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Abstract

We propose a primal-dual based framework for
analyzing the global optimality of nonconvex low-
rank matrix recovery. Our analysis are based on
the restricted strongly convex and smooth con-
ditions, which can be verified for a broad fam-
ily of loss functions. In addition, our analytic
framework can directly handle the widely-used
incoherence constraints through the lens of dual-
ity. We illustrate the applicability of the proposed
framework to matrix completion and one-bit ma-
trix completion, and prove that all these prob-
lems have no spurious local minima. Our results
not only improve the sample complexity required
for characterizing the global optimality of matrix
completion, but also resolve an open problem in
Ge et al. (2017) regarding one-bit matrix comple-
tion. Numerical experiments show that primal-
dual based algorithm can successfully recover the
global optimum for various low-rank problems.

1. Introduction

Low-rank matrix recovery has received increasing atten-
tion in recent years, due to its wide range of applications
including signal processing, computer vision and collabora-
tive filtering (Rennie & Srebro, 2005; Ahmed & Romberg,
2015). The objective is to estimate an unknown rank-r
matrix X* € R% %% based on partially observed measure-
ments. More formally, low-rank matrix recovery can be
formulated as the following optimization problem

min F,(X)

subject to
XeC

rank(X) < r, (1.1)

“Equal contribution 'Department of Computer Science, Uni-
versity of Virginia, Charlottesville, VA 22904, USA. *Department
of Computer Science, University of California, Los Angeles, Los
Angeles, CA 90095, USA. Correspondence to: Quanquan Gu
<qgu@cs.ucla.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

where F,, : R1*% 5 R denotes a general sample loss
function with respect to n measurements, and C denotes
a constraint set such that X* € C. For example, C is set
to be R4 %92 in matrix sensing (Recht et al., 2010; Ne-
gahban & Wainwright, 2011), and is chosen to be the set
of incoherent matrices in matrix completion (Rohde et al.,
2011; Koltchinskii et al., 2011; Negahban & Wainwright,
2012) and one-bit matrix completion (Cai & Zhou, 2013;
Davenport et al., 2014).

Tremendous efforts have been made to efficiently solve
(1.1), among which the most popular ones are nuclear norm
relaxation based methods (Srebro et al., 2004; Candes &
Tao, 2010; Rohde et al., 2011; Recht et al., 2010; Recht,
2011; Negahban & Wainwright, 2011; 2012; Gui & Gu,
2015). These methods can achieve near optimal sample
complexity for recovery (Balcan et al., 2017), but a singular
value decomposition (SVD) step, whose time complexity
is O(d?)", is required at each iteration, which is computa-
tionally expensive for large-scale datasets. To avoid using
SVD, the most commonly-used technique is based on Burer-
Monteiro factorization (Burer & Monteiro, 2003), which
reparameterizes the low-rank matrix X as the product of
two smaller matrices U € R4 *" and V € R%*" such that
X = UV . Instead of optimizing (1.1) directly, we turn to
solve the following nonconvex optimization problem

i Fo(UVT
Ueé?,l\rlle@ n( ):

(1.2)
where C; C R%*" Cy C R%X" are some constraint sets
induced by C (c.f. Section 2.1). Note that (1.2) automatically
ensures the low-rankness of the estimated matrix.

A line of research (Bach et al., 2008; Keshavan et al., 2009;
Lee et al., 2013; Jain et al., 2013; Bach, 2013; Hardt, 2014;
Hardt & Wootters, 2014; Netrapalli et al., 2014; Jain &
Netrapalli, 2014; Haeffele et al., 2014; Sun & Luo, 2015;
Bhojanapalli et al., 2015; Chen & Wainwright, 2015; Zhao
et al., 2015; Tu et al., 2015; Chen & Wainwright, 2015;
Zheng & Lafferty, 2015; 2016; Park et al., 2016b; Jin et al.,
2016; Gu et al., 2016; Wang et al., 2017a;b; Xu et al., 2017;
Zhang et al., 2018) proposed to solve (1.2) based on gradient

'"We assume d; = d> = d when discussing the sample com-
plexity for simplicity.
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descent and/or alternating minimization, and established a
locally linear convergence property provided that the initial
solution falls into a basin of attraction, i.e., a small neigh-
bourhood around the optimum. Recently, another line of re-
search (Bhojanapalli et al., 2016; Ge et al., 2016; Park et al.,
2016¢; Li et al., 2016; Zhu et al., 2017a; Ge et al., 2017)
directly characterized the optimization landscape of (1.2)
and proved that various low-rank matrix recovery problems,
including matrix sensing (Bhojanapalli et al., 2016; Park
etal., 2016¢; Zhu et al., 2017a), matrix completion (Ge et al.,
2016), and robust PCA (Ge et al., 2017), have no spurious
local minima, i.e., all local minima are global ones. Based
on existing results on finding local minimum for certain
nonconvex problems (Ge et al., 2015; Carmon et al., 2016;
Agarwal et al., 2016; Jin et al., 2017), they further showed
that (1.2) can be successfully solved by saddle-avoiding
algorithms, such as perturbed gradient descent. However,
none of the aforementioned work is generic enough to cover
objective functions beyond square loss, e.g., the sample loss
function for one-bit matrix completion (Davenport et al.,
2014).

Following the second line of research, we propose a primal-
dual analysis to characterize the landscape of general ob-
jective functions in nonconvex low-rank matrix recovery
including both square loss and beyond. By using restricted
strongly convex and smooth conditions (Negahban et al.,
2009; Negahban & Wainwright, 2011), we are able to char-
acterize a large family of low-rank problems. To incorporate
the widely-used incoherence constraints for low-rank matrix
estimation, we propose to analyze the corresponding La-
grangian function rather than the primal objective function
and use the Karush-Kuhn-Tucker (KKT) condition (Nocedal
& Wright, 2006) to characterize the local minima of (1.2).
Our analysis shows that the optimization landscape of (1.2)
is well-behaved, i.e., there are no spurious local minima. In
addition, we demonstrate empirically that the primal-dual
based algorithm proposed in (Nocedal & Wright, 2006) can
recover the ground truth matrix successfully. Our major
contributions are further highlighted as follows.

1.1. Contributions

e Our general framework can be applied to any loss func-
tion that satisfies the restricted strongly convex and
smooth conditions (c.f. Section 3), which covers a
broad family of loss functions for low-rank problems.
All the existing theoretical analyses (Bhojanapalli et al.,
2016; Ge et al., 2016; Park et al., 2016¢; Li et al., 2016;
Zhu et al., 2017a; Ge et al., 2017) are limited to square
loss, thus we resolve an open problem raised in Ge
et al. (2017) regarding the characterization of global
geometry for one-bit matrix completion.

e Our primal-dual analysis is applicable to various noisy

low-rank problems. In particular, our analysis suggests
there are no spurious local minima in noisy matrix
completion, provided that the number of observations
is O(r?dlog d). Compared with existing studies (Ge
et al., 2016; 2017) whose sample complexity scales
to the fourth power with the rank, the sample require-
ment of our method matches the best-known sample
complexity of matrix completion using nonconvex op-
timization algorithm (Zheng & Lafferty, 2016) under
the incoherence condition.

e Compared with the seminal work (Ge et al., 2016;
2017) along this line that makes use of ad hoc regular-
izer to deal with incoherence constraints, our primal-
dual analytic framework directly characterizes the
global geometry of constrained nonconvex optimiza-
tion problem for low-rank matrix recovery using du-
ality theory. We believe the Lagrangian based proof
technique is of independent interest, which can be ex-
tended to handle more general inequality constraints in
other nonconvex problems.

1.2. Related Work

Characterizing the landscape of various objective functions
has attracted more and more attention in recent years. For
instance, Sun et al. (2015) studied the nonconvex geometry
of complete dictionary recovery problem, and proved that all
local minima are global ones. Sun et al. (2016) showed that
a nonconvex fourth-order polynomial objective for phase
retrieval has no spurious local minimum and all global min-
ima are equivalent. Lee et al. (2016) showed that gradient
descent converges to local minimum almost surely, using the
stable manifold theorem from dynamical system. Ge et al.
(2016) proved that the commonly used nonconvex objective
function for positive semidefinite matrix completion has no
spurious local minimum. In an independent work, Bhojana-
palli et al. (2016) proved that positive semidefinite (PSD)
matrix sensing, a very related problem to matrix completion,
has no spurious local minima under the restricted isometry
property (RIP). Later on, Park et al. (2016¢) extended the
geometric analysis of matrix sensing from PSD matrices
to rectangular matrices. Zhu et al. (2017a) provided a uni-
fied geometric analysis for objective functions satisfying the
restricted strong convexity/smoothness property, but their
work cannot deal with the constrained optimization, e.g.,
matrix completion and one-bit matrix completion.

Most recently, several studies attempted to unify the global
geometry analyses for nonconvex low-rank matrix recovery
problems. For instance, Li et al. (2016) proposed a gen-
eral theory to characterize the global geometry of positive
semidefinite low-rank matrix factorization problem. Zhu
et al. (2017b) further extended the geometric analysis in
Li et al. (2016) to rectangular matrix factorization problem.



A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery

Nevertheless, both of their analyses require the objective
function to be quadratic (i.e., square loss function), which is
not applicable to constrained low-rank matrix recovery prob-
lems. The most relevant work to ours is Ge et al. (2017),
which proposed a general framework to characterize the
landscape of nonconvex low-rank matrix recovery problem.
More specifically, they incorporated the constraints for ma-
trix completion and robust PCA by a specifically designed
regularizer, to make the solution lie in a desired region (e.g.,
the set of incoherent matrices). However, their framework
still requires the loss function to be quadratic, thus unable to
analyze low-rank problems with general objective function,
such as one-bit matrix completion.

1.3. Organization and Notation

The remainder of this paper is organized as follows. We
formally state the general low-rank matrix recovery problem
and introduce two specific applications in Section 2. In Sec-
tion 3, we lay out conditions for the proposed primal-dual
based framework and present our main theoretical results.
In Section 4, we apply the general results to two specific
low-rank problems. The primal-dual based method and the
numerical experiments are illustrated in Sections 5 and 6, re-
spectively. We conclude in Section 7 and defer the detailed
proofs to the supplementary materials.

We use capital symbols such as A to denote matrices and
[d] to denote index set {1,2,...,d}. Let the i-th row, j-
th column and (4, j)-th entry of A be A, ., A, ; and A;;
respectively. Denote the i-th standard basis by e; and the
¢-th largest singular value of A by o,(A). We use vec(A)
to denote the vectorization of matrix A. For any vector
x, we use ||x||2 to denote its ¢5 norm. Let [|A| F, ||All2
be the Frobenius norm and the spectral norm of matrix A,
respectively. We define the largest £2 norm of its rows as
|All2,0c0 = max; ||A;||2. For any two sequences {a, }
and {b,, }, if there exists a constant 0 < C' < oo such that
ap, < Cb,, then we denote a,, = O(by,).

2. Constrained Nonconvex Optimization for
Low-Rank Matrix Recovery

In this section, we introduce our general framework for
low-rank matrix recovery, along with several applications.

2.1. Generic Framework

Let the singular value decomposition of the unknown low-

rank matrix be X* = U 'XV" ' and U*, V* be the un-
derlying factorized matrices such that U* = U'si/2,
V* = V' 22, Denote the sorted singular values of X*
by oy > 02 > ... > o, > 0. Recall that we aim to
characterize the global optimality of the general nonconvex
optimization problem (1.2). Formally, we define the general

constraint sets Cy, Co as follows

Cl = {U c RleT | HU||27OO S Oél},

2.1)
CQ = {V c Rd1><r | HV”Q’OO § 042}, (

where a1, as will be specified for different examples. To
guarantee optimization problem (1.2) is well-defined, we
assume U* € C; and V* € (C,. It is worth noting that
(2.1) can cover a wide range of low-rank matrix recovery
problems. For instance, in matrix completion, constraint
sets in the form of (2.1) are proposed to ensure the estimator
X = UV is incoherent.

In addition, following Tu et al. (2015); Zheng & Lafferty
(2016); Park et al. (2016a); Wang et al. (2017a), we add an
additional regularization term |[UTU — VT V|2 to (1.2)
such that the solutions U, V are in similar scale. Specif-
ically, we propose to analyze the following constrained
optimization problem with respect to the stacked matrix
Z = [U; V] in the lifted space R(%1+d2)x7

min G(Z) = F(UV) + L UTU -V V|2, 2.2)
ZeD 4

where the constraint set D is defined as D = {Z €
R(ditd2)xr |71, < a}, where a = max{ay, as}, and
~ denotes the regularization parameter.

2.2. Specific Examples

We briefly introduce two specific examples: noisy matrix
completion and one-bit matrix completion.

Noisy matrix completion. The goal of matrix completion
(Rohde et al., 2011; Koltchinskii et al., 2011; Negahban
& Wainwright, 2012) is to estimate the unknown low-rank
matrix X* from its partially observed (noisy) entries. More
specifically, we consider the uniform observation model

X%+ Eig, for any (5, k) € Q;
Yik = { *,jk ’ otherwiie. ) 2:3)
where  C [dy] x [d2] denotes the observed index set
such that for any (j,k) € €, j ~ uniform([d;]) and
k ~ uniform([dz]). Here, Y € R%*92 denotes the ob-
served data matrix, E € R% %92 denotes a random noise
matrix such that each entry of E follows i.i.d. Gaussian
distribution with variance 2 /(dyds).

As discussed in previous work (Gross, 2011; Negahban &
Wainwright, 2012), it is impossible to recover the unknown
low-rank matrix X* if it is too sparse. To avoid such issue,
we impose the following incoherence condition (Candes &
Recht, 2009) on the singular spaces of X*

= T =k T
T ”mg\/% and [V ||2,oo§\/fl—2, 24)
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where 7 denotes the rank of X*, and 3 denotes the incoher-
ence parameter. Note that based on the incoherence condi-
tion (2.4), we can derive || X*||oc.c0 < [T ll2.00 - |Z]]2 -
[V ||2.00 < Broi/+/didy, which leads to a dimension-free
signal-to-noise ratio in observation model (2.3).

More specifically, we consider the following constrained
optimization problem for matrix completion

.1
min —

T 2, YyyrT T~7112
ZeD 2p Z (ij*Vk,*_Yrjk) +1HU U-V V],

(7,k)eQ
(2.5)

where D is defined in Section 2.1 and p = |Q|/(d1d2)
denotes the sampling rate. In order to guarantee Z* =
[U*;V*] € D, we set a = /Bros/d, where dy and d are
in the same order O(d) for simplicity.

One-bit matrix completion. The objective of one-bit ma-
trix completion (Davenport et al., 2014; Cai & Zhou, 2013;
Ni & Gu, 2016) is to recover the unknown low-rank matrix
X* from a set of binary observations. In detail, the depen-
dence of the observed binary matrix Y € R%*?2 on X* is
presented as follows

v +1, if X3 + B >0,

= , (2.6)
an {—1, if X%, + Ejp, < 0,

where E € R% %42 denotes a random noise matrix. Let
f be the cumulative distribution function of —FEj, then
the observation model (2.6) can be recast as the following
probabilistic model

Yo = {-H, W?th probab%l?ty F(XG5h), @7
—1, with probability 1 — f(X7).

In addition, we consider the same uniform sampling model

for the observed index set €2 as in matrix completion, and

impose the incoherence condition (2.4) on X* to avoid the

overly sparse matrices. Specifically, we aim to solve the fol-

lowing optimization problem for one-bit matrix completion

1 -
pin o O { oL, log (F(UVL)
(7,k)EQ

g
o L los (L= F(UL VL)) |+ FIUTU = VTV

(Yjr=—

2.8)

where Q C [di] x [d2] denotes the observed index set
with cardinality ||, and we also set the parameter o =
\/Broi/d in the constraint set D to ensure optimization
probelm (2.8) is well-defined.

3. Results for Generic Framework

Before presenting our main theoretical results, we first lay
out the formal definition of local minimizer and the basic

necessary optimality conditions with respect to constrained
optimization problem (2.2) .

Definition 3.1. Z is a local minimizer of constrained opti-
mization (2.2), if Z satisfies the following conditions: (i)
Z € D. (ii) There exists a neighbourhood A of Z such that
forany Z € N'ND, G(Z) > G(Z) holds.

For general constrained optimization (2.2), we provide the
fundamental first-order necessary condition as follows.

Lemma 3.2. Suppose Z is a local minimizer of constrained
optimization problem (3.1). Then for all feasible directions”
A € R(41+42)x7 the following inequality holds:

(VG(Z),A) > 0.

Recall that the constraint set D is defined as D = {Z €
R(di+d2)xr |17, < a}. Thus, according to the defini-
tion of || - ||2,00, We can reformulate (2.2) as the following
equivalent standard form

min  G(Z) = F(UVT)+ 1 JuTU - VTV|32
ZcR(d1+d2)xr 4

subject to h;(Z) <0, foralli € [dy + da], 3.1

where h;(Z) = |le] Z||3 — a2, and e, represents the i-th

natural basis. Accordingly, the Lagrangian with respect to
(3.1) is given as follows

di+da

L(ZX) =G(Z)+ > Nihi(2),
i=1

where A = [A1, A2, ... A4, +d,)] | denotes the Lagrange
multiplier vector. Based on the Lagrangian, we give the fol-
lowing necessary optimality conditions (Nocedal & Wright,
2006) for constrained optimization problem (3.1).

Lemma 3.3. Let Z be a local minimizer of constrained op-
timization problem (3.1). Define the set of active constraint
gradients at Z as A(Z) = {i € [d1 + d2] | hi(Z) = 0}.
Suppose the active set {Vh;(Z) | i € A(Z)} is linearly in-
dependent. Then there exists a Lagrange multiplier vector A
such that (Z, A) satisfies the following Karush-Kuhn-Tucker
(KKT) conditions

1. hl(Z) S O7 forall i € [dl + dg}7
2. A>0,
3. )\zhz(z) =0, forallie [d1 + dg}7

4. VzL(Z,A) =0,

2We say A is a feasible direction for constraint set D at Z, if
there exists ¢ > 0 such that Z + sA € D forall s € [0, ¢].
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Lemma 3.4. Under the same conditions as in Lemma 3.3,
let A be a Lagrange multiplier vector such that (Z, \) satis-
fies the KKT condition. For any A € R(41+42)X7 gatisfying
the condition that (Vh;(Z), A) < 0 holds for all i € A(Z),
(Z, X\) also satisfies the following inequality

vec(A)'VZL(Z, A)vec(A) > 0.

The aforementioned necessary optimality conditions char-
acterize the properties of local minima with respect to con-
strained optimization problem. As will be seen in later
analysis, these optimality conditions are essential to show
that there are no spurious local minima in (3.1).

Next, we lay out several conditions for the general sample
loss function F,,. To begin with, we present the restricted
strong convexity and smoothness conditions (Negahban
et al., 2009; Loh & Wainwright, 2013).

Condition 3.5 (Restricted Strong Convexity). The sample
loss function F,, is p-restricted strongly convex, i.e., for all
matrices Y, W € R% *% with rank at most 6r

Fal¥) 2 Fu W) + (VF,(W),Y = W) + Z|[Y - W]

Condition 3.6 (Restricted Strong Smoothness). The sam-
ple loss function F,, is L-restricted strongly smooth, i.e.,
for all matrices Y, W € R% *%2 with rank at most 61

L

In addition, we assume there is an upper bound for the
gradient of the sample loss function VF,, with respect to
the unknown low-rank matrix X*.

Condition 3.7. Given a fixed sample size n and tolerance
parameter § € (0, 1). Let ¢(n, §) be the smallest scalar such
that with probability at least 1 — &, we have

IV (X) 2 < €(n, d),

where €(n, J) depends on sample size n and 0, and €(n, J)
deceases as n increases.

As will be clear in the next section and in the proofs, Con-
ditions 3.5, 3.6 and 3.7 can be verified for a wide range of
sample loss functions, such as the objective functions in
matrix completion and one-bit matrix completion.

Finally, we present the main results regarding the global
optimality of optimization problem (3.1). In particular, we
are going to show that under proper conditions, (3.1) has no
spurious local minima.

Theorem 3.8. Assume the sample loss function F,, satisfies
Conditions 3.5, 3.6 and 3.7. Under condition that L/u €

(1,18/17), for all local minima Z = [U; V| of optimization
problem (3.1) with regularization parameter ~y satisfying
w—L/2 <~ < min{(22pu — 19L)/4, (3L — 2u)/2}, the
reconstruction error satisfies

[OVT —X*||% < Tre*(n, 6), (32)
with probability at least 1 — §, where I is a constant depend-
ing on u, L and 7.

Remark 3.9. Theorem 3.8 suggests that for all local min-
ima Z = [U; V] of (3.1), the reconstructed matrix UV "
lies in a small neighbourhood of X*, and the radius of such
neighbourhood decreases as the sample size n increases.
While in the noiseless case (e(n,d) = 0), the right hand
side of (3.2) is 0, which suggests that all local minima are
global ones, i.e., UVT = X*. Note that we require the
condition number L/ to be close to 1 in Theorem 3.8. As
will be clear in the next section and in the proofs, this as-
sumption can be verified for the specific examples discussed
in Section 2.1. Similar assumption has been imposed in
existing work on matrix sensing (Bhojanapalli et al., 2016;
Ge et al., 2017), in that the restricted isometry property
parameter is required to be in a small range around O.

4. Implications for Specific Examples

In this section, we illustrate how to apply our general frame-
work to two specific low-rank problems: noisy matrix com-
pletion and one-bit matrix completion. Note that given the
general results in Section 3, we only need to verify Condi-
tions 3.5, 3.6, 3.7 and the assumption regarding the restricted
condition number L/ for each specific example.

4.1. Results for Noisy Matrix Completion

Recall that for noisy matrix completion, we aim to optimize
(2.5) under the uniform sampling model (2.3) and incoher-
ence condition (2.4). Specifically, we verify Conditions 3.5,
3.6 and 3.7 for F,, in the following corollary to characterize
the global optimality of noisy matrix completion.

Corollary 4.1. Consider noisy matrix completion prob-
lem (2.5) under the uniform sampling model. Suppose
the unknown rank-r matrix X* satisfies incoherence con-
dition (2.4) and each entry of the noise matrix E follows
i.i.d. Gaussian distribution with variance 12 /(ddz). Pro-
vided the number of observed samples |Q2| > c¢;7?dlog d,
with regularization parameter v = 1/2, all local minima
Z = [U; V] of optimization problem (2.5) satisfy

rdlog d
[UVT = X*||p < ¢y max {v, \/7Bo: } ng ,

with probability at least 1 — co/d , where c1, co are both
universal constants.
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Remark 4.2. Due to the existence of noise, it is impossi-
ble to exactly recover the unknown low-rank matrix X* for
noisy matrix completion. However, we show that the recon-
struction UV T from any local minimizer of (2.5) is actually
a good estimator of X*. The estimation error is in the order
of O(4/r?dlog d/n), which suggests that the more observa-
tions we have, the smaller estimation error we can achieve.
It is worth noting that we only need O(r2d log d) observed
entries of X* to ensure (3.1) has no spurious local minima,
in sharp contrast to existing work (Ge et al., 2016; 2017)
whose sample complexity is at least O(r*d log d).

4.2. Results for One-Bit Matrix Completion

Recall that the objective of one-bit matrix completion is to
solve optimization problem (2.8). We assume the standard
regularity condition (Cai & Zhou, 2013) on the cumulative
distribution function f in (2.7) as follows

o, {IF/ @I/ (f(@)(1 = @)} <y, @D

where g reflects the steepness of the sample loss function,
and when f and 8’ are given, g is a fixed constant. We note
that this condition holds for a large family of distributions,
such as Logistic distribution, Gaussian distribution, and
Laplacian distribution. To apply the results in the unified
framework, it suffices to prove Conditions 3.5, 3.6 and 3.7
for one-bit matrix completion, respectively.

Corollary 4.3. Assume that the observed matrix Y follows
the binary observation model (2.7) generated based on a
cumulative distribution function f satisfying (4.1). Sup-
pose the unknown low-rank matrix X* satisfies incoherence
condition (2.4) and the observed index set {2 follows the
uniform sampling model. If the sample complexity |{2| ex-
ceeds c;72d log d, and the regularization parameter is set as
~ = 1/2, then with probability at least 1 — ¢5/d, all local
minima Z = [U; V] of optimization problem (2.8) satisfy

rdlogd
[OVT = X"l < s mas{p, Vo 1“2,

where c1, o, c3 are all universal constants.

Remark 4.4. Corollary 4.3 shows all local minima Z =
[U; V] of one-bit matrix completion satisfy the condition
UV lies in a close neighborhood around X* with radius
O(y/r?dlog d/n). This suggests that as long as the number
of observations is sufficient, we can obtain a good estimator
for X* by solving (2.8). To the best of our knowledge, all
the existing studies on the characterization of global geome-
try for low-rank problems require the objective function to
be square loss, thus our work is the first that can characterize
the global optimality for one-bit matrix completion, which
resolves an open problem in Ge et al. (2017).

5. The Primal-Dual Algorithm

So far, we have shown that all local minima of inequality
constrained optimization problem (3.1) belong to a close
neighbourhood of the ground truth matrix, with applications
to two specific low-rank problems. It remains to find an effi-
cient and effective algorithm that can find a local minimizer
of (3.1) successfully.

Recall that our characterization of global optimality with
respect to (3.1) is based on the Lagrange function and the
duality theory. This motivates us to search for local minima
of (3.1) from the primal-dual perspective. It has been proved
in Di Pillo et al. (2011) that a particular primal-dual based
algorithm can converge to a solution that satisfies the neces-
sary optimality Conditions 3.3 and 3.4 for general nonlinear
inequality constrained optimization problems. It immedi-
ately suggests that their algorithm can be directly applied
to solve the optimization problem (3.1), and is guaranteed
to find a local minimizer. Nevertheless, the algorithm in
Di Pillo et al. (2011) requires to access the Hessian informa-
tion, which is computationally very expensive for large scale
problems. Thus, a more practical primal-dual algorithm is
preferred.

Witnessing the empirical success of Augmented Lagrangian
Method (Nocedal & Wright, 2006), a first-order primal-dual
method for general constrained optimization problem, we
propose to use the augmented Lagrangian method to solve
the inequality constrained optimization problem (3.1), as
displayed in Algorithm 1. More specifically, we introduce
a slack variable & = [&1,...,&4, 44, to transform the
inequality constraints in (3.1) into equality ones. Define the
augmented Lagrange function £ as follows

. di+da
i=1

=

di+da
> @),
=1

where ¢;(Z) = hi(Z) + £?. At each iteration of Algo-
rithm 1, we solve the minimization sub-problem in line
2 based on gradient descent with respect to Z and &, and
update the dual variable A and the penalty parameter p
as suggested in Nocedal & Wright (2006). Here, we let
h(Z) = [h(Z),...,ha, +a,(Z)]T in line 3.

Algorithm 1 Augmented Lagrangian Method

Input: Augmented Lagrangian function L parameters
T,&0, Ao, 1o > 0 and p > 1; initial estimator Z
1: fort =0,...,T do _
2 Solve (Zt+1,£t+1) = argming ¢ L(Z, & N, 1)
3 A1 = A+ (W(Zoyr) + €21)
4 1 = py
5: end for
Output: Zr,,
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Figure 1. Simulation results for matrix completion: (i) Top panel: plots of the recovery probability based on the compared methods under
the setting di = 120, d2 = 100 with different sample size n and rank . White block indicates success and black block indicates failure.
We set d = max{d1, d2}. (ii) Bottom panel (e),(f),(g): comparison results on convergence rate in the noiseless case under the setting
d1 = 2000, d2 = 1500, r = 20 with sampling rate p varied in {15%, 25%, 35%}. (iii) Bottom panel (h): Plot of the squared averaged

Frobenius norm error || X — X*||%/(d1dz) vs. the rescaled sample size n/(rd log d) based on our approach under different settings.

As will be seen in the next section, we demonstrate through
numerical experiments that the primal-dual based Algorithm
1 can efficiently solve the constrained nonconvex optimiza-
tion problem (3.1) given enough observations.

6. Experiments

In this section, we provide simulation results of the primal-
dual based method, as discussed in Section 5, for matrix
completion and one-bit matrix completion. Under random
initialization, we compare our primal-dual based Algorithm
1 (Primal-Dual) with existing gradient-based methods, in-
cluding vanilla gradient descent (GD), projected gradient
descent (Proj-GD) and perturbed gradient descent (Jin et al.,
2017) (Perturb-GD). We remark that GD and Proj-GD
have been proposed in Ma et al. (2017) and Zheng & Laf-
ferty (2016) for matrix completion respectively, but they all
require a specially designed initialization procedure. Here,
we are interested in evaluating the performance of all these
algorithms with random initialization. All of the aforemen-
tioned algorithms are implemented in Matlab, and all the
following experimental results are based on the optimal
parameters, which are selected by cross validation and aver-
aged over 20 trials.

6.1. Matrix Completion

We generate the observed data matrix according to the
uniform observation model (2.3). In particular, the un-

known low-rank matrix X* € R4z ig generated via
X* U*V*T, where each entry of U* € RArxr
and V* € R%*" is generated independently from stan-
dard Gaussian distribution, and we scale them to ensure
max{||U*||2,00, | V*|l2,00} < @, where ov = 2. The noise
matrix E is set as 0 in the noiseless case, while under the
noisy setting, we generate each element of the noise matrix
E from i.i.d. centered Gaussian distribution with variance
o2 = 0.25. Note that due to random initialization, the initial
estimators may not satisfy the incoherence constraint. In
the sequel, we are going to evaluate the recovery perfor-
mance of different algorithms under the noiseless setting,
and investigate the statistical rate of our method.

To begin with, we compare the sample complexities re-
quired by the aforementioned algorithms under the set-
ting dy 120 and d» = 100 with samgle size n and
rank r varied. We say the final estimator X successfully
recover the ground truth matrix X*, if the relative error
IX — X*||7/|IX*||F < 1073, Figures 1(a)-1(d) illustrate
the recovery probability of different methods. Here, the
white block indicates successful recovery and the black
block denotes failure. As for GD, all the cases have phase
transition around n = 4rd. While our method has phase
transition around n = 2.5rd under all the settings, and sim-
ilar results are observed in Figure 1(b) for Proj-GD and
Figure 1(c) regarding Perturb-GD. These results suggest
that the sample complexity for all these methods could be
linear in both d and r.
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Figure 2. Numerical results for one-bit matrix completion: (a),(b),(c) Convergence rate of different methods in the noiseless case under the
setting that d1 = 2000, d2 = 1500 and r = 20 with sampling rate p € {10%, 20%, 50%}. (d) Plot of the squared averaged Frobenius
norm error || X — X*||%/(d1dz) vs. the rescaled sample size n/(rdlog d) based on our algorithm under different settings.

Next, we compare the convergence rate of different methods
under the setting d; = 2000, de = 1500, r = 20 with sam-
pling rate p = |2|/(d1d2) chosen from {15%, 25%, 35%}.
The experimental results in terms of the averaged Frobenius
norm error || X — X*||z/+/d1dz versus the number of data
passes are demonstrated in Figures 1(e)-1(g). It can be seen
that our primal-dual based algorithm achieves lower estima-
tion error than GD after the same number of data passes,
especially when the observed sample size is small. On the
other hand, compared with Proj-GD and Perturb-GD, our
method achieves comparable performance, which verifies
the effectiveness of Algorithm 1 for solving nonconvex op-
timization problem (2.5) to find a local minimum.

Finally, we study the statistical rate of our method under the
following settings: (i) d; = 100,ds = 80,7 = 2; (ii) d; =
120, de = 100, r = 3; (iii) d; = 140,dy = 120, = 4. The
results are displayed in Figure 1(h). In detail, the vertical
axis represents the estimation error || X —X*||%/(d;dz), and
the horizontal axis is the rescaled sample size n/(rdlog d).
The results show that the estimation error and the rescaled
sample size align well under different settings, which sug-
gests that the statistical rate of our method is O(rdlog d/n).

6.2. One-Bit Matrix Completion

We generate the data matrix Y based on probability model
(2.7) with f(X;;) = ®(X,;/0), where ® is the cumulative
distribution function of the standard Gaussian distribution,
and we choose 0 = 0.5 as the noise level. For the un-
known low-rank matrix X* = U*V*T with rank r, we
follow the same generative procedure as in Davenport et al.
(2014); Bhaskar & Javanmard (2015); Ni & Gu (2016).
More specifically, U* € R4*" V* € R92*" are randomly
generated from a uniform distribution on [—1/2,1/2], and
are scaled properly such that the incoherence constraint
max{||U*||2,00, [ V*|l2,00} < ais satisfied, where we set
« = 1. In addition, we sample the observed index set ()
according to the uniform sampling model.

To demonstrate the effectiveness of Algorithm 1, we com-

pare our method with existing gradient-based algorithms
including GD, Proj-GD and Perturb-GD with random ini-
tialization. In particular, we compute the logarithm of the
averaged estimation error | X — X*||r/y/d1dy and plot
it with the number of data passes for different methods,
which are illustrated in Figures 2(a)-2(c) under the setting
d1 = 2000, dy = 1500, r = 20 with varied sampling rate.
These results again confirm that with random initialization,
the primal-dual based algorithm can recover the unknown
low-rank matrix X* successfully. In addition, Proj-GD
demonstrates a sharp decrease in estimation error after the
first several data passes, which is due to the simple but
effective projection mechanism.

In addition, we investigate the statistical rate for one-bit
matrix completion based on our algorithm. Figure 2(d)
plots the averaged estimation error || X — X*||2./(d1d2)
versus the rescaled sample size n/rdlog d under different
settings, which suggests that our primal-dual based approach
achieves statistical rate with order O(rdlogd/n).

7. Conclusions and Future Work

In this paper, we proposed a primal-dual based framework
to characterize the global optimality for nonconvex low-
rank matrix recovery with incoherence constraints. Based
on duality, we proved that the optimization landscape of
such problem is well-behaved. We further applied a primal-
dual based algorithm to solve the nonconvex optimization
problem and demonstrated its effectiveness via simulations.

There are still some open problems along this line of re-
search. For example, how to prove the optimization guaran-
tees for the primal-dual based algorithm? Another question
is how to generalize our framework to other constrained non-
convex optimization beyond incoherence constraints. We
hope this work can act as the first step towards understand-
ing the global geometry of general constrained nonconvex
optimization problems.



A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery

Acknowledgement

We would like to thank the anonymous reviewers for their
helpful comments. This research was sponsored in part
by the National Science Foundation IIS-1618948 and IIS-
1652539. The views and conclusions contained in this paper
are those of the authors and should not be interpreted as
representing any funding agencies.

References

Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma, T.
Finding local minima for nonconvex optimization in linear time.
arXiv preprint arXiv:1611.01146, 2016.

Ahmed, A. and Romberg, J. Compressive multiplexing of corre-
lated signals. IEEE Transactions on Information Theory, 61(1):
479-498, 2015.

Bach, F. Convex relaxations of structured matrix factorizations.
arXiv preprint arXiv:1309.3117,2013.

Bach, E,, Mairal, J., and Ponce, J. Convex sparse matrix factoriza-
tions. arXiv preprint arXiv:0812.1869, 2008.

Balcan, M.-F,, Liang, Y., Woodruff, D. P., and Zhang, H. Optimal
sample complexity for matrix completion and related prob-
lems via ell_2-regularization. arXiv preprint arXiv:1704.08683,
2017.

Bhaskar, S. A. and Javanmard, A. 1-bit matrix completion under
exact low-rank constraint. In Information Sciences and Systems
(CISS), 2015 49th Annual Conference on, pp. 1-6. IEEE, 2015.

Bhojanapalli, S., Kyrillidis, A., and Sanghavi, S. Dropping con-
vexity for faster semi-definite optimization. arXiv preprint,
2015.

Bhojanapalli, S., Neyshabur, B., and Srebro, N. Global optimality
of local search for low rank matrix recovery. arXiv preprint
arXiv:1605.07221, 2016.

Burer, S. and Monteiro, R. D. A nonlinear programming algorithm
for solving semidefinite programs via low-rank factorization.
Mathematical Programming, 95(2):329-357, 2003.

Cai, T. and Zhou, W.-X. A max-norm constrained minimization ap-
proach to 1-bit matrix completion. Journal of Machine Learning
Research, 14(1):3619-3647, 2013.

Candes, E. J. and Recht, B. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):
717-772, 20009.

Candes, E. J. and Tao, T. The power of convex relaxation: Near-
optimal matrix completion. Information Theory, IEEE Transac-
tions on, 56(5):2053-2080, 2010.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Accel-
erated methods for non-convex optimization. arXiv preprint
arXiv:1611.00756, 2016.

Chen, Y. and Wainwright, M. J. Fast low-rank estimation by
projected gradient descent: General statistical and algorithmic
guarantees. arXiv preprint arXiv:1509.03025, 2015.

Davenport, M. A., Plan, Y., van den Berg, E., and Wootters, M.
1-bit matrix completion. Information and Inference, 3(3):189—
223,2014.

Di Pillo, G., Liuzzi, G., and Lucidi, S. A primal-dual algorithm for
nonlinear programming exploiting negative curvature directions.
Numerical Algebra, Control and Optimization, 1(3):509-528,
2011.

Ge, R., Huang, F,, Jin, C., and Yuan, Y. Escaping from saddle
points-online stochastic gradient for tensor decomposition. In
COLT, pp. 797-842, 2015.

Ge, R, Lee, J. D., and Ma, T. Matrix completion has no spurious
local minimum. arXiv preprint arXiv:1605.07272, 2016.

Ge, R., Jin, C., and Zheng, Y. No spurious local minima in non-
convex low rank problems: A unified geometric analysis. arXiv
preprint arXiv:1704.00708, 2017.

Gross, D. Recovering low-rank matrices from few coefficients in
any basis. IEEE Transactions on Information Theory, 57(3):
1548-1566, 2011.

Gu, Q., Wang, Z., and Liu, H. Low-rank and sparse structure
pursuit via alternating minimization. In Proceedings of the
19th International Conference on Artificial Intelligence and
Statistics, pp. 600-609, 2016.

Gui, H. and Gu, Q. Towards faster rates and oracle property for
low-rank matrix estimation. arXiv preprint arXiv:1505.04780,
2015.

Haeffele, B., Young, E., and Vidal, R. Structured low-rank matrix
factorization: Optimality, algorithm, and applications to image
processing. In International Conference on Machine Learning,
pp- 2007-2015, 2014.

Hardt, M. Understanding alternating minimization for matrix
completion. In FOCS, pp. 651-660. IEEE, 2014.

Hardt, M. and Wootters, M. Fast matrix completion without the
condition number. In COLT, pp. 638-678, 2014.

Jain, P. and Netrapalli, P. Fast exact matrix completion with finite
samples. arXiv preprint, 2014.

Jain, P., Netrapalli, P.,, and Sanghavi, S. Low-rank matrix com-
pletion using alternating minimization. In Proceedings of the
Sforty-fifth annual ACM symposium on Theory of computing, pp.
665-674. ACM, 2013.

Jin, C., Kakade, S. M., and Netrapalli, P. Provable efficient online
matrix completion via non-convex stochastic gradient descent.
In Advances in Neural Information Processing Systems, pp.
4520-4528, 2016.

Jin, C., Ge, R., Netrapalli, P.,, Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. arXiv preprint
arXiv:1703.00887, 2017.

Keshavan, R. H., Oh, S., and Montanari, A. Matrix completion
from a few entries. In 2009 IEEE International Symposium on
Information Theory, pp. 324-328. IEEE, 2009.

Koltchinskii, V., Lounici, K., Tsybakov, A. B., et al. Nuclear-
norm penalization and optimal rates for noisy low-rank matrix
completion. The Annals of Statistics, 39(5):2302-2329, 2011.



A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery

Lee, J. D., Simchowitz, M., Jordan, M. 1., and Recht, B. Gradi-
ent descent only converges to minimizers. In Conference on
Learning Theory, pp. 1246-1257, 2016.

Lee, K., Wu, Y., and Bresler, Y. Near optimal compressed sens-
ing of sparse rank-one matrices via sparse power factorization.
arXiv preprint arXiv:1312.0525, 2013.

Li, X., Wang, Z., Lu, J., Arora, R., Haupt, J., Liu, H., and Zhao,
T. Symmetry, saddle points, and global geometry of nonconvex
matrix factorization. arXiv preprint arXiv:1612.09296, 2016.

Loh, P.-L. and Wainwright, M. J. Regularized m-estimators with
nonconvexity: Statistical and algorithmic theory for local op-
tima. In Advances in Neural Information Processing Systems,
pp. 476-484, 2013.

Ma, C., Wang, K., Chi, Y., and Chen, Y. Implicit regularization in
nonconvex statistical estimation: Gradient descent converges
linearly for phase retrieval, matrix completion and blind decon-
volution. arXiv preprint arXiv:1711.10467,2017.

Negahban, S. and Wainwright, M. J. Estimation of (near) low-rank
matrices with noise and high-dimensional scaling. The Annals
of Statistics, pp. 1069-1097, 2011.

Negahban, S. and Wainwright, M. J. Restricted strong convexity
and weighted matrix completion: Optimal bounds with noise.
Journal of Machine Learning Research, 13(May):1665-1697,
2012.

Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar, P. K.
A unified framework for high-dimensional analysis of m-
estimators with decomposable regularizers. In Advances in
Neural Information Processing Systems, pp. 1348-1356, 2009.

Netrapalli, P., Niranjan, U., Sanghavi, S., Anandkumar, A., and
Jain, P. Non-convex robust pca. In Advances in Neural Infor-
mation Processing Systems, pp. 1107-1115, 2014.

Ni, R. and Gu, Q. Optimal statistical and computational rates for
one bit matrix completion. In Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, pp.
426-434, 2016.

Nocedal, J. and Wright, S. J. Sequential quadratic programming.
Springer, 2006.

Park, D., Kyrillidis, A., Bhojanapalli, S., Caramanis, C., and Sang-
havi, S. Provable non-convex projected gradient descent for
a class of constrained matrix optimization problems. arXiv
preprint arXiv:1606.01316, 2016a.

Park, D., Kyrillidis, A., Caramanis, C., and Sanghavi, S. Finding
low-rank solutions to matrix problems, efficiently and provably.
arXiv preprint arXiv:1606.03168, 2016b.

Park, D., Kyrillidis, A., Caramanis, C., and Sanghavi, S. Non-
square matrix sensing without spurious local minima via the
burer-monteiro approach. arXiv preprint arXiv:1609.03240,
2016¢.

Recht, B. A simpler approach to matrix completion. Journal of
Machine Learning Research, 12(Dec):3413-3430, 2011.

Recht, B., Fazel, M., and Parrilo, P. A. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimiza-
tion. SIAM review, 52(3):471-501, 2010.

Rennie, J. D. and Srebro, N. Fast maximum margin matrix factor-
ization for collaborative prediction. In Proceedings of the 22nd
international conference on Machine learning, pp. 713-719.
ACM, 2005.

Rohde, A., Tsybakov, A. B., et al. Estimation of high-dimensional
low-rank matrices. The Annals of Statistics, 39(2):887-930,
2011.

Srebro, N., Rennie, J., and Jaakkola, T. S. Maximum-margin ma-
trix factorization. In Advances in neural information processing
systems, pp. 1329-1336, 2004.

Sun, J., Qu, Q., and Wright, J. Complete dictionary recovery over
the sphere. arXiv preprint arXiv:1504.06785, 2015.

Sun, J., Qu, Q., and Wright, J. A geometric analysis of phase
retrieval. In Information Theory (ISIT), 2016 IEEE International
Symposium on, pp. 2379-2383. IEEE, 2016.

Sun, R. and Luo, Z.-Q. Guaranteed matrix completion via noncon-
vex factorization. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pp. 270-289. IEEE,
2015.

Tu, S., Boczar, R., Soltanolkotabi, M., and Recht, B. Low-rank
solutions of linear matrix equations via procrustes flow. arXiv
preprint arXiv:1507.03566, 2015.

Wang, L., Zhang, X., and Gu, Q. A unified computational and
statistical framework for nonconvex low-rank matrix estima-
tion. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, pp. 981-990, 2017a.

Wang, L., Zhang, X., and Gu, Q. A unified variance reduction-
based framework for nonconvex low-rank matrix recovery. In
International Conference on Machine Learning, pp. 3712-3721,
2017b.

Xu, P., Ma, J., and Gu, Q. Speeding up latent variable gaussian
graphical model estimation via nonconvex optimization. In
Advances in Neural Information Processing Systems, pp. 1930—
1941, 2017.

Zhang, X., Wang, L., and Gu, Q. A unified framework for non-
convex low-rank plus sparse matrix recovery. In International
Conference on Artificial Intelligence and Statistics, pp. 1097—
1107, 2018.

Zhao, T., Wang, Z., and Liu, H. A nonconvex optimization frame-
work for low rank matrix estimation. In Advances in Neural
Information Processing Systems, pp. 559-567, 2015.

Zheng, Q. and Lafferty, J. A convergent gradient descent algorithm
for rank minimization and semidefinite programming from ran-
dom linear measurements. In Advances in Neural Information
Processing Systems, pp. 109-117, 2015.

Zheng, Q. and Lafferty, J. Convergence analysis for rectangu-
lar matrix completion using burer-monteiro factorization and
gradient descent. arXiv preprint arXiv:1605.07051, 2016.

Zhu, Z., Li, Q., Tang, G., and Wakin, M. B. Global optimality in
low-rank matrix optimization. arXiv preprint arXiv:1702.07945,
2017a.

Zhu, Z., Li, Q., Tang, G., and Wakin, M. B. The global opti-
mization geometry of nonsymmetric matrix factorization and
sensing. arXiv preprint arXiv:1703.01256, 2017b.



