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Abstract

We establish, for the first time, explicit connec-
tions between feedforward neural networks with
ReLU activation and tropical geometry — we
show that the family of such neural networks is
equivalent to the family of tropical rational maps.
Among other things, we deduce that feedforward
ReLU neural networks with one hidden layer can
be characterized by zonotopes, which serve as
building blocks for deeper networks; we relate
decision boundaries of such neural networks to
tropical hypersurfaces, a major object of study
in tropical geometry; and we prove that linear
regions of such neural networks correspond to
vertices of polytopes associated with tropical ra-
tional functions. An insight from our tropical for-
mulation is that a deeper network is exponentially
more expressive than a shallow network.

1. Introduction
Deep neural networks have recently received much limelight
for their enormous success in a variety of applications across
many different areas of artificial intelligence, computer vi-
sion, speech recognition, and natural language processing
(LeCun et al., 2015; Hinton et al., 2012; Krizhevsky et al.,
2012; Bahdanau et al., 2014; Kalchbrenner & Blunsom,
2013). Nevertheless, it is also well-known that our theoreti-
cal understanding of their efficacy remains incomplete.

There have been several attempts to analyze deep neural net-
works from different perspectives. Notably, earlier studies
have suggested that a deep architecture could use parameters
more efficiently and requires exponentially fewer parame-
ters to express certain families of functions than a shallow ar-
chitecture (Delalleau & Bengio, 2011; Bengio & Delalleau,
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2011; Montufar et al., 2014; Eldan & Shamir, 2016; Poole
et al., 2016; Telgarsky, 2016; Arora et al., 2018). Recent
work (Zhang et al., 2016) showed that several successful
neural networks possess a high representation power and
can easily shatter random data. However, they also general-
ize well to data unseen during training stage, suggesting that
such networks may have some implicit regularization. Tra-
ditional measures of complexity such as VC-dimension and
Rademacher complexity fail to explain this phenomenon.
Understanding this implicit regularization that begets the
generalization power of deep neural networks remains a
challenge.

The goal of our work is to establish connections between
neural network and tropical geometry in the hope that they
will shed light on the workings of deep neural networks.
Tropical geometry is a new area in algebraic geometry that
has seen an explosive growth in the recent decade but re-
mains relatively obscure outside pure mathematics. We will
focus on feedforward neural networks with rectified linear
units (ReLU) and show that they are analogues of rational
functions, i.e., ratios of two multivariate polynomials f, g in
variables x1, . . . , xd,

f(x1, . . . , xd)

g(x1, . . . , xd)
,

in tropical algebra. For standard and trigonometric poly-
nomials, it is known that rational approximation — ap-
proximating a target function by a ratio of two polynomials
instead of a single polynomial — vastly improves the quality
of approximation without increasing the degree. This gives
our analogue: An ReLU neural network is the tropical ratio
of two tropical polynomials, i.e., a tropical rational function.
More precisely, if we view a neural network as a function
ν : Rd → Rp, x = (x1, . . . , xd) 7→ (ν1(x), . . . , νp(x)),
then ν is a tropical rational map, i.e., each νi is a tropical
rational function. In fact, we will show that:

the family of functions represented by feedforward
neural networks with rectified linear units and
integer weights is exactly the family of tropical
rational maps.

It immediately follows that there is a semifield structure on
this family of functions. More importantly, this establishes a
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bridge between neural networks1 and tropical geometry that
allows us to view neural networks as well-studied tropical
geometric objects. This insight allows us to closely relate
boundaries between linear regions of a neural network to
tropical hypersurfaces and thereby facilitate studies of de-
cision boundaries of neural networks in classification prob-
lems as tropical hypersurfaces. Furthermore, the number of
linear regions, which captures the complexity of a neural
network (Montufar et al., 2014; Raghu et al., 2017; Arora
et al., 2018), can be bounded by the number of vertices of
the polytopes associated with the neural network’s tropical
rational representation. Lastly, a neural network with one
hidden layer can be completely characterized by zonotopes,
which serve as building blocks for deeper networks.

In Sections 2 and 3 we introduce basic tropical algebra and
tropical algebraic geometry of relevance to us. We state
our assumptions precisely in Section 4 and establish the
connection between tropical geometry and multilayer neural
networks in Section 5. We analyze neural networks with
tropical tools in Section 6, proving that a deeper neural
network is exponentially more expressive than a shallow
network — though our objective is not so much to perform
state-of-the-art analysis but to demonstrate that tropical al-
gebraic geometry can provide useful insights. All proofs are
deferred to Section D of the supplement.

2. Tropical Algebra
Roughly speaking, tropical algebraic geometry is an ana-
logue of classical algebraic geometry over C, the field of
complex numbers, but where one replaces C by a semifield2

called the tropical semiring, to be defined below. We give a
brief review of tropical algebra and introduce some relevant
notations. See (Itenberg et al., 2009; Maclagan & Sturmfels,
2015) for an in-depth treatment.

The most fundamental component of tropical algebraic ge-
ometry is the tropical semiring T :=

(
R ∪ {−∞},⊕,�

)
,

also known as the max-plus algebra. The two operations ⊕
and �, called tropical addition and tropical multiplication
respectively, are defined as follows.

Definition 2.1. For x, y ∈ R, their tropical sum is x⊕y :=
max{x, y}; their tropical product is x � y := x + y; the
tropical quotient of x over y is x� y := x− y.

For any x ∈ R, we have −∞ ⊕ x = 0 � x = x and
−∞� x = −∞. Thus −∞ is the tropical additive identity
and 0 is the tropical multiplicative identity. Furthermore,
these operations satisfy the usual laws of arithmetic: associa-
tivity, commutativity, and distributivity. The set R ∪ {−∞}
is therefore a semiring under the operations⊕ and�. While

1Henceforth a “neural network” will always mean a feedfor-
ward neural network with ReLU activation.

2A semifield is a field sans the existence of additive inverses.

it is not a ring (lacks additive inverse), one may nonetheless
generalize many algebraic objects (e.g., matrices, polynomi-
als, tensors, etc) and notions (e.g., rank, determinant, degree,
etc) over the tropical semiring — the study of these, in a
nutshell, constitutes the subject of tropical algebra.

Let N = {n ∈ Z : n ≥ 0}. For an integer a ∈ N, raising
x ∈ R to the ath power is the same as multiplying x to
itself a times. When standard multiplication is replaced by
tropical multiplication, this gives us tropical power:

x�a := x� · · · � x = a · x,

where the last · denotes standard product of real numbers; it
is extended to R ∪ {−∞} by defining, for any a ∈ N,

−∞�a :=

{
−∞ if a > 0,

0 if a = 0.

A tropical semiring, while not a field, possesses one quality
of a field: Every x ∈ R has a tropical multiplicative inverse
given by its standard additive inverse, i.e., x�(−1) := −x.
Though not reflected in its name, T is in fact a semifield.

One may therefore also raise x ∈ R to a negative power
a ∈ Z by raising its tropical multiplicative inverse−x to the
positive power −a, i.e., x�a = (−x)�(−a). As is the case
in standard real arithmetic, the tropical additive inverse−∞
does not have a tropical multiplicative inverse and −∞�a

is undefined for a < 0. For notational simplicity, we will
henceforth write xa instead of x�a for tropical power when
there is no cause for confusion. Other algebraic rules of
tropical power may be derived from definition; see Section B
in the supplement.

We are now in a position to define tropical polynomials and
tropical rational functions. In the following, x and xi will
denote variables (i.e., indeterminates).
Definition 2.2. A tropical monomial in d variables
x1, . . . , xd is an expression of the form

c� xa11 � x
a2
2 � · · · � x

ad
d

where c ∈ R ∪ {−∞} and a1, . . . , ad ∈ N. As a conve-
nient shorthand, we will also write a tropical monomial in
multiindex notation as cxα where α = (a1, . . . , ad) ∈ Nd
and x = (x1, . . . , xd). Note that xα = 0 � xα as 0 is the
tropical multiplicative identity.

Definition 2.3. Following notations above, a tropical poly-
nomial f(x) = f(x1, . . . , xd) is a finite tropical sum of
tropical monomials

f(x) = c1x
α1 ⊕ · · · ⊕ crxαr ,

where αi = (ai1, . . . , aid) ∈ Nd and ci ∈ R ∪ {−∞},
i = 1, . . . , r. We will assume that a monomial of a given
multiindex appears at most once in the sum, i.e., αi 6= αj
for any i 6= j.
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Definition 2.4. Following notations above, a tropical ra-
tional function is a standard difference, or, equivalently,
a tropical quotient of two tropical polynomials f(x) and
g(x):

f(x)− g(x) = f(x)� g(x).

We will denote a tropical rational function by f � g, where
f and g are understood to be tropical polynomial functions.

It is routine to verify that the set of tropical polynomials
T[x1, . . . , xd] forms a semiring under the standard extension
of ⊕ and � to tropical polynomials, and likewise the set of
tropical rational functions T(x1, . . . , xd) forms a semifield.
We regard a tropical polynomial f = f � 0 as a special case
of a tropical rational function and thus T[x1, . . . , xd] ⊆
T(x1, . . . , xd). Henceforth any result stated for a tropical
rational function would implicitly also hold for a tropical
polynomial.

A d-variate tropical polynomial f(x) defines a function
f : Rd → R that is a convex function in the usual sense as
taking max and sum of convex functions preserve convexity
(Boyd & Vandenberghe, 2004). As such, a tropical rational
function f � g : Rd → R is a DC function or difference-
convex function (Hartman, 1959; Tao & Hoai An, 2005).

We will need a notion of vector-valued tropical polynomials
and tropical rational functions.
Definition 2.5. F : Rd → Rp, x = (x1, . . . , xd) 7→
(f1(x), . . . , fp(x)), is called a tropical polynomial map if
each fi : Rd → R is a tropical polynomial, i = 1, . . . , p,
and a tropical rational map if f1, . . . , fp are tropical ra-
tional functions. We will denote the set of tropical poly-
nomial maps by Pol(d, p) and the set of tropical rational
maps by Rat(d, p). So Pol(d, 1) = T[x1, . . . , xd] and
Rat(d, 1) = T(x1, . . . , xd).

3. Tropical Hypersurfaces
There are tropical analogues of many notions in classical al-
gebraic geometry (Itenberg et al., 2009; Maclagan & Sturm-
fels, 2015), among which are tropical hypersurfaces, trop-
ical analogues of algebraic curves in classical algebraic
geometry. Tropical hypersurfaces are a principal object of
interest in tropical geometry and will prove very useful in
our approach towards neural networks. Intuitively, the trop-
ical hypersurface of a tropical polynomial f is the set of
points x where f is not linear at x.
Definition 3.1. The tropical hypersurface of a tropical poly-
nomial f(x) = c1x

α1 ⊕ · · · ⊕ crxαr is

T (f) :=
{
x ∈ Rd : cix

αi = cjx
αj = f(x)

for some αi 6= αj
}
.

i.e., the set of points x at which the value of f at x is attained
by two or more monomials in f .

Figure 1. 1 � x2
1 ⊕ 1 � x2

2 ⊕ 2 � x1x2 ⊕ 2 � x1 ⊕ 2 � x2 ⊕ 2.
Left: Tropical curve. Right: Dual subdivision of Newton polygon
and tropical curve.

A tropical hypersurface divides the domain of f into convex
cells on each of which f is linear. These cells are convex
polyhedrons, i.e., defined by linear inequalities with integer
coefficients: {x ∈ Rd : Ax ≤ b} for A ∈ Zm×d and
b ∈ Rm. For example, the cell where a tropical monomial
cjx

αj attains its maximum is {x ∈ Rd : cj + αT
jx ≥ ci +

αT
ix for all i 6= j}. Tropical hypersurfaces of polynomials

in two variables (i.e., in R2) are called tropical curves.

Just like standard multivariate polynomials, every tropical
polynomial comes with an associated Newton polygon.

Definition 3.2. The Newton polygon of a tropical polyno-
mial f(x) = c1x

α1 ⊕ · · · ⊕ crx
αr is the convex hull of

α1, . . . , αr ∈ Nd, regarded as points in Rd,

∆(f) := Conv
{
αi ∈ Rd : ci 6= −∞, i = 1, . . . , r

}
.

A tropical polynomial f determines a dual subdivision of
∆(f), constructed as follows. First, lift each αi from Rd
into Rd+1 by appending ci as the last coordinate. Denote
the convex hull of the lifted α1, . . . , αr as

P(f) := Conv{(αi, ci) ∈ Rd × R : i = 1, . . . , r}. (1)

Next let UF
(
P(f)

)
denote the collection of upper faces in

P(f) and π : Rd × R → Rd be the projection that drops
the last coordinate. The dual subdivision determined by f
is then

δ(f) :=
{
π(p) ⊆ Rd : p ∈ UF

(
P(f)

)}
.

δ(f) forms a polyhedral complex with support ∆(f). By
(Maclagan & Sturmfels, 2015, Proposition 3.1.6), the tropi-
cal hypersurface T (f) is the (d− 1)-skeleton of the poly-
hedral complex dual to δ(f). This means that each vertex
in δ(f) corresponds to one “cell” in Rd where the function
f is linear. Thus, the number of vertices in P(f) provides
an upper bound on the number of linear regions of f .

Figure 1 shows the Newton polygon and dual subdivision
for the tropical polynomial f(x1, x2) = 1� x21 ⊕ 1� x22 ⊕
2� x1x2 ⊕ 2� x1 ⊕ 2� x2 ⊕ 2. Figure 2 shows how we
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22� x1
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2� x2
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Dual subdivision of Newton polygon

Upper envelope of polytope
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(1, 0)
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2� x1x2

Figure 2. 1 � x2
1 ⊕ 1 � x2

2 ⊕ 2 � x1x2 ⊕ 2 � x1 ⊕ 2 � x2 ⊕ 2.
The dual subdivision can be obtained by projecting the edges on
the upper faces of the polytope.

may find the dual subdivision for this tropical polynomial by
following the aforementioned procedures; with step-by-step
details given in Section C.1.

Tropical polynomials and tropical rational functions are
clearly piecewise linear functions. As such a tropical ratio-
nal map is a piecewise linear map and the notion of linear
region applies.

Definition 3.3. A linear region of F ∈ Rat(d,m) is a max-
imal connected subset of the domain on which F is linear.
The number of linear regions of F is denoted N (F ).

Note that a tropical polynomial map F ∈ Pol(d,m) has con-
vex linear regions but a tropical rational map F ∈ Rat(d, n)
generally has nonconvex linear regions. In Section 6.3,
we will use N (F ) as a measure of complexity for an
F ∈ Rat(d, n) given by a neural network.

3.1. Transformations of Tropical Polynomials

Our analysis of neural networks will require figuring out
how the polytope P(f) transforms under tropical power,
sum, and product. The first is straightforward.

Proposition 3.1. Let f be a tropical polynomial and let
a ∈ N. Then

P(fa) = aP(f).

aP(f) = {ax : x ∈ P(f)} ⊆ Rd+1 is a scaled version of
P(f) with the same shape but different volume.

To describe the effect of tropical sum and product, we need
a few notions from convex geometry. The Minkowski sum
of two sets P1 and P2 in Rd is the set

P1 + P2 :=
{
x1 + x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
;

and for λ1, λ2 ≥ 0, their weighted Minkowski sum is

λ1P1+λ2P2 :=
{
λ1x1+λ2x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
.

Weighted Minkowski sum is clearly commutative and asso-
ciative and generalizes to more than two sets. In particular,
the Minkowski sum of line segments is called a zonotope.

Let V(P ) denote the set of vertices of a polytope P . Clearly,
the Minkowski sum of two polytopes is given by the convex
hull of the Minkowski sum of their vertex sets, i.e., P1 +
P2 = Conv

(
V(P1) + V(P2)

)
. With this observation, the

following is immediate.

Proposition 3.2. Let f, g ∈ Pol(d, 1) = T[x1, . . . , xd] be
tropical polynomials. Then

P(f � g) = P(f) + P(g),

P(f ⊕ g) = Conv
(
V(P(f)) ∪ V(P(g))

)
.

We reproduce below part of (Gritzmann & Sturmfels, 1993,
Theorem 2.1.10) and derive a corollary for bounding the
number of verticies on the upper faces of a zonotope.

Theorem 3.3 (Gritzmann–Sturmfels). Let P1, . . . , Pk be
polytopes in Rd and let m denote the total number of non-
parallel edges of P1, . . . , Pk. Then the number of vertices
of P1 + · · ·+ Pk does not exceed

2

d−1∑
j=0

(m− 1

j ) .

The upper bound is attained if all Pi’s are zonotopes and
all their generating line segments are in general positions.

Corollary 3.4. Let P ⊆ Rd+1 be a zonotope generated by
m line segments P1, . . . , Pm. Let π : Rd × R→ Rd be the
projection. Suppose P satisfies:

(i) the generating line segments are in general positions;

(ii) the set of projected vertices {π(v) : v ∈ V(P )} ⊆ Rd
are in general positions.

Then P has
d∑
j=0

(
m

j )
vertices on its upper faces. If either (i) or (ii) is violated,
then this becomes an upper bound.

As we mentioned, linear regions of a tropical polynomial f
correspond to vertices on UF

(
P(f)

)
and the corollary will

be useful for bounding the number of linear regions.

4. Neural Networks
While we expect our readership to be familiar with feedfor-
ward neural networks, we will nevertheless use this short
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section to define them, primarily for the purpose of fixing
notations and specifying the assumptions that we retain
throughout this article. We restrict our attention to fully
connected feedforward neural networks.

Viewed abstractly, an L-layer feedforward neural network
is a map ν : Rd → Rp given by a composition of functions

ν = σ(L) ◦ ρ(L) ◦ σ(L−1) ◦ ρ(L−1) · · · ◦ σ(1) ◦ ρ(1).

The preactivation functions ρ(1), . . . , ρ(L) are affine trans-
formations to be determined and the activation functions
σ(1), . . . , σ(L) are chosen and fixed in advanced.

We denote the width, i.e., the number of nodes, of the lth
layer by nl, l = 1, · · · , L− 1. We set n0 := d and nL := p,
respectively the dimensions of the input and output of the
network. The output from the lth layer will be denoted by

ν(l) := σ(l) ◦ ρ(l) ◦ σ(l−1) ◦ ρ(l−1) · · · ◦ σ(1) ◦ ρ(1),

i.e., it is a map ν(l) : Rd → Rnl . For convenience, we
assume ν(0)(x) := x.

The affine function ρ(l) : Rnl−1 → Rnl is given by a weight
matrix A(l) ∈ Znl×nl−1 and a bias vector b(l) ∈ Rnl :

ρ(l)(ν(l−1)) := A(l)ν(l−1) + b(l).

The (i, j)th coordinate of A(l) will be denoted a(l)ij and the

ith coordinate of b(l) by b(l)i . Collectively they form the
parameters of the lth layer.

For a vector input x ∈ Rnl , σ(l)(x) is understood to be in
the coordinatewise sense; so σ : Rnl → Rnl . We assume
the final output of a neural network ν(x) is fed into a score
function s : Rp → Rm that is application specific. When
used as an m-category classifier, s may be chosen, for ex-
ample, to be a soft-max or sigmoidal function. The score
function is quite often regarded as the last layer of a neu-
ral network but this is purely a matter of convenience and
we will not assume this. We will make the following mild
assumptions on the architecture of our feedforward neural
networks and explain next why they are indeed mild:

(a) the weight matrices A(1), . . . , A(L) are integer-valued;

(b) the bias vectors b(1), . . . , b(L) are real-valued;

(c) the activation functions σ(1), . . . , σ(L) take the form

σ(l)(x) := max{x, t(l)},

where t(l) ∈ (R ∪ {−∞})nl is called a threshold vec-
tor.

Henceforth all neural networks in our subsequent discus-
sions will be assumed to satisfy (a)–(c).

(b) is completely general but there is also no loss of gen-
erality in (a), i.e., in restricting the weights A(1), . . . , A(L)

from real matrices to integer matrices, as:

• real weights can be approximated arbitrarily closely by
rational weights;

• one may then ‘clear denominators’ in these rational
weights by multiplying them by the least common mul-
tiple of their denominators to obtain integer weights;

• keeping in mind that scaling all weights and biases
by the same positive constant has no bearing on the
workings of a neural network.

The activation function in (c) includes both ReLU activation
(t(l) = 0) and identity map (t(l) = −∞) as special cases.
Aside from ReLU, our tropical framework will apply to
piecewise linear activations such as leaky ReLU and abso-
lute value, and with some extra effort, may be extended to
max pooling, maxout nets, etc. But it does not, for example,
apply to activations such as hyperbolic tangent and sigmoid.

In this work, we view an ReLU network as the simplest
and most canonical model of a neural network, from which
other variants that are more effective at specific tasks may
be derived. Given that we seek general theoretical insights
and not specific practical efficacy, it makes sense to limit
ourselves to this simplest case. Moreover, ReLU networks
already embody some of the most important elements (and
mysteries) common to a wider range of neural networks
(e.g., universal approximation, exponential expressiveness);
they work well in practice and are often the go-to choice for
feedforward networks. We are also not alone in limiting our
discussions to ReLU networks (Montufar et al., 2014; Arora
et al., 2018).

5. Tropical Algebra of Neural Networks
We now describe our tropical formulation of a multilayer
feedforward neural network satisfying (a)–(c).

A multilayer feedforward neural network is generally non-
convex, whereas a tropical polynomial is always convex.
Since most nonconvex functions are a difference of two
convex functions (Hartman, 1959), a reasonable guess is
that a feedforward neural network is the difference of two
tropical polynomials, i.e., a tropical rational function. This
is indeed the case, as we will see from the following.

Consider the output from the first layer in neural network

ν(x) = max{Ax+ b, t},

where A ∈ Zp×d, b ∈ Rp, and t ∈ (R ∪ {−∞})p. We will
decompose A as a difference of two nonnegative integer-
valued matrices, A = A+−A− withA+, A− ∈ Np×d; e.g.,
in the standard way with entries

a+ij := max{aij , 0}, a−ij := max{−aij , 0}

respectively. Since

max{Ax+ b, t} = max{A+x+ b, A−x+ t} −A−x,
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we see that every coordinate of one-layer neural network
is a difference of two tropical polynomials. For networks
with more layers, we apply this decomposition recursively
to obtain the following result.

Proposition 5.1. Let A ∈ Zm×n, b ∈ Rm be the parame-
ters of the (l+ 1)th layer, and let t ∈ (R∪ {−∞})m be the
threshold vector in the (l+ 1)th layer. If the nodes of the lth
layer are given by tropical rational functions,

ν(l)(x) = F (l)(x)�G(l)(x) = F (l)(x)−G(l)(x),

i.e., each coordinate of F (l) and G(l) is a tropical polyno-
mial in x, then the outputs of the preactivation and of the
(l + 1)th layer are given by tropical rational functions

ρ(l+1) ◦ ν(l)(x) = H(l+1)(x)−G(l+1)(x),

ν(l+1)(x) = σ ◦ ρ(l+1) ◦ ν(l)(x) = F (l+1)(x)−G(l+1)(x)

respectively, where

F (l+1)(x) = max
{
H(l+1)(x), G(l+1)(x) + t

}
,

G(l+1)(x) = A+G
(l)(x) +A−F

(l)(x),

H(l+1)(x) = A+F
(l)(x) +A−G

(l)(x) + b.

We will write f (l)i , g(l)i and h(l)i for the ith coordinate of
F (l), G(l) and H(l) respectively. In tropical arithmetic, the
recurrence above takes the form

f
(l+1)
i = h

(l+1)
i ⊕ (g

(l+1)
i � ti),

g
(l+1)
i =

[ n⊙
j=1

(f
(l)
j )a

−
ij

]
�
[ n⊙
j=1

(g
(l)
j )a

+
ij

]
,

h
(l+1)
i =

[ n⊙
j=1

(f
(l)
j )a

+
ij

]
�
[ n⊙
j=1

(g
(l)
j )a

−
ij

]
� bi.

(2)

Repeated applications of Proposition 5.1 yield the following.

Theorem 5.2 (Tropical characterization of neural networks).
A feedforward neural network under assumptions (a)–(c)
is a function ν : Rd → Rp whose coordinates are tropical
rational functions of the input, i.e.,

ν(x) = F (x)�G(x) = F (x)−G(x)

where F and G are tropical polynomial maps. Thus ν is a
tropical rational map.

Note that the tropical rational functions above have real
coefficients, not integer coefficients. The integer weights
A(l) ∈ Znl×nl−1 have gone into the powers of tropical
monomials in f and g, which is why we require our weights
to be integer-valued, although as we have explained, this
requirement imposes little loss of generality.

By setting t(1) = · · · = t(L−1) = 0 and t(L) = −∞, we
obtain the following corollary.

Corollary 5.3. Let ν : Rd → R be an ReLU activated
feedforward neural network with integer weights and linear
output. Then ν is a tropical rational function.

A more remarkable fact is the converse of Corollary 5.3.

Theorem 5.4 (Equivalence of neural networks and tropical
rational functions).

(i) Let ν : Rd → R. Then ν is a tropical rational func-
tion if and only if ν is a feedforward neural network
satisfying assumptions (a)–(c).

(ii) A tropical rational function f � g can be represented
as an L-layer neural network, with

L ≤ max{dlog2 rfe, dlog2 rge}+ 2,

where rf and rg are the number of monomials in the
tropical polynomials f and g respectively.

We would like to acknowledge the precedence of (Arora
et al., 2018, Theorem 2.1), which demonstrates the equiva-
lence between ReLU-activatedL-layer neural networks with
real weights and d-variate continuous piecewise functions
with real coefficients, where L ≤ dlog2(d+ 1)e+ 1.

By construction, a tropical rational function is a continuous
piecewise linear function. The continuity of a piecewise
linear function automatically implies that each of the pieces
on which it is linear is a polyhedral region. As we saw in
Section 3, a tropical polynomial f : Rd → R gives a tropical
hypersurface that divides Rd into convex polyhedral regions
defined by linear inequalities with integer coefficients: {x ∈
Rd : Ax ≤ b} with A ∈ Zm×d and b ∈ Rm. A tropical
rational function f � g : Rd → R must also be a continuous
piecewise linear function and divide Rd into polyhedral
regions on each of which f � g is linear, although these
regions are nonconvex in general. We will show the converse
— any continuous piecewise linear function with integer
coefficients is a tropical rational function.

Proposition 5.5. Let ν : Rd → R. Then ν is a continuous
piecewise linear function with integer coefficients if and
only if ν is a tropical rational function.

Corollary 5.3, Theorem 5.4, and Proposition 5.5 collectively
imply the equivalence of

(i) tropical rational functions,

(ii) continuous piecewise linear functions with integer co-
efficients,

(iii) neural networks satisfying assumptions (a)–(c).

An immediate advantage of this characterization is that the
set of tropical rational functions T(x1, . . . , xd) has a semi-
field structure as we pointed out in Section 2, a fact that
we have implicitly used in the proof of Proposition 5.5.
However, what is more important is not the algebra but the
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algebraic geometry that arises from our tropical characteri-
zation. We will use tropical algebraic geometry to illuminate
our understanding of neural networks in the next section.

The need to stay within tropical algebraic geometry is the
reason we did not go for a simpler and more general char-
acterization (that does not require the integer coefficients
assumption). A tropical signomial takes the form

ϕ(x) =

m⊕
i=1

bi

n⊙
j=1

x
aij
j ,

where aij ∈ R and bi ∈ R ∪ {−∞}. Note that aij is not
required to be integer-valued nor nonnegative. A tropical
rational signomial is a tropical quotientϕ�ψ of two tropical
signomials ϕ,ψ. A tropical rational signomial map is a
function ν = (ν1, . . . , νp) : Rd → Rp where each νi :
Rd → R is a tropical rational signomial νi = ϕi � ψi. The
same argument we used to establish Theorem 5.2 gives us
the following.
Proposition 5.6. Every feedforward neural network with
ReLU activation is a tropical rational signomial map.

Nevertheless tropical signomials fall outside the realm of
tropical algebraic geometry and we do not use Proposi-
tion 5.6 in the rest of this article.

6. Tropical Geometry of Neural Networks
Section 5 defines neural networks via tropical algebra, a per-
spective that allows us to study them via tropical algebraic
geometry. We will show that the decision boundary of a
neural network is a subset of a tropical hypersurface of a cor-
responding tropical polynomial (Section 6.1). We will see
that, in an appropriate sense, zonotopes form the geometric
building blocks for neural networks (Section 6.2). We then
prove that the geometry of the function represented by a
neural network grows vastly more complex as its number of
layers increases (Section 6.3).

6.1. Decision Boundaries of a Neural Network

We will use tropical geometry and insights from Section 5
to study decision boundaries of neural networks, focusing
on the case of two-category classification for clarity. As
explained in Section 4, a neural network ν : Rd → Rp
together with a choice of score function s : Rp → R give
us a classifier. If the output value s(ν(x)) exceeds some
decision threshold c, then the neural network predicts x is
from one class (e.g., x is a CAT image), and otherwise x
is from the other category (e.g., a DOG image). The input
space is thereby partitioned into two disjoint subsets by the
decision boundary B := {x ∈ Rd : ν(x) = s−1(c)}. Con-
nected regions with value above the threshold and connected
regions with value below the threshold will be called the
positive regions and negative regions respectively.

We provide bounds on the number of positive and negative
regions and show that there is a tropical polynomial whose
tropical hypersurface contains the decision boundary.

Proposition 6.1 (Tropical geometry of decision boundary).
Let ν : Rd → R be an L-layer neural network satisfying
assumptions (a)–(c) with t(L) = −∞. Let the score function
s : R→ R be injective with decision threshold c in its range.
If ν = f � g where f and g are tropical polynomials, then

(i) its decision boundary B = {x ∈ Rd : ν(x) = s−1(c)}
divides Rd into at most N (f) connected positive re-
gions and at most N (g) connected negative regions;

(ii) its decision boundary is contained in the tropical hy-
persurface of the tropical polynomial s−1(c)� g(x)⊕
f(x) = max{f(x), g(x) + s−1(c)}, i.e.,

B ⊆ T (s−1(c)� g ⊕ f). (3)

The function s−1(c)�g⊕f is not necessarily linear on every
positive or negative region and so its tropical hypersurface
T (s−1(c)�g⊕f) may further divide a positive or negative
region derived from B into multiple linear regions. Hence
the “⊆” in (3) cannot in general be replaced by “=”.

6.2. Zonotopes as Geometric Building Blocks of Neural
Networks

From Section 3, we know that the number of regions a
tropical hypersurface T (f) divides the space into equals the
number of vertices in the dual subdivision of the Newton
polygon associated with the tropical polynomial f . This
allows us to bound the number of linear regions of a neural
network by bounding the number of vertices in the dual
subdivision of the Newton polygon.

We start by examining how geometry changes from one
layer to the next in a neural network, more precisely:

Question. How are the tropical hypersurfaces of the tropi-
cal polynomials in the (l + 1)th layer of a neural network
related to those in the lth layer?

The recurrent relation (2) describes how the tropical poly-
nomials occurring in the (l + 1)th layer are obtained from
those in the lth layer, namely, via three operations: tropical
sum, tropical product, and tropical powers. Recall that a
tropical hypersurface of a tropical polynomial is dual to
the dual subdivision of the Newton polytope of the tropical
polynomial, which is given by the projection of the upper
faces on the polytopes defined by (1). Hence the question
boils down to how these three operations transform the poly-
topes, which is addressed in Propositions 3.1 and 3.2. We
follow notations in Proposition 5.1 for the next result.

Lemma 6.2. Let f (l)i , g(l)i , h(l)i be the tropical polynomials
produced by the ith node in the lth layer of a neural network,
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i.e., they are defined by (2). Then P
(
f
(l)
i

)
, P
(
g
(l)
i

)
, P
(
h
(l)
i

)
are subsets of Rd+1 given as follows:

(i) P
(
g
(1)
i

)
and P

(
h
(1)
i

)
are points.

(ii) P
(
f
(1)
i

)
is a line segment.

(iii) P
(
g
(2)
i

)
and P

(
h
(2)
i

)
are zonotopes.

(iv) For l ≥ 1,

P
(
f
(l)
i

)
= Conv

[
P
(
g
(l)
i � t

(l)
i

)
∪ P

(
h
(l)
i

)]
if t(l)i ∈ R, and P

(
f
(l)
i

)
= P

(
h
(l)
i

)
if t(l)i = −∞.

(v) For l ≥ 1, P
(
g
(l+1)
i

)
and P

(
h
(l+1)
i

)
are weighted

Minkowski sums,

P
(
g
(l+1)
i

)
=

nl∑
j=1

a−ijP
(
f
(l)
j

)
+

nl∑
j=1

a+ijP
(
g
(l)
j

)
,

P
(
h
(l+1)
i

)
=

nl∑
j=1

a+ijP
(
f
(l)
j

)
+

nl∑
j=1

a−ijP
(
g
(l)
j

)
+ {bie},

where aij , bi are entries of the weight matrix A(l+1) ∈
Znl+1×nl and bias vector b(l+1) ∈ Rnl+1 , and e :=
(0, . . . , 0, 1) ∈ Rd+1.

A conclusion of Lemma 6.2 is that zonotopes are the build-
ing blocks in the tropical geometry of neural networks.
Zonotopes are studied extensively in convex geometry and,
among other things, are intimately related to hyperplane ar-
rangements (Greene & Zaslavsky, 1983; Guibas et al., 2003;
McMullen, 1971; Holtz & Ron, 2011). Lemma 6.2 connects
neural networks to this extensive body of work but its full
implication remains to be explored. In Section C.2 of the
supplement, we show how one may build these polytopes
for a two-layer neural network.

6.3. Geometric Complexity of Deep Neural Networks

We apply the tools in Section 3 to study the complexity
of a neural network, showing that a deep network is much
more expressive than a shallow one. Our measure of com-
plexity is geometric: we will follow (Montufar et al., 2014;
Raghu et al., 2017) and use the number of linear regions of
a piecewise linear function ν : Rd → Rp to measure the
complexity of ν.

We would like to emphasize that our upper bound below
does not improve on that obtained in (Raghu et al., 2017) —
in fact, our version is more restrictive given that it applies
only to neural networks satisfying (a)–(c). Nevertheless our
goal here is to demonstrate how tropical geometry may be
used to derive the same bound.

Theorem 6.3. Let ν : Rd → R be an L-layer real-valued
feedforward neural network satisfying (a)–(c). Let t(L) =
−∞ and nl ≥ d for all l = 1, . . . , L − 1. Then ν = ν(L)

has at most
L−1∏
l=1

d∑
i=0

(
nl

i
)

linear regions. In particular, if d ≤ n1, . . . , nL−1 ≤ n, the
number of linear regions of ν is bounded by O

(
nd(L−1)

)
.

Proof. If L = 2, this follows directly from Lemma 6.2 and
Corollary 3.4. The case of L ≥ 3 is in Section D.7 in the
supplement.

As was pointed out in (Raghu et al., 2017), this upper
bound closely matches the lower bound Ω

(
(n/d)(L−1)dnd

)
in (Montufar et al., 2014, Corollary 5) when n1 = · · · =
nL−1 = n ≥ d. Hence we surmise that the number of linear
regions of the neural network grows polynomially with the
width n and exponentially with the number of layers L.

7. Conclusion
We argue that feedforward neural networks with rectified
linear units are, modulo trivialities, nothing more than tropi-
cal rational maps. To understand them we often just need to
understand the relevant tropical geometry.

In this article, we took a first step to provide a proof-of-
concept: questions regarding decision boundaries, linear
regions, how depth affect expressiveness, etc, can be trans-
lated into questions involving tropical hypersurfaces, dual
subdivision of Newton polygon, polytopes constructed from
zonotopes, etc.

As a new branch of algebraic geometry, the novelty of tropi-
cal geometry stems from both the algebra and geometry as
well as the interplay between them. It has connections to
many other areas of mathematics. Among other things, there
is a tropical analogue of linear algebra (Butkovič, 2010) and
a tropical analogue of convex geometry (Gaubert & Katz,
2006). We cannot emphasize enough that we have only
touched on a small part of this rich subject. We hope that
further investigation from this tropical angle might perhaps
unravel other mysteries of deep neural networks.
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