Composable Planning with Attributes

A. Exploration Over Attributes

Traditional count-based exploration adds a reward bonus
proportional to N~ in a reinforcement learning context
where an empirical reward is provided. For finite MDPs,
this bonus decays to 0 as ¢ — oo, which means that in
the long-time limit the agent is still finding a policy that
optimizes the original MDP.

In our setting, however, we are interested in pure explo-
ration, where the goal is to sample states (attribute transi-
tions) somewhat uniformly, or to minimize the uncertainty
in the empirical transition probabilities c,. In this setting,
it’s problematic for the reward to converge to 0 uniformly
as t — oo, because the optimal policy becomes degenerate
when r; — 0.

Instead, we consider a reward of r; = f(t/N), where N
is the visit count to this state (states are (p;, p;) transitions
in our example). If f is a concave increasing function (e.g.
f(x) = 2°) then in a bandit setting

T
lim re/T
T—o0 Z t/
t=0
is maximized when states are visited uniformly. In an MDP
setting where you can’t achieve exactly uniform exploration,

the maximum of this reward will be determined by the
choice of f.

For Mazebase experiments (with a small graph), we found
that the standard count-based reward of N ~°-% actually per-
formed worse than a random policy, while a reward of

-0.5
(ZZ + 0.001)

(which is a smoothed version of (t/N)°-% to prevent large
rewards which can destabilize training) outperformed ran-
dom exploration. In the crafting environment, a random
agent finds 18.6 edges on average, while the exploratory
policy finds all 25 edges.

In StarCraft, which had a much larger graph with at least
400K edges, we found that N ~0.5 actually worked fine for
exploration, discovering more than 50x more edges than a
random policy.

B. Details of the Block Stacking experiment

The policy network 7 takes (i) a 128 x 128 image, which
is featurized by a CNN with five convolutional layers and
one fully connected (fc) layer to produce a 128d vector; and
(ii) goal properties expressed as a 48d binary vector, which
are transformed to a 128d vector. The two 128d vectors are
concatenated and combined by two fc layers followed by
softmax to produce an output distribution over actions. We
use an exponential linear nonlinearity after each layer.

For the underspecified task, we consider the same distribu-
tion of tasks as the multi-step task, but provide only 70%
of the attributes as the goal, at random. For the baseline
models, we train them with the same distribution of un-
derspecified goals as they see at test time, but this is not
necessary for the AP model since it can plan over all goals
that satisfy the underspecified goal.

Tables 5 and 6 show the performance of AP and baselines
on both one-step and multi-step evaluation tasks, in 3 x 3
and continuous action spaces, respectively. In the continu-
ous case, blocks can be dropped in any (x, y) with a fixed
height z = 1.5 and x,y € [0,1]. The action space con-
sists of choosing a discrete block id b;y € [0, 1,2, 3] and
continuous x, y. The inverse one-step models were trained
on 2 million examples, inverse multi-step and AP models
were trained on 1 million examples, and A3C models were
trained to convergence (approximately 10 million examples).
We perform each evaluation task 1000 times.

C. Details of the Mazebase experiment

The policy network is a fully connected network with two
hidden layers of 100 units. The policy is trained with the
Reinforce algorithm (Williams, 1992) to reach a neighbor-
ing set of attributes from the current state. Each round of
training episodes terminate when the task completes or after
80 steps (i.e. tymqr = 80); and a reward of 1 is received if
the goal is reached’. An additional reward of -0.1 is given
at every step to encourage the agent to complete the task
quickly. We run each experiment three times with different
random seeds, and report the mean success rate.

Some crafting tasks are pre-solved because the randomly
chosen target item can already be in the inventory. However,
such tasks have no effect on training and are also removed
during testing.

D. Details of the StarCraft experiment

The game initializes with 4 SCVs, a command center, and
nearby ore mines. The other types of units can be con-
structed, such as barracks, marines, supple depots, engi-
neering bays, and missile turrets. However, the policy only
controls SCVs, a command center, and barracks. The avail-
able actions to the policy differ depending on the unit type:

e SCVs: movements in 4 cardinal directions, mine ore,
build a barracks, build a supple depot (also build a engi-
neering bay, build a missile turret in the large version)

e Command center: train a SCV

3Once the attribute detectors are learned, the reward is intrinsic:
the agent considers a local task complete when ir decides the
attributes have changed appropriately

Composable Planning with Attributes

Model Training I-step multi-step 4-stack 1-step multi-step
Data % % % underspecified
A3C 1-step 98.5 8.1 1.9 65.7 6.6
A3C multi-step 2.6 0.0 0.0 53 0.0
A3C curriculum | 98.2 17.0 29 8.2 0.2
Option-Critic 1-step 333 0.6 1.0 34.9 1.2
Option-Critic multi-step 15.9 0.2 0.5 32.9 1.7
Option-Critic curriculum | 32.7 0.4 0.9 32 1.0
Inverse 1-step 100 9.1 0.5 98.8 18.8
Inverse multi-step 94.1 13.7 4.6 71.2 9.6
AP (no ¢,) 1-step 74.5 29.7 62.2 81.8 28.1
AP 1-step 98.8 66.7 98.5 97.8 63.5

Table 5. Model comparison on block stacking task accuracy. Baselines marked ‘multi-step’ or ‘curriculum*® get to see complex multi-step
tasks at train time. The Attribute Planner (AP) generalizes from one-step training to multi-step and underspecified tasks with high
accuracy, while reinforcement learning and inverse model training do not. AP outperforms baselines even with a curriculum of tasks.
Ablating the normalized graph transition table ¢, degrades AP performance substantially on multi-step tasks due to aliasing. Inverse
one-step model was trained on 2 million examples, inverse multi-step and AP models were trained on 1 million examples, A3C models

were trained to convergence.

Model Training I-step multi-step 4-stack 1-step multi-step
Data % % % underspecified
A3C 1-step 0.3 0.0 0.0 0.0 0.0
A3C multi-step 0.0 0.0 0.0 0.5 0.0
A3C curriculum | 0.3 0.0 0.0 0.0 0.0
Option-Critic 1-step 13.8 0.0 44 14.6 0.0
Option-Critic multi-step 14.4 0.0 0.0 13.1 0.0
Option-Critic curriculum | 15.2 0.3 1.3 15.2 0.1
Inverse 1-step 60.1 8.6 0.0 29.3 2.5
Inverse multi-step 0.7 0.0 0.0 1.0 0.1
AP (no c;) 1-step 56.6 13.6 0.0 40.0 10.3
AP 1-step 64.1 17 0.4 453 12.5

Table 6. Model comparison in the continuous block stacking task. Inverse one-step model was trained on 8 million examples, inverse
multi-step and AP models were trained on 10 million examples, A3C models were trained to convergence.

e Barracks: train a marine

Each units observes its 64x64 surrounding area with reso-
lution of 4. Every time step, a policy outputs an action for
each unit independently by taking its observation and the
current attributes as an input.

Although the exact placement of units can be of importance
in the game, here we only focus on their count. Hence, the
attributes are chosen to be the number of units and resources
of each type. Since any single unit can’t observe everything
in the game, detecting attributes from the observation alone
is impossible. Therefore, the attributes are given as a part of
the observation.

Multi-step tasks are generated by picking a random number

for each unit type, with exception of ore and SCVs. The
upper limits of those random number are set between 2 and
4 depending on the unit type.

The same reinforcement training procedure as Section 4.2
is employed for the RL baselines. For curriculum training,
the upper limits are linearly increased during the curriculum
training to make learning easy. Both baselines are trained
for 30M steps.

Each episode starts at the initial state of the game and lasts
500 steps. The exploration policy 7. is trained with re-
inforcement learning with an intrinsic reward similar to
Mazebase, although we find that scaling by number of tran-
sitions is unnecessary so we just use c,_(p;, pj) % at each
transition is more effective in StarCraft. The exploration

Composable Planning with Attributes

policy is trained for 16 million steps, followed by training 7
and ¢, for 14 million steps, with t,,4, = 50.

