
Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

A. Proofs
A.1. Proof of Proposition 1

Proposition 1. (Householder QR factorization) Let B ∈ Rn×n. There exists an upper triangular matrix R with positive
diagonal elements, and vectors {ui}ni=1 with ui ∈ Ri, such that B = Hnn(un)...Hn1 (u1)R. (Note that we allow ui = 0, in
which case, Hn

i (ui) = In as in (1))

Proof of Proposition 1. For n = 1, note thatH1
1(u1) = ±1. By setting u1 = 0 if B1,1 > 0 and u1 6= 0 otherwise, we have

the factorization desired.

Assume that the result holds for n = k, then for n = k + 1 set uk+1 = B1 − ‖B1‖e1. Here B1 is the first column of B and
e1 = (1, 0, ..., 0)>. Thus we have

Hk+1
k+1(uk+1)B =

(
‖B1‖ B̂1,2:k+1

0 B̂

)
,

where B̂ ∈ Rk×k. Note that Hk+1
k+1(uk+1) = Ik+1 when uk+1 = 0 and the above still holds. By assumption we have

B̂ = Hkk(uk)...Hk1(u1)R̂. Notice thatHk+1
i (ui) =

(
1
Hki (ui)

)
, so we have that

Hk+1
1 (u1)...Hk+1

k (uk)Hk+1
k+1(uk+1)B =

(
‖B1‖ B̃1,2:k+1

0 R̂

)
= R

is an upper triangular matrix with positive diagonal elements. Thus the result holds for any n by the theory of mathematical
induction.

A.2. Proof of Theorem 1

Proof. Observe that the image ofM1 is a subset of O(n), and we now show that the converse is also true. Given A ∈ O(n),
by Proposition 1, there exists an upper triangular matrix R with positive diagonal elements, and an orthogonal matrix
Q expressed as Q = Hnn(un)...Hn1 (u1) for some set of Householder vectors {ui}ni=1, such that A = QR. Since A is
orthogonal, we have A>A = AA> = In, thus:

A>A = R>Q>QR = R>R = In; Q>AA>Q = Q>QRR>Q>Q = RR> = In

Thus R is orthogonal and upper triangular matrix with positive diagonal elements. So R = In and A = Q =
Hnn(un)...Hn1 (u1).

A.3. Proof of Theorem 2

Proof. It is easy to see that the image ofM1,1 is a subset of Rn×n. For any W ∈ Rn×n, we have its SVD, W = UΣV >,
where Σ = diag(σ). By Theorem 1, for any orthogonal matrix U, V ∈ Rn×n, there exists {ui}ni=1{vi}ni=1 such that
U =M1(u1, ..., un) and V =M1(v1, ..., vn), then we have:

W = Hnn(un)...Hn1 (u1)ΣHn1 (v1)...Hnn(vn)

=M1,1(u1, ..., un, v1, ..., vn, σ)

A.4. Proof of Theorem 3

Proof. Let A ∈ Rn×n be an orthogonal matrix. By Theorem 1, there exist {ai}ni=1, such that A =M1(a1, ..., an). Since
A> is also orthogonal, for the same reason, there exist {bi}ni=1, such that A> =M1(b1, ..., bn). Thus we have:

A = Hn(an)...H1(a1) = H1(b1)...Hn(bn)

Observe that one of k2 ≥ k1 − 1 and k1 ≥ k2 − 1 must be true. If k2 ≥ k1 − 1, set

uk = ak, k = n, n− 1, ..., k1,

vk2+k1−k−1 = ak, k = k1 − 1, ..., 1, (18)
vt = 0, t = k2 + k1 − 2, ..., n,

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

and then we have:

Mk1,k2(uk1 , ..., un, vk2 , ..., vn,1) = Hn(un)...Hk1(uk1)InHk2(vk2)...Hn(vn)

= Hn(an)...Hk1(ak1)InHk1−1(ak1−1)...H1(a1)

= A (19)

Else, assign:

vk = bk, k = n, n− 1, ..., k2,

uk2+k1−k−1 = bk, k = k2 − 1, ..., 1, (20)
ut = 0, t = k2 + k1 − 2, ..., n,

and then we have:

Mk1,k2(uk1 , ..., un, vk2 , ..., vn,1) = H1(b1)...Hk2−1(bk2−1)InHk2(bk2)...Hn(bn)

= A (21)

A.5. Proof of Theorem 4

Proof. It is easy to see that the image ofMm,n
∗,∗ is a subset of Rm×n. For any W ∈ Rm×n, we have its SVD, W = UΣV >,

where Σ is an m× n diagonal matrix. By Theorem 1, for any orthogonal matrix U ∈ Rm×m, V ∈ Rn×n, there exists
{ui}mi=1{vi}ni=1 such that U = Hmm(um)...Hm1 (u1) and V = Hnn(vn)...Hn1 (v1). By Lemma 1, if m < n we have:

W = Hmn (un)...Hm1 (u1)ΣHn1 (v1)...Hnn(vn)

= Hmn (un)...Hm1 (u1)ΣHnn−m+1(vn−m+1)...Hnn(vn).

Similarly, for n < m, we have:

W = Hmn (un)...Hm1 (u1)ΣHn1 (v1)...Hnn(vn)

= Hmn (un)...Hmm−n+1(um−n+1)ΣHn1 (v1)...Hnn(vn).

A.6. Proof of Theorem 5

Notations: Recall from Definition 1 that L0 is the expected error with margin γ = 0, and we write L̂γ as the empirical
error when margin equals γ with m samples, i.e.,

L̂γ(fw) =
1

m

m∑
i=1

[
fw(xi)[yi] ≤ γ + max

j 6=yi
fw(xi)[j]

]
.

We are looking at a recurrent neural network with T time steps:

h(t) = φ(Wh(t−1) +Mx(t)), h(0) = 0, t = 1, 2, · · ·T
ŷ(t) = Y h(t),

where φ is the activation function. The dimensions are as follows: x(t) ∈ Rni , ŷ(t) ∈ Rny , and h(t) ∈ Rn. Therefore
W ∈ Rn×n,M ∈ Rni×n, Y ∈ Rn×ny . To incorporate the different parameters W,M,Y into the neural network, we
write w = vec({W,Y,M}) and use subscript w to denote dependence on the parameter w. For instance, h(t)

w denotes the
activation that takes w = vec({W,Y,M}) as parameters, and similar notation also holds for the output ŷ(t)

w . We use ‖ · ‖ to
denote l2 norm for vectors and spectral norm for matrices when there is no ambiguity.

To get a generalization bound for RNN, we need to use the following lemma from (Neyshabur et al., 2017).

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Lemma 2. (Neyshabur et al., 2017) Let fw(x) : X → Rk be any predictor (not necessarily a neural network) with
parameters w, and P be any distribution on the parameters that is independent of the training data. Then, for any
γ, δ > 0, with probability ≥ 1 − δ over the training set of size m, for any w, and any random perturbation u s.t.
Pu[maxx∈X ‖fw+u(x)− fw(x)‖∞ < γ

4] ≥ 1
2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL(w + u||P) + ln 6m

δ

m− 1

Here KL(P ||Q) is the Kullback-Leibler divergence of two continuous random variables P and Q:

KL(P ||Q) :=

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx,

where p and q denote the density of P and Q. In order for the random variable u to satisfy the probability property in
Lemma 2, we study the change in output with respect to perturbation u.

Lemma 3. Write w = vec({W,Y,M}), and perturbation u = vec({δW, δY, δM}) such that ‖δW‖ ≤ 1
T ‖W‖, ‖δY ‖ ≤

1
T ‖Y ‖, ‖δM‖ ≤

1
T ‖M‖. For a recurrent neural network (17) with T time steps that satisfies Assumption 1, the perturbation

in the activation is bounded by

‖h(T)
w+u − h(T)

w ‖ ≤ BTe(T‖M‖‖δW‖+ ‖δM‖) max{‖W‖T−1, 1}, (22)

while the perturbation in the output satisfies:

‖ŷ(T)
w+u − ŷ(T)

w ‖ ≤ TBmax{‖W‖T−1, 1} · (‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖).

Here e is the natural logarithm base.

Proof of Lemma 3. First we bound the norm of h(t)
w ,

‖h(t)
w ‖ = ‖φ(Wh(t−1)

w +Mx(t))‖
≤ ‖Wh(t−1)

w +Mx(t)‖ (by Assumption 1.2)

≤ ‖W‖‖h(t−1)
w ‖+ ‖M‖‖x(t)‖ (by triangle inequality) (23)

≤ ‖W‖
(
‖W‖‖h(t−2)

w ‖+ ‖M‖‖x(t−1)‖
)

+ ‖M‖‖x(t)‖

(applying (23) to ‖h(t−1)
w ‖)

≤ · · ·

≤ ‖W‖t‖h(0)
w ‖+ ‖M‖

t−1∑
j=0

‖W‖t−1−j‖x(j+1)‖

= ‖M‖
t−1∑
j=0

‖W‖t−1−j‖x(j+1)‖ (since h(0)
w = 0)

≤ B‖M‖
t−1∑
j=0

‖W‖t−1−j (by Assumption 1.1)

=⇒ ‖h(t)
w ‖ ≤ B‖M‖tmax{‖W‖t−1, 1} (24)

(since
t−1∑
i=0

‖W‖i ≤ tmax{‖W‖t−1−i, 1})

Denoting ∆t = ‖h(t)
w+u − h

(t)
w ‖ for short, in order to prove (22), we now prove the following tighter result by induction,

∆t ≤ Bt(1 +
1

T
)t−1(‖δW‖‖M‖T + ‖δM‖) max{‖W‖t−1, 1},∀t ≤ T (25)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Clearly ∆0 = 0 satisfies the inequality. Suppose ∆t−1 satisfies the assumption, then,

∆t = ‖φ
(

(W + δW)h
(t−1)
w+u + (M + δM)x(t)

)
− φ

(
Wh(t−1)

w +Mx(t)
)
‖

≤ ‖
(

(W + δW)h
(t−1)
w+u + (M + δM)x(t)

)
−
(
Wh(t−1)

w +Mx(t)
)
‖

(by Assumption 1.2)

= ‖(W + δW)(h
(t−1)
w+u − h(t−1)

w) + δWh(t−1)
w + δMx(t)‖

≤ (‖W‖+ ‖δW‖∆t−1 + ‖δW‖‖h(t−1)
w ‖+ ‖δM‖‖x(t)‖ (by triangle inequality)

≤ (1 +
1

T
)‖W‖∆t−1 + ‖δW‖‖h(t−1)

w ‖+ ‖δM‖B

(by Assumption 1.1 and requirement of ‖δW‖)

Then by induction and the bound of the activations, we have:

∆t ≤(1 +
1

T
)‖W‖

(
B(t− 1)(1 +

1

T
)t−2(‖δW‖‖M‖T + ‖δM‖) max{‖W‖t−2, 1}

)
(by induction)

+ ‖δW‖
(
B(t− 1)‖M‖max{‖W‖t−2, 1}

)
+B‖δM‖ (by activation bound (24))

=B(t− 1)T (1 +
1

T
)t−1‖δW‖‖M‖‖W‖max{‖W‖t−2, 1}+B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}

+ (1 +
1

T
)t−1‖W‖B(t− 1) max{‖W‖t−2, 1}‖δM‖+B‖δM‖

=B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}
(

(1 +
1

T
)t−1T‖W‖+ 1

)
+B‖δM‖

(
(1 +

1

T
)t−1‖W‖(t− 1) max{‖W‖t−2, 1}+ 1

)
≤B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}

(
(1 +

1

T
)t−1T + 1

)
max{‖W‖, 1}

+B‖δM‖
(

(1 +
1

T
)t−1(t− 1) max{‖W‖t−2, 1}+ 1

)
max{‖W‖, 1} (both 1, ‖W‖ ≤ max{‖W‖, 1})

≤B‖δW‖‖M‖tT (1 +
1

T
)t−1 max{‖W‖t−1, 1}

+B‖δM‖t(1 +
1

T
)t−1 max{‖W‖t−1, 1} (since (t− 1)a+ 1 ≤ ta for a ≥ 1)

=Bt(1 +
1

T
)t−1(T‖δW‖‖M‖+ ‖δM‖) max{‖W‖t−1, 1}

Since (1 + 1
T)T−1 ≤ e, therefore ∆T ≤ BTe(T‖M‖‖δW‖+ ‖δM‖) max{‖W‖T−1, 1}. Meanwhile for the perturbation

of output ŷ,

‖ŷ(T)
w+u − ŷ(T)

w ‖

=‖(Y + δY)h
(T)
w+u − Y h(T)

w ‖

=‖(Y + δY)(h
(T)
w+u − h(T)

w) + (Y + δY)h(T)
w − Y h(T)

w ‖
≤‖(Y + δY)‖∆T + ‖δY h(T)

w ‖ (by triangle inequality)

≤‖Y ‖(1 +
1

T
)BT (1 +

1

T
)T−1(T‖δW‖‖M‖+ ‖δM‖) max{‖W‖T−1, 1}

(by perturbation bound (25))

+ ‖δY ‖TB‖M‖max{‖W‖T−1, 1} (by activation bound (24))

≤TBmax{‖W‖T−1, 1}(‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖)

(since (1 +
1

T
)T ≤ e)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Finally we are able to prove Theorem 5:

Proof of Theorem 5. In order to finish the proof, we first calculate the maximum allowed perturbation u that satisfies the
requirement in Lemma 2, and we define the prior P and calculate the KL divergence of P and w + u.

Let β = max{‖W‖T−1
2 , 1}max{‖Y ‖2, 1}max{‖M‖2, 1}. We choose the distribution of the prior P = N (0, σ2I) and

consider the random perturbation u = vec({δW, δY, δM}) with the same zero mean Gaussian distribution, where σ will be
assigned later according to β. More precisely, since the prior cannot depend on the β which is associated with the learned
parameters W,M and Y , we will set σ based on some discrete choices of β̃ that approximates β. For each value of β̃ of our
choice, we will compute the PAC-Bayes bound, establishing the generalization guarantee for all w for which 1

eβ ≤ β̃ ≤ eβ,
and ensuring that each relevant value of β is covered by some β̃ on the grid. We will then take a union bound over all β̃ of
our choice.

For a random matrix X ∈ Rn1×n2 with individual entries following normal distribution, (Tropp et al., 2005) provides the
following bound of its spectral norm:

PX∼N (0,σ2I)[‖X‖2 > t] ≤ 2ne−t
2/2nσ2

,∀n ≥ n1, n2 (26)

Therefore for δW, δM, δY , the probability of their spectral norm being greater than t is bounded by 2he−t
2/2hσ2

, where
h = max{n, ni, ny}. Therefore with probability ≥ 1

2 , ‖δW‖2, ‖δY ‖2, ‖δM‖2 ≤ σ
√

2h ln(12h).

Plugging into Lemma 3 we have with probability at least 1
2 ,

max
‖x(t)‖≤B,∀t≤T

‖ŷw+u − ŷw‖

≤ TBmax{‖W‖T−1, 1}(‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖)
≤ TBmax{‖W‖T−1, 1}max{‖Y ‖, 1}max{‖M‖, 1}(‖δW‖Te+ ‖δM‖e+ ‖δY ‖)
≤ TB

√
2h ln(12h)β̃φ(Te+ e+ 1)

≤ γ

4
,

where we choose σ = γ

12
√

2h ln(12h)TB(Te+e+1)β̃
. Therefore now the perturbation u satisfies assumptions in Lemma 2.

We next compute the KL-divergence of distributions for P and u for the sake of Lemma 2.

KL(w + u ‖ P) ≤ ‖w‖
2

2σ2

≤ O
(
B2T 4h ln(h) max{‖W‖2T−2, 1}max{‖M‖22, 1}max{‖Y ‖22, 1}

γ2
(‖W‖2F + ‖M‖2F + ‖Y ‖2F)

)

Hence, with probability ≥ 1− δ and for all w such that, 1
eβ ≤ β̃ ≤ eβ, we have:

L0(ŷw) ≤ L̂γ(ŷw) +O(

√
B(w) + ln m

δ

m
), (27)

where B(w) =
B2T 4h ln(h) max{‖W‖2T−2,1}max{‖M‖22,1}max{‖Y ‖22,1}

γ2 (‖W‖2F + ‖M‖2F + ‖Y ‖2F).

Since β̃ should be independent of the learned models. We finally take a union bound over different choices of the parameter.
We will choose discrete set of β̃ such that they cover the real W,M,Y that satisfies 1

eβ ≤ β̃ ≤ eβ. Firstly we notice for
some range of β inequality (27) holds trivially, when either term of its RHS is greater or equal to 1, since the expected
margin loss is less or equal to 1.

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

ŷ(T) = Y h
(T)
w , therefore if β ≤ γ

2BT ,

‖ŷ‖∞ ≤ ‖ŷ‖2 (by definition of `∞ norm and `2 norm)

≤ ‖Y ‖‖h(T)
w ‖ (by definition of spectral norm)

≤ ‖Y ‖B‖M‖T max{‖W‖t−1, 1}
(by activation bound (24))

≤ BTβ < γ

2

Therefore L̂γ = 1 from definition of margin loss and the bound is satisfied trivially. Meanwhile, when β ≥ γ
√
m

2BT , then
the second term of (27) ≥ 1 and it also holds trivially. Therefore, we only need to consider β̃ such that β̃ ∈ [γ

2BT ,
γ
√
m

2BT].
Therefore we could respectively set β̃ to be γ

2BT + se γ
2BT , s = 0, 1, 2, · · · , and the size of the cover we need to consider is

only
√
m
e . Therefore we replace δ by e δ√

m
in (27) and take a union bound over all the β̃ on the grid to complete the proof.

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

B. Details of Forward and Backward Propagation Algorithms

Algorithm 1 Local forward/backward propagation

Input: h(t−1), ∂L
∂h̃(t)

, U = (un|...|un−m1+1),

Σ, V = (vn|...|vn−m2+1)
Output: h̃(t) = Wh(t−1), ∂L∂U ,

∂L
∂V ,

∂L
∂σ̂ ,

∂L
∂h(t−1)

// Begin forward propagation
h

(v)
n+1 ← h(t−1)

for k = n, n− 1, ..., n−m2 + 1 do
h

(v)
k ← Hprod(h

(v)
k+1, vk) // Compute V̂ >h

end for
h

(u)
k1−1 ← Σh

(v)
k2

// Compute ΣV̂ >h
for k = n−m1 + 1, ..., n do
h

(u)
k ← Hprod(h

(u)
k−1, uk) // Compute ÛΣV̂ >h

end for
h̃(t) ← h

(u)
n

//Begin backward propagation
g ← ∂L

∂h̃(t)

for k = n, n− 1, ..., n−m1 + 1 do
g,G

(u)
∗,n−k+1 ← Hgrad(h

(u)
k , uk, g) // Compute ∂L

∂uk
end for
Σ̄← diag(g ◦ h(v)

k2
), g ← Σg // Compute ∂L

∂Σ

g(σ̂) ← ∂diag(Σ)
∂σ̂ ◦ diag(Σ̄) // Compute ∂L

∂σ̂
for k = n−m2 + 1, ..., n do
g,G

(v)
∗,n−k+1 ← Hgrad(h

(u)
k+1, vk, g) // Compute ∂L

∂vk
end for
∂L
∂U ← G(u), ∂L∂V ← G(v), ∂L∂σ̂ ← g(σ̂), ∂L

∂h(t−1) ← g

Algorithm 2
ĥ = Hprod(h, uk)

Input: h, uk
Output: ĥ = Hk(uk)h

// Compute ĥ = (I − 2uku
>
k

u>k uk
)h

α← 2
‖uk‖2u

>
k h

ĥ← h− αuk

Algorithm 3
h̄, ūk = Hgrad(h, uk, g)

Input: h, uk, g = ∂L
∂h̃

where h̃ =

Hk(uk)h
Output: h̄ = ∂L

∂h , ūk = ∂L
∂uk

α = 2
‖uk‖2u

>
k h

β = 2
‖uk‖2u

>
k g

h̄← g − βuk
ūk ← −αg − βh+ αβuk

C. More Experimental Details
C.1. Time Series Classification

In this experiment, we focus on the time series classification problem, where time series are fed into RNN sequentially,
which then tries to predict the right class upon receiving the sequence end (Hüsken & Stagge, 2003). The dataset we
choose is the largest public collection of class-labeled time-series with widely varying length, namely, the UCR time-
series collection from (Chen et al., 2015). We use the training and testing sets directly from the UCR time series archive
http://www.cs.ucr.edu/˜eamonn/time_series_data/, and randomly choose 20% of the training set as
validation data. We provide the statistical descriptions of the datasets and experimental results in Table 4.

In all experiments, we used hidden dimension nh = 32, and chose total number of reflectors for oRNN and Spectral-RNN
to be m = 16 (for Spectral-RNN m1 = m2 = 8). We choose proper depth t as well as input size ni. Given sequence length
L, since tni = L, we choose ni to be the maximum divisor of L that satisfies depth ≤

√
L. To have a fair comparison

of how the proposed principle itself influences the training procedure, we did not use dropout in any of these models. As
illustrated in the optimization process in Figure 6, this resulted in some overfitting (see (a) CBF), but on the other hand it
shows that Spectral-RNN is able to prevent overfitting. This supports our claim that since generalization is bounded by the
spectral norm of the weights (Bartlett et al., 2017), Spectral-RNN will potentially generalize better than other schemes. This
phenomenon is more drastic when the depth is large (e.g. ArrowHead(251 length) and FaceAll(131 length)), since regular
RNN, and even LSTM, have no control over the spectral norms. Also note that there are substantially fewer parameters in
oRNN and Spectral-RNN as compared to LSTM.

http://www.cs.ucr.edu/~eamonn/time_series_data/

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

(a) (b) (c)
Figure 6. Performance comparisons of the RNN based models on three UCR datasets.

Datasets Data Descriptions Depth RNN LSTM oRNN Spectral-RNN
training/testing size length #class acc (nparam) acc (nparam) acc (nparam) acc (nparam)

50words 450 455 270 50 27 0.492 (3058) 0.598 (7218) 0.642 (2426) 0.651 (2850)
Adiac 390 391 176 37 16 0.552 (2694) 0.706 (6950) 0.668 (2062) 0.726 (2486)

ArrowHead 36 175 251 3 251 0.509 (1219) 0.537 (4515) 0.669 (587) 0.800 (1011)
Beef 30 30 470 5 47 0.600 (1606) 0.700 (5766) 0.733 (974) 0.733 (1398)

BeetleFly 20 20 512 2 32 0.950 (1699) 0.850 (6435) 0.900 (1067) 0.950 (1491)
CBF 30 900 128 3 16 0.702 (1476) 0.967 (5444) 0.881 (844) 0.948 (1268)

Coffee 28 28 286 2 22 1.000 (1570) 1.000 (6018) 1.000 (938) 1.000 (1362)
Cricket X 390 390 300 12 20 0.310 (1997) 0.456 (6637) 0.495 (1365) 0.500 (1789)

DistalPhalanxOutlineCorrect 276 600 80 2 10 0.790 (1410) 0.798 (5378) 0.830 (778) 0.840 (1202)
DistalPhalanxTW 154 399 80 6 10 0.815 (1641) 0.795 (5609) 0.807 (1009) 0.815 (1433)

ECG200 100 100 96 2 12 0.640 (1410) 0.640 (5378) 0.640 (778) 0.640 (1202)
ECG5000 500 4500 140 5 14 0.941 (1606) 0.936 (5766) 0.940 (974) 0.945 (1398)

ECGFiveDays 23 861 136 2 17 0.947 (1443) 0.790 (5411) 0.976 (811) 0.948 (1235)
FaceAll 560 1690 131 14 131 0.549 (1615) 0.455 (4911) 0.714 (983) 0.714 (1407)

FaceFour 24 88 350 4 25 0.625 (1701) 0.477 (6245) 0.511 (1069) 0.716 (1493)
FacesUCR 200 2050 131 14 131 0.449 (1615) 0.629 (4911) 0.710 (983) 0.727 (1407)
Gun Point 50 150 150 2 15 0.947 (1507) 0.920 (5667) 0.953 (875) 0.960 (1299)

InsectWingbeatSound 220 1980 256 11 16 0.534 (1996) 0.515 (6732) 0.598 (1364) 0.586 (1788)
ItalyPowerDemand 67 1029 24 2 6 0.970 (1315) 0.969 (4899) 0.972 (683) 0.973 (1107)

Lighting2 60 61 637 2 49 0.541 (1570) 0.541 (6018) 0.541 (938) 0.541 (1362)
MiddlePhalanxOutlineCorrect 291 600 80 2 10 0.793 (1410) 0.783 (5378) 0.712 (778) 0.820 (1202)

Table 4. Test accuracy (number of parameters) on UCR datasets. For each dataset, we present the testing accuracy when reaching the
smallest validation error. The highest precision is in bold, and lowest two are colored gray.

