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Abstract
Time-series data often exhibit irregular behavior,
making them hard to analyze and explain with a
simple dynamic model. For example, information
in social networks may show change-point-like
bursts that then diffuse with smooth dynamics.
Powerful models such as deep neural networks
learn smooth functions from data, but are not
as well-suited in off-the-shelf form for discov-
ering and explaining sparse, discrete and bursty
dynamic patterns. Bayesian models can do this
well by encoding the appropriate probabilistic as-
sumptions in the model prior. We propose an
integration of Bayesian nonparametric methods
within deep neural networks for modeling irregu-
lar patterns in time-series data. We use Bayesian
nonparametrics to model change-point behavior
in time, and a deep neural network to model non-
linear latent space dynamics. We compare with
a non-deep linear version of the model also pro-
posed here. Empirical evaluations demonstrates
improved performance and interpretable results
when tracking stock prices and Twitter trends.

1. Introduction
Irregular behaviors such as bursts and nonlinearity repeat-
edly show up in time-series data. For example, the past
decades have seen several crashes of the stock market, in
which a latent continuous-like process is interrupted by a
change-point-like event (Adams & MacKay, 2007). Another
example is information diffusion in social media, which ex-
hibits initial bursts followed by smoother diffusion (Guille
et al., 2013; Leskovec et al., 2009). Traditional tracking
models such as the linear Kalman filter (Bishop et al., 2001)
are not ideally-suited for these tasks, in part because of
their incompatibility with bursts and underlying nonlinear-
ity (Doucet & Johansen, 2009; Andrieu et al., 2010). More
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complex machine learning techniques such as deep neural
networks (LeCun et al., 2015) usually fit smooth nonlin-
ear functions to the data, and require more thought when
handling bursty patterns in dynamic data.

On the other hand, Bayesian methods are good at handling
discrete and bursty latent structures in data through explicit
probabilistic modeling. Typical examples such as learning
latent features (Griffiths & Ghahramani, 2011) and latent
state transitions (Fox et al., 2011) have proven useful in
multiple applications. Moreover, Bayesian nonparametric
(BNP) methods are naturally suited for large scale learning
problems due to their infinite dimensional nature. Recent
inference techniques such as online learning (Hoffman et al.,
2013), streaming learning (Broderick et al., 2013), and par-
allelization (Ge et al., 2015) further scale up these meth-
ods. To model complex and nonlinear structures, recent
probabilistic generative models mimic the behavior of neu-
ral networks (Ranganath et al., 2015; Schein et al., 2016).
However, these models require carefully designed inference
methods. Current ongoing research largely focuses on gen-
eralizing the scope of these models (Ranganath et al., 2016;
Tran et al., 2017). Other methods incorporate the power of
neural networks in Bayesian models, such as the variational
auto-encoder (VAE) (Kingma & Welling, 2014). However,
in contrast to traditional Bayesian methods, which are good
at learning interpretable patterns through latent variables,
VAE’s sacrifice interpretability for inference tractability.

In this paper, we aim to integrate the merits of Bayesian
models and neural networks when analyzing irregular time-
series data. Our strategy is to model streaming data at two
different resolutions through a dynamic change-point model.
To be more precise, we partition the entire time horizon
into mini-batches and model the bursty dynamics between
mini-batches using BNP methods. We model nonlinearity
within each mini-batch with a deep neural network. In this
way we are able to capture bursts and nonlinearity while
also achieving interpretable results.

In Section 2 we introduce the modeling idea. In Section 3
we discuss a variational inference method. Section 4 intro-
duces a physics-based extension and derives the predictive
distributions. Section 5 demonstrates empirical results on
stock and Twitter data.
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Figure 1. (a) Partitioning sequential data into time blocks. (b) Each
block is modeled as a dynamic matrix factorization where the left
matrix uses a gamma process for change-point detection and the
right matrix is Brownian motion. Both matrices are time-evolving:
the left matrix across blocks (using a jump process) and the right
matrix along columns.

2. The Model
Basic linear tracking models such as the Kalman filter can
be formulated as a matrix factorization problem X ≈WH ,
in which the left matrix W remains fixed and the column
sequence of the right matrix H is modeled as dynamically
evolving. When W is defined by the underlying physics of
the problem, this is natural. But for streaming data such as
stock or text data, both matrices are unknown and sequential
evolution may be expected in both. In this section, we dis-
cuss our approach to the modeling problem X ≈ f(WH),
in which W is modeled by a jump process that detects
change-points in the “global” structure, while H is contin-
uously evolving to model “local” temporal variations. We
present two models: the first based on a more traditional
BNP approach for which f(·) is the identity function, which
we then extend to a neural network in a straightforward way.

2.1. Basic setup: Dynamic matrix factorization

In principle, our dynamic model is a continuous-time model.
For practical application, we will group the data into blocks,
where Xt is a M ×Nt matrix of data at time block t. Each
row could correspond to a stock or a word, and the columns
contain the measured time-sequence at Nt points in block
t (e.g., hourly measurements in week t). Our basic matrix
factorization model is of the form Xt ≈ f(WtHt), where
Wt is evolving in t and the columns of Ht are evolving (see
Figure 1). In this sense, an entire data matrix X can be
viewed as being factorized where H is one process evolving
along the columns and Ht only selects the relevant sub-
matrix of this process. The entire matrix W is changing
depending on what column subset of X is being modeled,
but also evolving according to a dynamic process in t.

In Section 2.2 we discuss the process for W as an infinitely
divisible continuous-time jump process, then discuss the dis-
crete time analog that we use for inference. We discuss the
process for H in Section 2.3, which results in our proposed
non-deep BNP tracking model (for which f(A) = A). We
make a deep extension in Section 2.4.

2.2. Variance gamma process on W

In the continuous-time setting, we define the matrix Wt to
be a Brownian motion subordinated to a gamma process.
Let R = (Rt) be a gamma process on state space R+ with
shape rate a and scale c, and Z = (Zs) be a standard Brow-
nian motion (in matrix form) with state space RM×K . Then
Wt = ZRt is obtained by subordinating Z to R. Since both
Z and R are Lévy processes, W is also a Lévy process, and
thus can be represented as summation of independent incre-
ments and evaluated at discrete time points through simple
marginalization. The gamma process is a pure jump process
with occasional large jumps, and therefore the Brownian
motion is also a jump process with little motion interrupted
by occasional large jumps (Çınlar, 2011). We use this pro-
cess as a change-point model for Wt, which will allow it to
remain nearly fixed over a period of time, with occasional
large jumps representing a shock in the dynamic system
(e.g., caused by a market event) (Madan et al., 1998).

Mathematically, if we partition X into time blocks t, then
Lévy process theory provides a simple generative process
for Wt. Let ∆st be the time lapse between block t− 1 and
t. Then Rt −Rt−1 ∼ Gam(a∆st, c). Using a new variable
for this difference, the discrete time evolution of Wt can be
simply represented as

Wt ∼ N (Wt−1, γtI), γt ∼ Gam(a0, c), (1)

where a0 = a∆st, assuming a constant time shift. (We’ve
also overloaded the normal distribution.) When the par-
tition is over a small window of time compared with the
dynamics of the process, a0 will be small and therefore γt
will likely be small and Wt will have little change. How-
ever, γt will occasionally be large, which will allow for a
change in the system. As written, we assume one gamma
process; generalization to row-specific gamma processes is
straightforward and will allow for each data stream (e.g.,
stock) to have its own change-points. The BNP aspect is in
inferring these change-points from the data. An example
of this row-specific process for W is illustrated in the left
column of Figure 2 for a rank-one factorization.

2.3. Temporal tracking in H and data generation

For the local tracking model of H we use discretized Brow-
nian motion. If Ht,j is the jth column of Ht, then we model
its dynamics and resulting data generation as

Ht,j ∼ N (Ht,j−1, λI), Xt ∼ N (WtHt, σ
2I), (2)

where λ represents the time interval between data points
(assumed constant), and Ht,1 uses the last point in Ht−1.
We’ve again overloaded notation of the second Gaussian
distribution. The columns ofHt follow a continuous process
and therefore only allows “smooth” change, although the
process is nowhere differentiable.
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Figure 2. A rank-one example of the deep BNP tracking model for three data streams. A continuous-time variance gamma process is
discretized into time blocks at finer resolutions than the large jumps in the process. A single Brownian motion multiplies these variance
gamma processes and is passed into a neural network, which parameterizes the mean and covariance of the observed data streams.

2.4. Extension: A deep likelihood model

In the previous sections we proposed a linear Gaussian ma-
trix factorization model for tracking. We next extend this to
a deep model in a simple way. Here we use the variational
autoencoder framework to motivate the model development,
and the inference algorithm discussed later (Kingma &
Welling, 2014; Krishnan et al., 2015). We use a neural
network, denoted by its parameters φ, to define the decoder
model pφ(Xt|Wt, Ht) for block t as a Gaussian additive
noise model,

Xt ∼ N (µφ(WtHt),Σφ(WtHt)) . (3)

Here we have again overloaded the Gaussian notation. In
this likelihood model, we define a multivariate Gaussian on
the jth column of Xt with mean and covariance a neural
network that is a function of the jth column of WtHt. The
benefit of this formulation can be seen in the inference step,
where we are able to easily handle the stochastic gradient
of φ (Kingma & Welling, 2014). We discuss the design of
networks µφ and Σφ in Section 3.2. We illustrate this deep
model in Figure 2.

3. Variational inference
3.1. Linear Gaussian observational model

We derive variation inference algorithms for the two models
proposed in Section 2. We first discuss inference for the sim-
pler linear Gaussian model. By our choice of q distributions,
the algorithm nearly reduces to an EM algorithm in which
one component is the traditional Kalman filter. To approxi-
mate the full posterior, we use a factorized q distribution of

the form

q(γ,W,H) =

T∏
t=1

q(γt)δ(Wt)q(Ht). (4)

We observe that within a time block we do not further
factorize q(Ht). Our q on Wt is a delta function, mean-
ing we actually learn a point estimate of this variable.
As a result, the conditional posterior p(γ,H|W,X) =
p(H|W,X)

∏
t p(γt|Wt). Our only mean-field approxima-

tion is therefore in the factorization
∏
t q(Ht), which breaks

dependence in the single transition across time blocks. The
variational lower bound is,

L = Eq
[

ln
p(γ,W,H,X)

q(γ,W,H)

]
= LH + LW,γ . (5)

The H portion is LH =
∑T
t=1 L

(t)
H , where

L(t)
H =

Nt∑
j=1

E
[

ln
p(Xt,j |Wt, Ht,j)p(Ht,j |Ht,j−1)

q(Ht,j |Ht,j−1)

]
. (6)

The W,γ portion is LW,γ =
∑T
t=1 L

(t)
W,γ , where

L(t)
W,γ = E

[
ln
p(γt)p(Wt|Wt−1, γt)

q(γt)

]
. (7)

We use coordinate ascent to iterate between the following
closed-form updates. All expectations are with respect to q.

Update q(γt): The conditional posterior of γt is a gen-
eralized inverse Gaussian. Thus q(γt) = GIG(at, bt, pt),
where at = 2c, bt = ‖Wt −Wt−1‖2F , pt = a0 −Md/2.
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Figure 3. Left: Encoder network using an LSTM. Right: Re-
parameterization and sequential sampling from qθ(Ht,j+1|Xt,1:j).

Update Wt: This is a closed-form update,

Wt =

(
M1 +

XtE[H>t ]

σ2

)(
M2 +

E[HtH
>
t ]

σ2

)−1

, (8)

M1 =E[γt]Wt−1+E[γt+1]Wt+1,M2 =(E[γt]+E[γt+1])I .

Update q(Ht): This is the linear Kalman filtering prob-
lem using the current value of Wt. We use the standard
forward-backward (filtering-smoothing) algorithm to solve
this linear dynamic system (Ghahramani & Hinton, 1996).

3.2. Extension: Variational auto-encoder model

In Section 2.4 we introduced a neural network based like-
lihood model pφ(Xt|Wt, Ht) with nonlinear dependencies
on the product WtHt. Variational inference for this model
is non-trivial because of the clear non-conjugacy. We apply
the variational auto-encoder by introducing a variational
posterior conditioning on the context X ,

q(γ,W,H|X) =

T∏
t=1

q(γt)δ(Wt)qθ(Ht|Xt). (9)

Note that qθ(Ht|Xt) is a neural network encoder model
for the decoder pφ(Xt|Wt, Ht). To match the posterior
structure to the prior one, we further factorize

qθ(Ht|Xt) =

Nt∏
j=1

qθ(Ht,j |Ht,j−1, Xt). (10)

Encoder design. To exploit the sequential structure of the
data, we use LSTM (Hochreiter & Schmidhuber, 1997) to
encodeXt. The pipeline of this encoder network is shown in
Figure 3. In particular, we introduce another hidden layer St
as the LSTM output. Then we sample Ht,j sequentially by
conditioning on (St,j−1, Ht,j−1). In this case we concate-
nate (St,j−1, Ht,j−1) into a single vector and pass that vec-
tor to two feed-forward neural networks to obtain the Gaus-
sian parameters µθ(St,j−1, Ht,j−1),Σθ(St,j−1, Ht,j−1) as
outputs1. Finally we sample from the distribution given
above. The entire process is summarized in Algorithm (1).

1In our experiments we restrict Σφ to be a diagonal matrix
and use neural networks to model the logarithm of each diagonal

Algorithm 1 Sampling from qθ(Ht|Xt)

1: Get St by passing Xt to an LSTM.
(Figure 3 blue part)

2: Sample Ĥt,1 from an initial distribution.
3: for j = 2, . . . , Nt do
4: Get parameters (µt,j , (Σ

1/2
t,j )) for Ht,j by passing

(Ĥt,j−1, St,j−1) to a feed-forward network.
(Figure 3 red part)

5: Sample Ĥt,j = µt,j + Σ
1/2
t,j ε, ε ∼ N (0, I).

(Figure 3 red part)
6: end for

Decoder design. As previously discussed, we define

pφ(Xt,j |W,H) = N (µφ(WtHt,j),Σφ(WtHt,j)), (11)

where parameters µφ(WtHt,j),Σφ(WtHt,j) are modeled
by separate feed-forward neural networks. As we will see,
we can exploit this structure to simplify inference using
re-parameterization.

Variational inference. Since the variational auto-encoder
model is defined locally, we have a similar learning frame-
work. We can again re-write L = LH + LW,γ , where
LH =

∑T
t=1 L

(t)
H and LW,γ =

∑T
t=1 L

(t)
W,γ . While L(t)

W,γ is
as in Equation (7), the local bound is slightly different:

L(t)
H =

Nt∑
j=1

E
[
ln
pφ(Xt,j |Wt, Ht,j)p(Ht,j |Ht,j−1)

qθ(Ht,j |Ht,j−1, Xt)

]
. (12)

Update q(γt): The same as the linear likelihood model.

Update Wt: This time we do not have a closed-form solu-
tion since we can only get samples for the hidden variables
in the neural network. Instead we will use SGD, where

∇Wt
L ≈ ∇Wt

1

M

Nt∑
j=1

M∑
m=1

ln pφ(Xt,j |Wt, Ĥ
(m)
t,j ) + (13)

∇Wt
E[ln p(Wt|Wt−1, γt) + ln p(Wt+1|Wt, γt+1)],

and Ĥ(m)
t,j are i.i.d. samples of Ht,j , m = 1, . . . ,M . We

observe that the first line is approximated by Monte Carlo,
while the second is in closed form.

Update qθ(Ht|Xt): We again use SGD,

∇θL =

Nt∑
j=1

∇θE
[
ln

p(Ht,j |Ht,j−1)

qθ(Ht,j |Ht,j−1, Xt)

]
. (14)

entries. We use this trick for both the encoder network and the
decoder network to refrain from doing an additional projection
steps, which can be time-consuming.
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To estimate this gradient, we observe that we are able to
move the gradient inside the integral via the log trick (see,
e.g., Paisley et al. (2012)). By sampling Ht according to
Algorithm 1, we are able to get an unbiased estimation of
the gradient. In this case we found that using only one
sample Ĥt is enough to get an estimation of this direction
with reasonable variance.

Update pφ(Xt|Wt, Ht): We again use SGD to approxi-
mate ∇φL in a nearly identical way as updating qθ(Ht|Xt).

4. Further discussion
We briefly discuss a straightforward motion modeling ex-
tension that can better capture latent trajectories, modeling
data with missing values, and also the prediction equations
we use for our experiments.

4.1. Modeling velocity and acceleration of drift

The Brownian motion Ht discussed above cannot project
future trajectories in the latent space. We augment the
model with standard tracking methods that imposes “Earth’s
physics” upon this space. Therefore, we augment Ht by
tripling the number of rows and modeling the drift ∆s into
the future using the kinematic equations as follows,

H
(pos)
t,j = H

(pos)
t,j−1 + ∆s ·H(vel)

t,j−1 +
∆s2

2
·H(acc)

t,j−1,

H
(vel)
t,j = H

(vel)
t,j−1 + ∆s ·H(acc)

t,j−1,

H
(acc)
t,j = e−α∆s ·H(acc)

t,j−1. (15)

α > 0 is a damping factor. In this way we are able to explic-
itly model the evolving position, velocity and acceleration
of H according to basic physics properties. By introducing
two deterministic matrices

G1 =

[
I ∆s·I 1

2 ∆s2·I
0 I ∆s·I
0 0 e−α∆s·I

]
, G2 =

[
I 0 0

]
, (16)

we can rewrite the transitions and observations as

Ht,j∼N (G1Ht,j−1, λI), Xt∼N (WtG2Ht, σ
2I). (17)

We see that G1 projects Ht,j−1 into the future. (The ve-
locity and acceleration are directly learned from data.) G2

picks out the current position to generate the observation.
The above inference algorithms can be easily modified by
inserting G1 and G2 at the appropriate places.

4.2. Handling missing data

If there are some missing entries in the data matrix Xt

we can introduce an appropriate indicator matrix At. The
likelihood model with drift then modifies to

Xt ∼ N (AtWtG2Ht, σ
2diag(At)I). (18)

Nothing changes with in remaining parts.

4.3. Prediction

There are two scenarios. The first one is “in-matrix” predic-
tion, which aims at predicting missing values in Xt. The
second is “sequential prediction,” which predicts the next
columns of Xt given previous column. For in-matrix predic-
tion, we have information from both the past and the future.
Given q, for model with drift, we select the position from H
with G2 and set X̂t,j = WtG2Eq[Ht,j ]. The missing values
in Xt are filled with the corresponding value in X̂t. For
sequential prediction, for model with drift we project into
the future with G1 and then select the position from H with
G2, and predict Xt,j = WtG2G1Eq[Ht,j−1].

5. Experiments
5.1. Methods and evaluations

We empirically evaluate several approaches to this ma-
trix factorization tracking problem. We summarize their
acronyms in Table 1. One immediate comparison is with
a model that uses Brownian motion to model both W and
H— in other words the linear model of this paper without
the gamma process, but a fixed variance on Wt. We refer to
this model as the collaborative Kalman filter (CKF) (Gul-
tekin & Paisley, 2014). Furthermore, we can incorporate
the dynamics of Section 4.1 on Ht, and also use the VAE
approach discussed above with the CKF.

We also consider three approaches from this paper: the
variance gamma process linear model, that model adding
dynamics, and a VAE approach to the model with dynamics,
where the dynamics are as in Section 4.1. For our experi-
ments, we allow each row of W to have its own associated
gamma process, which represents the fact that items such
as stocks or words do not share the same change-points.
For notational simplicity we presented the algorithm for
a single variance gamma process on W , but now we use
q(γt) =

∏M
m=1 q(γt,m) with straightforward modifications.

As a baseline, we compare with piece-wise linear interpola-
tion, which predicts the next value to be the current value,
or locally averages two adjacent values. For all methods,
we use root-mean-square error (RMSE) as our performance
metric based on predictions, as discussed in Section 4.3. For

Table 1. Methods evaluated in our experiments.

Notation Description
Interp Piecewise linear interpolation
CKF Collaborative Kalman filter
CKF-drift CKF with velocity and acceleration
CKF-VAE CKF-drift, nonlinear VAE version
VGP Variance gamma process model
VGP-drift VGP with velocity and acceleration
VGP-VAE VGP-drift, nonlinear VAE version



Deep Bayesian Nonparametric Tracking

Table 2. Linear likelihood model predictive results for stock data set.

Method In-matrix RMSE Sequential RMSE
d=5 d=10 d=15 d=20 d=30 d=50 d=5 d=10 d=15 d=20 d=30 d=50

CKF 0.7815 0.7483 0.7198 0.6960 0.6830 0.7124 0.7103 0.5456 0.5295 0.5030 0.4933 0.4874
CKF-drift 0.7618 0.7325 0.7001 0.6672 0.6620 0.6853 0.6853 0.5395 0.5291 0.4982 0.4915 0.4839
VGP 0.7777 0.7216 0.7038 0.6678 0.6342 0.6241 0.6874 0.5356 0.5205 0.5013 0.4955 0.4845
VGP-drift 0.7416 0.7210 0.6727 0.6463 0.6247 0.6077 0.6760 0.5321 0.5191 0.4999 0.4933 0.4820
Interp 0.6704 0.4983

Table 3. Deep likelihood model predictive results for stock data
using various LSTM latent unit sizes.

Method In-matrix Sequential
CKF-VAE-50 0.6108±0.0245 0.4824±0.0122
CKF-VAE-200 0.5934±0.0205 0.4735±0.0082
VGP-VAE-50 0.5846±0.0132 0.4742±0.0217
VGP-VAE-200 0.5364±0.0153 0.4628±0.0102

each method we run five experiments with random initial-
izations.

5.2. Stock market crash and recovery, 2008-2012

We present quantitative and qualitative evaluation of our
model on stock market data that measures daily stock prices
at opening and closing times forM = 1429 companies from
the AMEX exchange, NASDAQ, and NYSE, giving 2.86
million total measurements from 2008-2012.2 In particular,
we partition the entire time horizon into four-week blocks.
This gives T = 50 segments in total. Within each block we
have Nt = 40 measurements for each stock.

For the CKF models, we set the transition variance λ = 0.1
and the likelihood variance σ2 = 1. For models with drift,
we set the damping parameter α = 0.1. For VGP models,
we set γt,m∼iidGam(1, 1), meaning c = 1 and the inte-
gral of the Lévy measure over four weeks equals 1. For
the encoder part of VAE models (see Figure 3), we set the
LSTM latent dimension to be 200. We set the output part of
the encoder network (see the red box in Figure 3) to be one
feed-forward layer followed by a RELU unit (Nair & Hinton,
2010) before splitting the outputs for µ and Σ. The decoder
part contains two feed-forward layers with RELU units. For
optimization we use Adam (Kingma & Ba, 2014) with learn-
ing rate 10−4. In the experiments we find inference it takes
around one hour of coordinate ascent for the linear models;
the VAE models converge more slowly (approximately one
day), but the result is significantly improved.

In order to quantitatively compare those models, we show
the in-matrix prediction performance and sequential predic-
tive performance, described in Section 4.3. For in-matrix

2Data source: http://ichart.finance.yahoo.com/

Table 4. In-matrix prediction results for encoder/decoder choices.

Decoder
ff recur conv

Encoder
ff 0.592 0.735 >1

recur 0.536 0.584 >1
conv >1 >1 >1

Table 5. In-matrix prediction results for various choices of decoder.

f(Wt, Ht) f(Wt ·Ht) f(Wt, g(Ht)) f(Wt · g(Ht))
0.673 0.536 >1 >1

prediction we crop 1/5 of the data for testing and use the
rest for training. And for sequential prediction we use stock
prices from 2008 to 2012 for training and predict stock
prices sequentially in 2013.

Linear likelihood models. We show the predictive per-
formance in Table 2 as a function of the factorization rank.
The VGP-based models have superior performance over the
models driven only by Brownian motion. We can also see
an improvement in RMSE when we explicitly model the
latent trajectory in H . This indicates that the latent motion
trend in the market is helpful for prediction. We note that
the CKF model is even slightly worse than the linear interpo-
lation method, indicating that the stock market is very hard
to track with a linear model. For sequential prediction, the
performance gap is not as large as the in-matrix prediction
since observations ahead of time and correlations among
stocks are informative for a precise prediction.

Deep VAE models. Next we show empirical performance
for VAEs. We recall that the linear models WtHt is fed
into the encoder network in our implementation. (We will
compare with other approaches later.) The result is shown
in Table 3, where we can see that the VAE significantly
improves performance of both CKF-drift and VGP-drift
models. VGP-VAE is the best among all models by exploit-
ing both latent jumps and nonlinearity to model the data.
Moreover, we observe that VAE models get better results
when using a larger number of LSTM latent units S.

http://ichart.finance.yahoo.com/
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(a) (b)

Figure 4. The jumps learned by our deep VGP-VAE model. (a) Summation of posterior means for all stocks
∑
m E[γt,m]. As expected,

this shows a significant jump in the market corresponding to the crash of 2008-2009. (b) the stock price for three companies and their
corresponding gamma processes. Spikes indicate large jumps of their relevant locations in the row space of Wt (vectors not shown).

VAE network design. We find that the choice of en-
coder/decoder networks will affect the result. First, we
compare three network settings for both the encoder and
decoder: feed-forward (ff), recurrent (recur), and convolu-
tional (conv). For recurrent networks we use LSTM for our
experiments, and for the decoder convolutional network we
use transposed convolution layers (i.e., deconvolution). We
tune all networks for various layer widths and depths. Ta-
ble 4 shows the best result we get for each encoder/decoder
network pair. We find that using LSTM as encoder and
feed-forward as decoder has the best result. This is because
LSTM can exploit the sequential properties within data and
effectively encode the observations into H . Since we also
assume a sequential structure in qθ(Ht|Xt), the decoder can
be done in a straightforward way through a feed-forward
network.

We also note that our decoder can be generalized as a func-
tion of Wt and Ht. In this case, we have multiple choices of
the functional form for our decoder network. For example,
we can first concatenate Wt and Ht and then feed them
into a neural network (denoted as f(Wt, Ht)), or we can
multiply them before feeding into the network (denoted as
f(Wt ·Ht), the method we’ve used thus far). The fact that
Ht itself has a sequential structure means we can potentially
exploit this by first feeding H into an LSTM (denoted as
g(Ht)) before considering how it interacts with Wt. Table 5
shows the quantitative results for those choices. We find
that feeding the linear model WtHt directly into the neural
network has the best performance. This indicates our initial
BNP linear approach still has value when combined with a
deep model.

Qualitative results. We also present a qualitative evalua-
tion of the VGP-VAE model. Figure 4 shows the variance
gamma process. In the left plot, we show the posterior mean
of the subordinator gamma process E[γt,m] summed over
all stocks, showing amount of “jumpiness” in the stocks
learned by our model. We note that this should not be
sparse, since in any time frame we expect a subset of stocks
to have fundamental changes. However, our model does

detect a significant global jump around October in 2008,
which corresponds to the most recent stock crash.

In the three right plots, we show the jumps learned from
three individual stocks: Abbott Laboratories (Medical &
Health), Caterpillar (Energy, Industry), and Coca-Cola (Con-
sumer Staples), in the lower gray subplots. As expected,
their learned gamma processes are sparse. From the stock
prices, we can see all the three stocks experienced a similar
drop during the market crash. The variance gamma pro-
cess does not detect stable, gradual changes in stock price
because these parts can be tracked accurately by H and
the VAE. The gamma process is intended to detect change-
points, where fundamental changes occur (i.e., as modeled
by jumps in the latent embedding space). For example, in
July 2011, Caterpillar agreed to pay a Clean Air Act penalty,
which seems to have affected its location relative to other
stocks in the row space of Wt.

5.3. NFL tweets

Another typical example where bursts happen naturally is in
social media. Here we aim to analyze 377,164 NFL-related
tweets (e.g., labeled with an #nfl hashtag) posted during the
2011-2012 season (Sinha et al., 2013). All the data were
partitioned into T = 122 mini-batch, one per day, and for
each day we aggregate all tweets into bag-of-words by hour.
Thus Nt = 24. We remove all stop words and pick the top
M = 5000 words by their document level tf-idf rank (Salton
& Buckley, 1988). That is, our observation is a 5, 000 by
(24× 122) time-series matrix.

Quantitative results. We use the first 4/5 of data for
training and the rest for testing. We set λ = 0.3, σ2 = 1,
α = 0.1, and the prior γt,m∼iidGam(1, 1). For VAE mod-
els we set the LSTM latent dimension to be 40 and the
learning rate for Adam to be 10−4. The result is shown in
Table 6. For CKF models we show the best result when
tuning K ∈ {5, 10, 15, 20, 30, 50}. Again we see that VAE
models have the best predictive performance due to its abil-
ity to model bursts through a Bayesian nonparametric jump
process and nonlinearity through neural networks.
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Figure 5. Top plots show raw counts for 6 different words. We can see the word frequency is very noisy in the entire period. Lower shaded
plots show posterior mean of the gamma process E[γt,m] showing the jumps in word embedding locations learned by our model. Note
that (i) the resolution of the plots are different, the top being hourly and the bottom per-day; (ii) the learned spikes show jumps of latent
row vectors in Wt through a variance gamma process (not shown). So our method is essentially different from sparse recovery algorithms,
such as soft-thresholding (Donoho, 1995).

Table 6. Sequential predictive results for NFL tweets.

Method Sequential RMSE
Interp 0.481
CKF 0.478± 0.002
CKF-drift 0.475± 0.002
CKF-VAE 0.470±0.001
VGP 0.477± 0.002
VGP-drift 0.471± 0.003
VGP-VAE 0.463±0.002

Qualitative results. In Figure 5 we show the counts of
various words and their learned gamma process E[γt] for
the VGP-VAE model. The first three plots shows results for
various teams: Patriots, Titans, and Raiders. The appear-
ance of those words is very informative and bursty, and the
gamma process captures the big changes that aren’t able to
be modeled by changes in H . Clearly we can see only a few
spikes in the plot for most teams, and often there are two
adjacent spikes, which indicates a very short change that
doesn’t persist. The last three plots show results for four
less informative words: ‘nfl’, ‘go’, and ‘fans’. We still learn
some spikes in these words. However, the spikes are less
informative and they are at a relatively smaller scale than
the spikes learned from first three words.

Sensitivity results. Finally, we show a sensitivity analy-
sis for the VGP model in the predictive performance as a
function of block window size3. The result is shown in Fig-
ure 6, where we can clearly see that when the window size
is very small we are unable to get good predictive results. In
this case, the H has difficulty accurately capturing the basic
dynamics because Wt is updated so frequently and many
local optima exist. On the other hand, when we use very
large batch size, we are still have decent predictive results.
However, in this case our variance gamma process model is
very coarse, so that we do not have interpretable results of
change-points.

3We observe a similar result in the VGP-VAE model.

Figure 6. Sensitivity result on nfl tweet data set with various time
windows. To get both good predictive and interepretable results,
the best choice is to choose an intermediate discretization.

6. Conclusion
In this paper, we introduce a new method to integrate
Bayesian nonparametrics and deep neural networks for time-
series data. We treat a collection of data sequences, such
as stock prices, as a matrix factorization problem in which
there are temporal dynamics in both matrices of the fac-
torization. For the left matrix, we use a variance gamma
(jump) process to model change-points in what should oth-
erwise be a fixed latent embedding. Columns of the right
matrix follow a Brownian motion. We then extend this
linear Gaussian basic model to a neural network and use
the variational auto-encoder for approximate posterior infer-
ence. Our method benefits from both BNP methods (jump
processes for change-point detection and explainable latent
representations) and deep neural networks (non-linearity for
generalized linear modeling). We empirically evaluated our
method on two data sets, demonstrating predictive power
and interpretability.
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