(t)−1G(t))|
≤ 1

|1 + λmin(H(t)−1G(t))|2



Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms

Therefore,

T∏
t=1

|det(J(g−1
t (fi(t), Di)))|

|det(J(g−1
t (fi(t), D̂i)))|

≤
T∏
t=1

1

|1− c1
Bi
C ( ρN +2ηi(t)Vi)

|2
= exp(−

T∑
t=1

2 ln(1− c1
Bi
C ( ρN + 2ηi(t)Vi)

)) (65)

Since for any real number x ∈ [0, 0.5], − ln(1 − x) < 1.4x. By condition (64), (65) can be bounded with a simper
expression:

T∏
t=1

|det(J(g−1
t (fi(t), Di)))|

|det(J(g−1
t (fi(t), D̂i)))|

≤ exp(

T∑
t=1

2.8c1
Bi
C ( ρN + 2ηi(t)Vi)

) ≤ exp(

T∑
t=1

1.4Cc1
ηi(t)ViBi

) (66)

Combine (63)(66), (61) can be bounded:

FF (0:T )({f(r)}Tr=0|Dall)

FF (0:T )({f(r)}Tr=0|D̂all)
≤ exp(

T∑
t=1

(
1.4Cc1
ηi(t)ViBi

+
Cαi(t)

ηi(t)ViBi
)) = exp(

T∑
t=1

C

ηi(t)ViBi
(1.4c1 + αi(t)))

Therefore, the total privacy loss during T iterations can be bounded by any β:

β ≥ max
i∈N
{
T∑
t=1

C

ηi(t)ViBi
(1.4c1 + αi(t))}

E. Inference of Attackers when ηi(t) is Non-private
By KKT optimality condition in each iteration, we have:

εi(t) +
1

2ηi(t)Vi

C

Bi
y1
iL
′(y1

i fi(t)
Tx1

i )x
1
i = − 1

2ηi(t)Vi

C

Bi

Bi∑
n=2

yni L ′(yni fi(t)
Txni )xni

− 1

2ηi(t)Vi
(
ρ

N
∇R(fi(t)) + 2λi(t− 1))− 1

2Vi

∑
j∈Vi

(2fi(t)− fi(t− 1)− fj(t− 1)) .

In this case the attacker can compute the RHS of (67) completely. Furthermore, since Ei(t) is zero-mean, over a large
number of iterations we will have 1

T

∑T
t=1 εi(t) ≈ 0 with high probability, which then allows the attacker to determine

the features of the unknown individual up to a scaling factor, i.e., it can determine the second term on the LHS as a scalar
multiplied with x1

i .


