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A. Pseudocode of Algorithm 1 and Algorithm 2
In this section, we present the pseudocode of Algorithm 1 and Algorithm 2. Algorithm 1 follows the updates
(3.3)-(3.5), which is based on the estimate of the local advantage function Aiθ. This can be achieved by
maintaining a consensual approximation of the global action-value function Qθ at each agent.

Algorithm 1 The networked actor-critic algorithm based on action-value function approximation

Input: Initial values of the parameters µi0, ωi0, ω̃i0, θi0, ∀i ∈ N ; the initial state s0 of the MDP, and stepsizes
{βω,t}t≥0 and {βθ,t}t≥0.
Each agent i ∈ N executes action ai0 ∼ πiθi0(s0, ·) and observes joint actions a0 = (a10, . . . , a

N
0 ).

Initialize the iteration counter t← 0.
Repeat:

for all i ∈ N do
Observe state st+1, and reward rit+1.
Update µit+1 ← (1− βω,t) · µit + βω,t · rit+1.
Select and execute action ait+1 ∼ πiθit(st+1, ·).

end for
Observe joint actions at+1 = (a1t+1, . . . , a

N
t+1).

for all i ∈ N do
Update δit ← rit+1 − µit +Qt+1(ωit)−Qt(ωit).
Critic step: ω̃it ← ωit + βω,t · δit · ∇ωQt(ωit).
Update Ait ← Qt(ω

i
t)−

∑
ai∈Ai π

i
θit

(st, a
i) ·Q(st, a

i, a−i;ωit), ψit ← ∇θi log πi
θit

(st, a
i
t).

Actor step: θit+1 ← θit + βθ,t ·Ait · ψit.
Send ω̃it to the neighbors {j ∈ N : (i, j) ∈ Et} over the communication network Gt.

end for
for all i ∈ N do

Consensus step: ωit+1 ←
∑
j∈N ct(i, j) · ω̃

j
t .

end for
Update the iteration counter t← t+ 1.

Until Convergence
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In addition, Algorithm 2 follows the updates (3.8), (3.11), and (3.12), which is based on the estimate of the
global advantage function Aθ. This can be achieved by maintaining consensual approximation of both the global
state-value function Vθ and the globally averaged reward function R, at each agent.

Algorithm 2 The networked actor-critic algorithm based on state-value function approximation

Input: Initial values of µi0, µ̃i0, vi0, ṽi0, λi0, λ̃i0, θi0, ∀i ∈ N ; the initial state s0 of the MDP, and stepsizes
{βv,t}t≥0 and {βθ,t}t≥0.
Each agent i implements ai0 ∼ πθi0(s0, ·).
Initialize the step counter t← 0.
Repeat:

for all i ∈ N do
Observe state st+1, and reward rit+1.
Update µ̃it ← (1− βv,t) · µit + βv,t · rit+1, λ̃it ← λit + βv,t · [rit+1 −Rt(λit)] · ∇λRt(λit).
Update δit ← rit+1 − µit + Vt+1(vit)− Vt(vit)
Critic step: ṽit ← vit + βv,t · δit · ∇vVt(vit).
Update δ̃it ← Rt(λ

i
t)− µit + Vt+1(vit)− Vt(vit), ψit ← ∇θi log πi

θit
(st, a

i
t).

Actor step: θit+1 = θit + βθ,t · δ̃it · ψit.
Send µ̃it, λ̃

i
t, ṽ

i
t to the neighbors over Gt.

end for
for all i ∈ N do

Consensus step: µit+1 ←
∑
j∈N ct(i, j)·µ̃

j
t , λ

i
t+1 ←

∑
j∈N ct(i, j)·λ̃

j
t , v

i
t+1 ←

∑
j∈N ct(i, j)·ṽ

j
t .

end for
Update the iteration counter t← t+ 1.

Until Convergence
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B. Proofs of the Main Results
In this section, we provide the proofs of the theoretical results presented in the paper. We first prove the policy
gradient theorem for MARL, and then provide proofs for the convergence results in §4. Detailed proofs for the
convergence of Algorithm 1 are given, followed by succinct proofs for the convergence of Algorithm 2 that draw
parallels with the first ones.

Notation. For any vector x ∈ Rn and matrix Y ∈ Rm×n, we use ‖x‖ and ‖Y ‖ to denote the Euclidean norm of
x and the induced 2-norm of Y , respectively. We also use ‖x‖∞ and ‖Y ‖∞ to denote the infinite norm of x and
the induced infinite-norm of Y , respectively.

B.1. Proof of Theorem 3.1

The proof of this theorem follows the proof of the policy gradient theorem in single-agent reinforcement learning
(Sutton et al., 2000), which shows that

∇θJ(θ) = Es∼dθ,a∼πθ [∇θ log πθ(s, a) ·Qθ(s, a)]

=
∑

s∈S,a∈A
dθ(s)πθ(s, a)

[
∇θ
∑
i∈N

log πiθi(s, a
i)

]
·Qθ(s, a), (B.1)

where Qθ is the action-value function defined in (2.3), and dθ denotes the stationary distribution of the Markov
chain induced by policy πθ. Here the second equality in (B.1) holds because πθ is the product of local policy
functions. Hence, the gradient with respect to the parameter θi becomes

∇θiJ(θ) =
∑

s∈S,a∈A
dθ(s)πθ(s, a) · ∇θi log πiθi(s, a

i) ·Qθ(s, a), (B.2)

which proves the first equality in (3.2). Moreover, since
∑
ai∈Ai π

i
θi(s, a

i) = 1, we have

∇θi
[∑

ai∈Ai π
i
θi(s, a

i)

]
= 0. To simplify the notation, for each i ∈ N , we define a−i as the joint ac-

tions of all agents except i, and let A−i =
∏
j 6=iAj . Thus, for any function F : S ×A−i → R which does not

rely on ai, we have for any s ∈ S that∑
a∈A

πθ(s, a) ·
[
∇θi log πiθi(s, a

i)
]
· F (s, a−i)

=
∑

a−i∈A−i
F (s, a−i) ·

[ ∏
j∈N ,j 6=i

πjθj (s, a
j)
]
·
[ ∑
ai∈Ai

∇θiπiθi(s, a
i)
]

= 0. (B.3)

Thus, replacing F in (B.3) by the value function Vθ and function Ṽ iθ defined in (3.1) and combined with (B.2),
we establish (3.2), which concludes the proof.

B.2. Proof of Theorem 4.6

To proceed with the proof, we first establish the stability of the update {ωt}. This stability condition serves
as an assumption in the original two-time-scale SA analysis (Borkar, 2008, Chapter 6.1). It is usually verified
separately using some other sufficient conditions (Borkar & Meyn, 2000; Andrieu et al., 2005). We will directly
use the lemma in the convergence analysis to follow and defer its proof to Appendix §C.
Lemma B.1. Under Assumptions 2.2, and 4.2-4.5, the sequence {ωit} generated from (3.3) is bounded almost
surely, i.e., supt ‖ωit‖ <∞ a.s., for any i ∈ N .

As in the classical two-time-scale SA analysis (Borkar, 2008), we let the policy parameter θt be fixed as θt ≡ θ
when analyzing the convergence of the critic step. This allows us to show that ωt will converge to some ωθ
depending on θ, which can be further utilized to simplify the proof of convergence for the slower time scale. In
fact, with linear function approximation, one can rewrite the actor step (3.5) for Algorithm 1 as

θit+1 = Γi
(
θit + βω,t ·

βθ,t
βω,t

·Ait · ψit
)
, (B.4)
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where the projection Γi follows from Assumption 4.1. Note that Ait is also bounded a.s., since the parameter
ωit is bounded by Lemma B.1, and the feature φt is bounded by and Assumption 4.5. Moreover, ψit is bounded
a.s. by Assumption 2.2 since it is a continuous function over a bounded set Θi. Therefore, supt ‖Ait · ψit‖ <∞
a.s. Now since βθ,t · β−1ω,t → 0 by Assumption 4.3, it follows that βθ,t · β−1ω,t ·Ait · ψit → 0 as t→∞. Now the
update in (B.4) can be viewed to track the ordinary differential equation (ODE) θ̇i(t) = 0. Hence, one may let
θt be a constant when analyzing the faster update of ωit. For notational simplicity, we eliminate the notations
associated with θ unless otherwise noted.

Let {Ft,1} be the filtration withFt,1 = σ(rτ , µτ , ωτ , sτ , aτ ,Cτ−1, τ ≤ t), which is an increasing σ-algebra over
time t. For notational convenience, let rt = (r1t , · · · , rNt )>, µt = (µ1

t , · · · , µNt )>, ωt = [(ω1
t )>, · · · , (ωNt )>]>,

and δt = [(δ1t )>, · · · , (δNt )>]>. The update of ωt in (3.3) can be rewritten in a compact form as

ωt+1 = (Ct ⊗ I)
(
ωt + βω,t · yt+1

)
, (B.5)

where ⊗ denotes the Kronecker product, I ∈ RK×K is the identity matrix, and yt+1 = (δ1t φ
>
t , · · · , δNt φ>t )> ∈

RKN . Define the operator 〈·〉 : RKN → RK by letting

〈ω〉 =
1

N
(1> ⊗ I)ω =

1

N

∑
i∈N

ωi (B.6)

for any ω = [(ω1)>, · · · , (ωN )>]> ∈ RKN and ωi ∈ RK with i ∈ N . That is, 〈ω〉 ∈ RK represents the
average of the vectors in {ω1, · · · , ωN}, which are local to individual agents. Let J = (1/N · 11>) ⊗ I be
the projection operator that projects the vector into the consensus subspace {1⊗ u : u ∈ RK}. Thus we have
Jω = 1⊗ 〈ω〉. Moreover, we define J⊥ as the operator that projects the vector to the disagreement subspace,
i.e., J⊥ = I− J . Thus the disagreement vector ω⊥ = J⊥ω is written as

ω⊥ = J⊥ω = ω − 1⊗ 〈ω〉. (B.7)

The proof of Theorem 4.6 then consists of two steps. In particular, we separate the iteration ωt as the sum of a
vector in this consensus space and a vector in the disagreement space, i.e., ωt = ω⊥,t + 1⊗ 〈ωt〉. We first show
the a.s. convergence of the disagreement vector sequence {ω⊥,t} to zero. Then, we prove that the consensus
vector sequence {1⊗ 〈ωt〉} converges to the equilibrium such that 〈ωt〉 satisfies (4.2).

Step 1. In this step, we establish that limt ω⊥,t = 0 a.s. To this end, we first have the following lemma on the
boundedness of the sequence {µit} for any i ∈ N .
Lemma B.2. Under Assumptions 2.2 and 4.2, the sequence {µit} generated as in (3.3) is bounded almost surely,
i.e., supt |µit| <∞ a.s., for any i ∈ N .

Proof. The local update in (3.3) forms a stochastic approximation iteration, whose asymptotic behavior can be
captured by the ODE

µ̇i = −µi +
∑
s∈S

dθ(s)
∑
a∈A

πθ(s, a)Ri(s, a). (B.8)

Let f(µi) denote the right hand side (RHS) of (B.8), which is Lipschitz continuous in µi. Moreover, define
fc(µ

i) = f(cµi) · c−1, then f∞(µi) = limc f(cµi) · c−1 = −µi exists. Therefore, the ODE µ̇i = f∞(µi) has
origin as the unique asymptotically stable equilibrium. In addition, since rit is uniformly bounded, we have

E
[∣∣rit+1 − E(rit+1

∣∣Ft,1)
∣∣2 ∣∣Ft,1] ≤ K0 · (1 + |µit|2)

for some K0 <∞. Therefore, the conditions (a.1) and (a.4) in Assumption D.1 are satisfied. (See Appendix
§D.1 for details.) By Assumption 2.2, (a.2) in Assumption D.1 also holds. We thus conclude that supt |µit| <∞
from Theorem D.3 (see also Theorem 9 on page 74-75 in Borkar (2008)).

Let zit = [µit, (ω
i
t)
>]> and zt = [(z1t )>, · · · , (zNt )>]>. By Lemma B.1, we have P(supt ‖zt‖ < ∞) = 1,

which means that P(
⋃
M∈Z+{supt ‖zt‖ ≤ M}) = 1, with Z+ denoting the set of positive integers. Hence, it

suffices to show that limt ω⊥,tI{supt ‖zt‖≤M} = 0, for any M ∈ Z+, where I{·} is the indicator function. We
then establish that E(‖β−1ω,tω⊥,t‖2) is bounded on {supt ‖zt‖ ≤M}, for any M > 0.
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Lemma B.3. Under Assumptions 4.2-4.5, for any M > 0, we have

sup
t

E
(
‖β−1ω,tω⊥,t‖2I{supt ‖zt‖≤M}

)
<∞.

Proof. First note that by (a.1) in Assumption 4.4 and the fact that (A⊗ B)(C⊗D) = (AC)⊗ (BD), we have

(Ct ⊗ I)(1⊗ 〈ω〉) = (Ct1)⊗ 〈ω〉 = 1⊗ 〈ω〉.

Hence, ω⊥,t+1 has the form ω⊥,t+1 = J⊥[(Ct ⊗ I)(ωt + βω,tyt+1)] = J⊥[(Ct ⊗ I)(ω⊥,t + βω,tyt+1)], since
J⊥(1⊗ 〈ω〉) is zero. Thus, by the definition of J⊥ in (B.7), the vector ω⊥,t+1 satisfies

ω⊥,t+1 = [(I− 11>/N)⊗ I](Ct ⊗ I)(ω⊥,t + βω,tyt+1) = [(I− 11>/N)Ct ⊗ I](ω⊥,t + βω,tyt+1). (B.9)

Thus, we have

E
(∥∥β−1ω,t+1ω⊥,t+1

∥∥2 ∣∣Ft,1)
=

β2
ω,t

β2
ω,t+1

· E
{(
β−1ω,tω⊥,t + yt+1

)>[
C>t (I− 11>/N)Ct ⊗ I

](
β−1ω,tω⊥,t + yt+1

) ∣∣Ft,1}
≤

β2
ω,t

β2
ω,t+1

· ρ · E
[(
β−1ω,tω⊥,t + yt+1

)>(
β−1ω,tω⊥,t + yt+1

) ∣∣Ft,1]
≤

β2
ω,t

β2
ω,t+1

· ρ ·
{∥∥β−1ω,tω⊥,t∥∥2 + 2 ·

∥∥β−1ω,tω⊥,t∥∥ · [E(‖yt+1‖2
∣∣Ft,1)] 1

2 + E
(
‖yt+1‖2

∣∣Ft,1)}, (B.10)

where ρ represents the spectral norm of E[C>t (I− 11>/N)Ct]. By (a.2) in Assumption 4.4, we have ρ ∈ [0, 1).
The first inequality in (B.10) is due to the conditional independence of Ct and rit+1 for all i ∈ N , and thus yt+1,
by (a.3) in Assumption 4.4, and the second inequality is due to the Cauchy-Schwarz inequality. Moreover, by
the definition of yt+1, we have

E
(
‖yt+1‖2 | Ft,1

)
= E

(∑
i∈N

∥∥δitφt∥∥2 ∣∣∣∣Ft,1
)

= E

[∑
i∈N

∥∥(rit+1 − µit + φ>t+1ω
i
t − φ>t ωit

)
φt
∥∥2 ∣∣∣∣Ft,1

]

≤ 3 · E

[∑
i∈N

∥∥rit+1φt
∥∥2 +

∥∥µitφt∥∥2 +
∥∥φt(φ>t+1 − φ>t

)∥∥2∥∥ωit∥∥2 ∣∣∣∣Ft,1
]
, (B.11)

where the inequality follows from that by Assumption 4.5, E[‖φt(φ>t+1 − φ>t )‖2 | Ft,1] and E(‖φt‖2 | Ft,1) are
both uniformly bounded for any st ∈ S and at ∈ A. Moreover, by Assumption 4.2, we have E(|rit+1|2 | Ft,1) =
E(|rit+1|2 | st, at) also uniformly bounded. Thus the RHS of (B.11) is bounded on the set {supτ≤t ‖zτ‖ ≤M}
for any M > 0 as follows, i.e., there exists K1 <∞, such that

E
(
‖yt+1‖2I{supτ≤t ‖zτ‖≤M}

∣∣Ft,1) ≤ K1 ·

[
1 +

∑
i∈N

E
(
|rit+1|2

∣∣Ft,1)]. (B.12)

Let ηt = ‖β−1ω,tω⊥,t‖2I{supτ≤t ‖zτ‖≤M} and note that I{supτ≤t+1 ‖zτ‖≤M} ≤ I{supτ≤t ‖zτ‖≤M}. Then by taking
expectation over both sides of (B.10), we obtain that there exists K2 = K1 · [1 + E(

∑
i∈N |rit+1|2)] <∞ such

that

E(ηt+1) ≤
β2
ω,t

β2
ω,t+1

· ρ ·
[
E(ηt) + 2

√
E(ηt) ·

√
K2 +K2

]
. (B.13)

Since limt β
2
ω,t · β−2ω,t+1 = 1 and ρ < 1, for any δ > 0, there exists a large enough t0 such that for any t > t0,

β2
ω,t · β−2ω,t+1 · ρ ≤ 1− δ. Hence, there exist positive constants K3 and b such that for any t ≥ t0,

E(ηt+1) ≤ (1− δ) ·
[
E(ηt) + 2

√
E(ηt) ·

√
K2 +K2

]
≤
(
1− δ/2

)
· E(ηt) + b · I{E(ηt)≤K3}.
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By induction, we obtain that E(ηt) ≤ (1 − δ/2)t−t0E(ηt0) + 2b/δ. Hence, we have supt E(ηt) < ∞. In
addition, since I{supt ‖zt‖≤M} ≤ I{supτ≤t ‖zτ‖≤M}, we further obtain

sup
t

E
(
‖β−1ω,tω⊥,t‖2I{supt ‖zt‖≤M}

)
<∞,

which concludes the proof.

Therefore, by Lemma B.3, we obtain that for anyM > 0, there exists a constantK4 <∞, such that for any t ≥ 0,
E(‖ω⊥,t‖2) ≤ K4 · β2

ω,t on the set {supt ‖zt‖ ≤ M}. Since
∑
t β

2
ω,t < ∞ by Assumption 4.3, we have that∑

t E(‖ω⊥,t‖2I{supt ‖zt‖≤M}) is finite by Fubini’s theorem. This shows that
∑
t ‖ω⊥,t‖2I{supt ‖zt‖≤M} <∞

a.s., which further yields limt ω⊥,tI{supt ‖zt‖≤M} = 0 a.s. By Lemmas B.1 and B.2, {supt ‖zt‖ <∞} holds
with probability 1. This shows that limt ω⊥,t = 0 a.s., and thus concludes Step 1.

Step 2. We now proceed to show the convergence of the consensus vector 1⊗ 〈ωt〉. According to the update in
(B.5) and definition (B.6), the iteration of 〈ωt〉 has the form

〈ωt+1〉 =
1

N
(1> ⊗ I)(Ct ⊗ I)(1⊗ 〈ωt〉+ ωt,⊥ + βω,tyt+1) = 〈ωt〉+ βω,t〈(Ct ⊗ I)(yt+1 + β−1ω,tω⊥,t)〉.

Hence, we write the updates for 〈ωt〉 and 〈µt〉 as

〈µt+1〉 = 〈µt〉+ βω,t · E
(
rt+1 − 〈µt〉

∣∣Ft,1)+ βω,t · ξt+1,1, (B.14)

〈ωt+1〉 = 〈ωt〉+ βω,t · E
(
〈δt〉φt

∣∣Ft,1)+ βω,t · ξt+1,2, (B.15)

where ξt+1,1 = rt+1 − E(rt+1 | Ft,1) and ξt+1,2 is

ξt+1,2 = 〈(Ct ⊗ I)(yt+1 + β−1ω,tω⊥,t)〉 − E
(
〈δt〉φt

∣∣Ft,1).
Note that E(rt+1 − 〈µt〉 | Ft,1) is Lipschitz continuous in 〈µt〉. Recall that 〈δt〉 has the form

〈δt〉 =
1

N

∑
i∈N

rit+1 − µit + φ>t+1ω
i
t − φ>t ωit = rt+1 − 〈µt〉+ φ>t+1〈ωt〉 − φ>t 〈ωt〉.

Hence, E(〈δt〉φt | Ft,1) is Lipschitz continuous in both 〈ωt〉 and 〈µt〉, and thus the condition (a.1) in Assumption
D.1 (See Appendix §D.1) is satisfied.

Note that ξt,1 is a martingale difference sequence and satisfies

E
(
‖ξt+1,1‖2

∣∣Ft,1) ≤ K5 ·
(
1 + ‖〈ωt〉‖2 + ‖〈µt〉‖2

)
, (B.16)

for some K5 <∞, since rt+1 is uniformly bounded. In addition, the term ξt,2 is also a martingale difference
sequence, since

E
[
〈(Ct ⊗ I)(yt+1 + β−1ω,tω⊥,t)〉

∣∣Ft,1] = E
[
〈(Ct ⊗ I)yt+1〉

∣∣Ft,1] = E
(
〈yt+1〉

∣∣Ft,1) = E
(
〈δt〉φt

∣∣Ft,1),
which results from the facts that 〈ω⊥,t〉 = 0 and that 1>E(Ct) = 1>. Moreover, we have

E
(
‖ξt+1,2‖2

∣∣Ft,1) ≤ 2 · E
(∥∥yt+1 + β−1ω,tω⊥,t

∥∥2
Gt

∣∣Ft,1)+ 2 ·
∥∥E(〈δt〉φt ∣∣Ft,1)∥∥2, (B.17)

where Gt = C>t 11
>Ct ⊗ I · N−2. Note that Gt has bounded spectral norm since Ct is a stochastic matrix.

Thus the first term in (B.17) can be further bounded over the set {supt ‖zt‖ ≤M}, for any M > 0. Notably,
there exist K6,K7 <∞ such that

E
(∥∥yt+1 + β−1ω,tω⊥,t

∥∥2
Gt

∣∣Ft,1) · I{supt ‖zt‖≤M}
≤ K6 · E

(∥∥yt+1

∥∥2 +
∥∥β−1ω,tω⊥,t∥∥2 ∣∣Ft,1) · I{supt ‖zt‖≤M} < K7,
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where the second inequality follows from (B.12) and Lemma B.3. Moreover, the second term in (B.17) can be
bounded by ‖E(〈δt〉φt | Ft,1)‖2 ≤ K8 · (1 + ‖〈ωt〉‖2 + ‖〈µt〉‖2) with some K8 <∞, due to the boundedness
of rit+1 and φt (from Assumptions 4.2 and 4.5). Hence, for any M > 0, it follows that

E
(
‖ξt+1,1‖2

∣∣Ft,1) ≤ K9 ·
(
1 + ‖〈ωt〉‖2 + ‖〈µt〉‖2

)
, (B.18)

over the set {supt ‖zt‖ ≤M} for someK9 <∞. This verifies that on the set {supt ‖zt‖ ≤M} for any M > 0,
the condition (a.4) in Assumption D.1 is satisfied.

Now consider the following ODE that captures the asymptotic behavior of (B.14) and (B.15)

˙〈z〉 =

(
˙〈µ〉
˙〈ω〉

)
=

(
−1 0

−Φ>Ds,a
θ 1 Φ>Ds,a

θ (P θ − I)Φ

)(
〈µ〉
〈ω〉

)
+

(
J(θ)

Φ>Ds,a
θ R

)
. (B.19)

Recall that Ds,a
θ = diag[dθ(s) · πθ(s, a), s ∈ S, a ∈ A]. Let the RHS of the ODE (B.19) be h(〈z〉), then h(〈z〉)

is Lipschitz continuous in 〈z〉, which satisfies the condition (a.1) in Assumption D.1. By the Perron-Frobenius
theorem and Assumption 2.2, the stochastic matrix P θ has a simple eigenvalue of 1, and its remaining eigenvalues
have real parts less than 1. Hence, (P θ − I) has all eigenvalues with negative real parts but one zero, so does
the matrix Φ>Ds,a

θ (P θ − I)Φ, since Φ is full column rank by Assumption 4.5. The simple eigenvalue of zero
has eigen-vector ν that satisfies Φν = α1 for some α 6= 0, since α1 lies in the eigen-space of Ds,a

θ (P θ − I)
associated with zero. By Assumption 4.5, however, this will not happen with any choice of Φ since Φν 6= α1
for any ν ∈ RK . Hence, the ODE (B.19) is globally asymptotically stable and has its equilibrium satisfying

−〈µ〉 = J(θ), Φ>Ds,a
θ

[
R− 〈µ〉1+ P θΦ〈ω〉 − Φ〈ω〉

]
= 0. (B.20)

Note that the corresponding solution for 〈µ〉 at equilibrium is J(θ), whereas the solution for 〈ω〉 has the form
ωθ + αν with any α ∈ R and ν ∈ RK such that Φν = 1. While by Assumption 4.5, Φν 6= 1, thus the term ωθ
is unique, and it follows that Φ>Ds,a

θ [TQθ (Φωθ)− Φωθ] = 0 with TQθ as defined in (4.1).

Recall from Lemmas B.1 and B.2 that {zt} is bounded a.s., so is the sequence {〈zt〉}. Hence all conditions
for Theorem D.2 to hold are satisfied. For the concatenated vector 〈zt〉 = (〈µt〉, 〈ωt〉>)>, we thus have
limt〈µt〉 = J(θ) and limt〈ωt〉 = ωθ over the set {supt ‖zt‖ ≤M} for any M > 0. By Lemmas B.1 and B.2,
this holds with probability 1, which concludes Step 2. Combined with Step 1, we arrive at the conclusion that
limt ω

i
t = ωθ for any i ∈ N , which completes the proof for Theorem 4.6.

B.3. Proof of Theorem 4.7

Let Ft,2 = σ(θτ , τ ≤ t) be the σ-field generated by {θτ , τ ≤ t}. In addition, we define

ζit+1,1 = Ait · ψit − Est∼dθt ,at∼πθt
(
Ait · ψit

∣∣Ft,2), ζit+1,2 = Est∼dθt ,at∼πθt
[(
Ait −Ait,θt

)
· ψit

∣∣Ft,2],
where Ait,θt is as defined in (4.3) with θ = θt. Then the actor update in (3.5) with a local projection becomes

θit+1 = Γi
[
θit + βθ,tEst∼dθt ,at∼πθt

(
Ait,θt · ψ

i
t

∣∣Ft,2)+ βθ,tζ
i
t+1,1 + βθ,tζ

i
t+1,2

]
. (B.21)

Note that ζit+1,2 = o(1) since the critic converges, i.e., Ait → Ait,θt , at the faster time scale. Moreover, letting
M i
t =

∑t
τ=0 βθ,τζ

i
τ+1,1, {M i

t} is a martingale sequence. Since the sequences {ωit}, {ψit}, and {φt} are all
bounded, the sequence {ζit,1} is also bounded. Hence, by Assumption 4.3, we have∑

t

E
(∥∥M i

t+1 −M i
t

∥∥2 ∣∣Ft,2) =
∑
t≥1

∥∥βθ,tζit+1,1

∥∥2 <∞ a.s.

By the martingale convergence theorem (Proposition VII-2-3(c) on page 149 of Neveu (1975)), the martingale
sequence {M i

t} converges a.s. Thus, for any ε > 0, we have

lim
t

P

(
sup
n≥t

∥∥∥∥ n∑
τ=t

βθ,τζ
i
τ,1

∥∥∥∥ ≥ ε
)

= 0.
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In addition, let

gi(θt) = Est∼dθt ,at∼πθt
(
Ait,θt · ψ

i
t

∣∣Ft,2) =
∑

st∈S,at∈A
dθt(st) · πθt(st, at) ·Ait,θt · ψ

i
t,θt ,

then we show that gi(θt) is continuous in θit as follows. First, ψit,θt is continuous by Assumption 2.2. Also,
the term dθt(st) · πθt(st, at) is continuous in θit since it is the stationary distribution and thus is the solution
to dθt(s) · πθt(s, a) =

∑
s′∈S,a′∈A P

θt(s′, a′ | s, a) · dθt(s′) · πθt(s′, a′) and
∑
s∈S,a∈A dθt(s) · πθt(s, a) = 1,

where P θt(s′, a′ | s, a) = P (s′ | s, a) · πθt(s′, a′). The unique solution to this set of linear equations can be
verified to be continuous in θt, noting that πθt(s, a) > 0 by Assumption 2.2. In addition, Ait,θt is continuous in
θit since ωθt is the unique solution to the linear equation Φ>Ds,a

θ [TQθ (Φωθ)−Φωθ] = 0 and can also be verified
to be continuous in θt. Therefore, by Kushner-Clark lemma (Kushner & Clark, 1978, page 191-196) (see also
Theorem D.5 in Appendix §D.2), the update in (B.21) converges a.s. to the set of asymptotically stable equilibria
of the ODE (4.5) for each i ∈ N , which concludes the proof.

The proof for the convergence of Algorithm 2 is similar to the proofs in B.2 and B.3. To avoid duplication, we
leave out some of the details in the proofs to follow.

B.4. Proof of Theorem 4.9

Let zit = [µit, (λ
i
t)
>, (vit)

>]> ∈ R1+M+L. We first have the following lemma on the stability of the updates of
{zit}, as in Lemma B.1, the proof of which is provided in Appendix §C.

Lemma B.4. Under Assumptions 2.2, 4.2-4.4, and 4.8, the sequence {zit} generated from (3.8) and (3.11)
satisfies supt

∥∥zit∥∥ <∞ a.s., for any i ∈ N .

Note that δ̃it · ψit is bounded by Assumptions 2.2, 4.8, and Lemma B.4. Thus the actor step (3.12) can be
viewed to track ODE θ̇i = 0 when analyzing the faster time scale update. Thus by the same argument as
in §B.2, we fix the value of θt as a constant θ. For notational convenience, let vt = [(v1t )>, · · · , (vNt )>]>,
δt = [(δ1t )>, · · · , (δNt )>]>, and zt = [(z1t )>, · · · , (zNt )>]>. By little abuse of notation, we here use {Ft,1} to
denote the filtration with Ft,1 = σ(rτ , zτ , sτ ,Cτ−1, τ ≤ t), an increasing σ-algebra. Then the updates of zt in
(3.8) and (3.11) have the following compact form

zt+1 = (Ct ⊗ I)
(
zt + βv,t · yt+1

)
, (B.22)

where yt = [(y1t )>, · · · , (yNt )>]> ∈ R(1+M+L)N . Here we denote [rit+1 − µit, (rit+1 − f>t λit)f>t , δitϕ>t ]>

by yit+1. Recall that ft = f(st, at) and ϕt = ϕ(st). With the same definitions for 〈·〉, J , and J⊥, we
can also separate the iteration of zt as the sum of the consensus vector and the disagreement vector, i.e.,
zt = z⊥,t + 1⊗ 〈zt〉, with z⊥,t = J⊥zt. Then the proof proceeds again in two steps as follows.

Step 1. We first establish that limt z⊥,t = 0 a.s. By Lemma B.4, it suffices to show that for any M ∈ Z+,
limt z⊥,tI{supt ‖zt‖≤M} = 0. We first establish the boundedness of E(‖β−1v,t z⊥,t‖2) over the set {supt ‖zt‖ ≤
M}, for any M > 0.

Lemma B.5. Under Assumptions 4.2- 4.4, and 4.8, for any M > 0, we have

sup
t

E
(
‖β−1v,t z⊥,t‖2I{supt ‖zt‖≤M}

)
<∞.

Proof. Following the derivation of (B.9), we obtain the iteration of z⊥,t as

z⊥,t+1 = [(I− 11>/N)⊗ I](Ct ⊗ I)(z⊥,t + βv,tyt+1) = [(I− 11>/N)Ct ⊗ I](z⊥,t + βv,tyt+1). (B.23)

Thus, similar to the derivation of (B.10), we obtain

E
(∥∥β−1v,t+1z⊥,t+1

∥∥2 ∣∣Ft,1) ≤ ρ · β2
v,t

β2
v,t+1

·
{∥∥β−1v,t z⊥,t∥∥2 + 2

∥∥β−1v,t z⊥,t∥∥
·
[
E
(
‖yt+1‖2

∣∣Ft,1)] 1
2 + E

(
‖yt+1‖2

∣∣Ft,1)}, (B.24)
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where ρ represents the spectral norm of E[C>t (I− 11>/N)Ct] and ρ ∈ [0, 1). Then we have

E
(
‖yt+1‖2 | Ft,1

)
= E

[∑
i∈N

∣∣rit+1 − µit
∣∣2 +

∥∥(rit+1 − f>t λit)ft
∥∥2 +

∥∥δitϕt∥∥2 ∣∣∣∣Ft,1
]
. (B.25)

By Assumption 4.8, we have E[‖ϕt(ϕ>t+1−ϕ>t )‖2 | Ft,1] and E(‖ϕt‖2 | Ft,1) uniformly bounded for any st ∈ S .
Moreover, by Assumption 4.2, we have E(|rit+1|2 | Ft,1) = E(|rit+1|2 | st, at) also uniformly bounded for any
st ∈ S, at ∈ A. Thus for any M > 0, there exist K1,K2 <∞1 such that (B.25) is further bounded as

E
(
‖yt+1‖2I{supτ≤t ‖zτ‖≤M}

∣∣Ft,1) ≤ K1 ·

[
1 +

∑
i∈N

E
(
|rit+1|2

∣∣Ft,1)] < K2. (B.26)

Let ηt = ‖β−1v,t z⊥,t‖2I{supτ≤t ‖zτ‖≤M}. By taking expectation on both sides of (B.24), we obtain

E(ηt+1) ≤
β2
v,t

β2
v,t+1

· ρ ·
[
E(ηt) + 2

√
E(ηt) ·

√
K2 +K2

]
.

Following the same argument as in the proof of Lemma B.3, we obtain supt E(ηt) <∞ and thus

sup
t

E
(
‖β−1v,t z⊥,t‖2I{supt ‖zt‖≤M}

)
<∞,

which concludes the proof.

Therefore, by Lemma B.5 and Assumption 4.3, we arrive at limt z⊥,tI{supt ‖zt‖≤M} = 0 a.s. for anyM > 0. By
Lemma B.4, {supt ‖zt‖ <∞} holds with probability 1. This shows that limt z⊥,t = 0 a.s., and thus concludes
Step 1.

Step 2. We now proceed to show the convergence of the consensus vector 1⊗ 〈zt〉. The iteration of 〈zt〉 has the
form

〈zt+1〉 =
1

N
(1> ⊗ I)(Ct ⊗ I)(1⊗ 〈zt〉+ zt,⊥ + βv,tyt+1) = 〈zt〉+ βv,t〈(Ct ⊗ I)(yt+1 + β−1v,t z⊥,t)〉.

Hence, the update for 〈zt〉 becomes

〈zt+1〉 = 〈zt〉+ βv,t · E(〈yt+1〉 | Ft,1) + βv,t · ξt+1, (B.27)

where ξt+1 and 〈yt+1〉 have the form

ξt+1 = 〈(Ct ⊗ I)(yt+1 + β−1ω,tω⊥,t)〉 − E(〈yt+1〉 | Ft,1),

〈yt+1〉 = [rt+1 − 〈µt〉, (rt+1 − f>t 〈λt〉)f>t , 〈δt〉ϕ>t ]>,

respectively. Recall that 〈δt〉 = rt+1 − 〈µt〉+ ϕ>t+1〈vt〉 − ϕ>t 〈vt〉. Note that E(〈yt+1〉 | Ft,1) is Lipschitz con-
tinuous in 〈zt〉 = (〈µt〉, 〈λt〉>, 〈vt〉>)>, and thus the condition (a.1) in Assumption D.1 is satisfied. Moreover,
one can verify that the term ξt is a martingale difference sequence. The conditional second moment of ξt can be
bounded as

E
(
‖ξt+1‖2

∣∣Ft,1) ≤ 2 · E
(∥∥yt+1 + β−1v,t z⊥,t

∥∥2
Gt

∣∣Ft,1)+ 2 ·
∥∥E(〈yt+1〉

∣∣Ft,1)∥∥2, (B.28)

where Gt = C>t 11
>Ct ⊗ I ·N−2 has bounded spectral norm. Thus the first term in (B.28) is bounded over the

set {supt ‖zt‖ ≤M}, for any M > 0, i.e., there exist K3 <∞ such that

E
(∥∥yt+1 + β−1v,t z⊥,t

∥∥2
Gt

∣∣Ft,1) · I{supt ‖zt‖≤M} ≤ K3 · E
(∥∥yt+1

∥∥2 +
∥∥β−1v,t z⊥,t∥∥2 ∣∣Ft,1) · I{supt ‖zt‖≤M}.

1We note that K1 and K2 here are absolute constant values, with slight abuse of notation, we use the same notation as in the proof of
Theorem 4.6. The same abuse applies to other constants with notation Kj , for any j ∈ N.
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From (B.26) and Lemma B.5, we obtain that the RHS can be further bounded by some K4 <∞. Moreover, the
second term in (B.28) can be bounded by∥∥E(〈yt+1〉

∣∣Ft,1)∥∥2 ≤ E
(∥∥〈yt+1〉

∥∥2 ∣∣Ft,1) ≤ K5 ·
(
1 + ‖〈µt〉‖2 + ‖〈λt〉‖2 + ‖〈vt〉‖2

)
= K5 ·

(
1 + ‖〈zt〉‖2

)
with some K5 <∞ due to the boundedness of rit+1, ft, and ϕt. Hence, for any M > 0, it follows that

E
(
‖ξt+1‖2

∣∣Ft,1) ≤ K6 ·
(
1 + ‖〈zt〉‖2

)
, (B.29)

over the set {supt ‖zt‖ ≤M} for some K6 <∞. This verifies the condition (a.4) in Assumption D.1.

Then the ODE associated with (B.27) has the form

˙〈z〉 =

 ˙〈µ〉
˙〈λ〉
˙〈v〉

 =

 −1 0 0
0 −F>Ds,a

θ F 0
−Φ>Ds

θ1 0 Φ>Ds
θ(P

θ − I)Φ

〈µ〉〈λ〉
〈v〉

+

 J(θ)
F>Ds,a

θ R
Φ>Ds

θRθ

 . (B.30)

Letting the RHS of the ODE (B.30) be h(〈z〉), we have h(〈z〉) Lipschitz continuous in 〈z〉. Similar to the
proof in Step 2 of §B.2, one can verify that the ODE has a unique globally asymptotically stable equilibrium
[J(θ), λ>θ , v

>
θ ]>, by Assumption 4.8 on the feature matrices F and Φ. Here λθ and vθ are the unique solutions to

F>Ds,a
θ

(
R−Fλθ

)
= 0 and Φ>Ds

θ

[
TVθ (Φvθ)−Φvθ

]
= 0, respectively. Recall the operator TVθ defined in (4.6).

Moreover, the sequence {zt} is bounded almost surely by Assumption B.4. Hence all conditions for Theorem
D.2 to hold are satisfied. We thus have limt〈µt〉 = J(θ), limt〈λt〉 = λθ, and limt〈vt〉 = vθ over the set
{supt ‖zt‖ ≤M} for any M > 0. By Lemma B.4 and the results from Step 1, we obtain that limt µ

i
t = J(θ),

limt λ
i
t = λθ, and limt v

i
t = vθ for any i ∈ N a.s., which completes the proof.

B.5. Proof of Theorem 4.10

Let Ft,2 = σ(θτ , τ ≤ t) be the σ-field generated by θτ , τ ≤ t. Let

ζit+1,1 = δ̃it · ψit − Est∼dθt ,at∼πθt
(
δ̃it · ψit

∣∣Ft,2), ζit+1,2 = Est∼dθt ,at∼πθt
[(
δ̃it − δ̃it,θt

)
· ψit

∣∣Ft,2],
where δ̃it,θt is as defined in (4.9) with θ = θt. Then the actor update in (3.12) with a local projection becomes

θit+1 = Γi
[
θit + βθ,tEst∼dθt ,at∼πθt

(
δ̃it · ψit

∣∣Ft,2)+ βθ,tζ
i
t+1,1 + βθ,tζ

i
t+1,2

]
. (B.31)

Note that ζit+1,2 = o(1) since the critic converges, i.e., δ̃it → δ̃it,θt , at the faster time scale. Moreover, letting
M i
t =

∑t
τ=0 βθ,τζ

i
τ+1,1, we have {M i

t} a martingale sequence. Note that the sequences {zit}, {ψit}, and
{φt} are all bounded, and so is the sequence {ζit,1}. Hence, we have

∑
t E(‖M i

t+1 −M i
t‖2 | Ft,2) < ∞ a.s.,

and further obtain that the martingale sequence {M i
t} converges a.s. (Neveu, 1975, page 149)). Thus the

condition (a.4) in Assumption D.4 is satisfied. (See Appendix §D.2 for details.) One can also verify that
Est∼dθt ,at∼πθt (δ̃

i
t · ψit | Ft,2) is continuous in θit, similar as the argument in §B.3. Therefore, we can apply the

Kushner-Clark lemma (Theorem D.5 in Appendix §D.2) to show that the update in (B.31) converges a.s. to the
set of asymptotically stable equilibria of the ODE (4.10), for each i ∈ N , which concludes the proof.
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C. Proofs of the Stability of Consensus Updates
As mentioned before, the stability of the updates in stochastic approximation is usually proved separately.
Here we provide the proof for the stability of the slower time scale update {ωit} in Algorithm 1 and {zit} in
Algorithm 2, i.e., Lemmas B.1 and B.4. In particular, we provide a sufficient condition for the stability of the
consensus-based SA updates following the spirit of the results in Borkar & Meyn (2000) and Mathkar & Borkar
(2016). We first state a main theorem for stability and then verify that Lemmas B.1 and B.4 are two special cases
of it.

Let N be the set of agents with |N | = N and xi ∈ Rd for any i ∈ N . Consider the consensus update for
xin ∈ Rd as2

xin+1 =
∑
j∈N

cn(i, j)
{
xjn + γn

[
hj(xn, Yn) +M j

n+1

]}
, for any i ∈ N , (C.1)

where {Yn}n≥0 is an irreducible and aperiodic Markov chain over the finite set A. Let η denote the stationary
distribution of {Yn} and h

i
(xn) = EYn∼η[hi(xn, Yn)] denote the expectation of hi(xn, Yn) over η. Let

xn = [(x1n)>, · · · , (xNn )>]> ∈ RdN , Cn = [cn(i, j)]N×N , h = [(h1)>, · · · , (hN )>]> ∈ RdN , h(x) =

[(h
1
)>, · · · , (hN )>]> ∈ RdN , and Mn = [(M1

n)>, · · · , (MN
n )>]> ∈ RdN . Let {Fn} be the filtration with

Fn = σ(xm,Mm, Ym,Cm−1,m ≤ n).

Assumption C.1. We make the following assumptions:

(a.1) The consensus weight matrices {Cn} satisfy Assumption 4.4;
(a.2) hi : Rn ×A→ Rn is Lipschitz continuous in its first argument for any i ∈ N ;
(a.3) {Mn} is a martingale difference sequence satisfying

E
(
‖Mn+1‖2 | Fn

)
≤ K ·

(
1 + ‖xn‖2

)
,

for some K > 0;
(a.4) The difference ζn+1 = h(xn)− h(xn, Yn) satisfies

‖ζn+1‖2 ≤ K ′ ·
(
1 + ‖xn‖2

)
a.s.,

for some K ′ > 0;
(a.5) The stepsize sequence {γn} satisfies

∑
n γn =∞ and

∑
n γ

2
n <∞;

(a.6) Define hc : RdN → RdN as hc(x) = h(cx) · c−1 with some c > 0, and h̃c(y) : Rd → Rd be
h̃c(y) = 〈hc(1 ⊗ y)〉. Then h̃c(y) → h∞(y) as c → ∞ uniformly on compact sets for some
h∞(y) : Rd → Rd. Also, for some ε < N−1/2, Bε = {y | ‖y‖ < ε} contains a globally asymptotically
stable attractor of the ODE ẏ = h∞(y).

Note that the definitions of hc and h∞ in (a.6) in Assumption C.1 are different from those in Mathkar & Borkar
(2016). Here we consider the averaged ODE in the consensus subspace for each agent, while that reference
considers the overall ODE associated with (C.1), i.e., define h̃ : RdN → RdN as h̃(x) = C∗h(x) and let
h∞(x) = limc h̃(cx) · c−1, where C∗ = limn

∏n
m=1 Cm. In fact, from Nedic & Ozdaglar (2009); Nedich et al.

(2016), the limit C∗ exists and has identical rows and rank one, provided the sequence {Ct} satisfies Assumption
4.4. Therefore, the globally asymptotical stability of the ODE ẋ = h∞(x) (see Assumption (A5) in Mathkar &
Borkar (2016)) does not hold for the linear ODE we consider in the convergence proof of the critic steps in both
algorithms. In contrast, we can verify our condition (a.6) in Assumption C.1 later in the proof of Lemmas B.1
and B.4. We then have the following theorem on the stability of the sequence {xn}.
Theorem C.2. Under Assumption C.1, the sequence {xn} generated from (C.1) is bounded almost surely, i.e.,
supn ‖xin‖ <∞ a.s. for any i ∈ N .

2To avoid possible confusion with the notation of continuous time t needed in the stability analysis, we use subscript n to denote the
iteration index in the proof of Theorem C.2.
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C.1. Proof of Theorem C.2

Let ϑc(y, t) denote the solution to the ODE

ẏ = h̃c(y), y(0) = y (C.2)

We first have the following lemma, which is similar to Lemma 5 in Mathkar & Borkar (2016), and thus we leave
out its proof here.

Lemma C.3. There exist constants c0 > 0 and T > 0 such that for all initial conditions y within the sphere
{y | ‖y‖ ≤ N−1/2} and all c ≥ c0, we have ‖ϑc(y, t)‖ ≤ (1 − ε′) · N−1/2 for t ∈ [T, T + 1], for some
0 < ε′ < 1, where N is the number of agents.

Now, before stating the next set of lemmas, we introduce some notations and terminology. First, by the
convention adopted in Borkar & Meyn (2000), we define t0 = 0 and tn =

∑n
i=0 γi, n ≥ 0. Then we define

x(t), t ≥ 0 as x(tn) = xn, n ≥ 0 with linear interpolation on each interval [tn, tn+1]. Moreover, we let T0 = 0
and Tn+1 = min{tm : tm ≥ Tn + T} for any n ≥ 0. Then Tn+1 ∈ [Tn + T, Tn + T + supn γn]. Let
m(n) be such that Tn = tm(n), for n ≥ 0. Define the piecewise continuous trajectory x̂(t) = x(t) · r−1n for
t ∈ [Tn, Tn+1), where rn = maxi∈N {‖x(Tn)‖, 1}. This implies that ‖x̂(Tn)‖ ≤ 1 for any n ≥ 0. We also
define x̂(T−n+1) = x(Tn+1) · r−1n , M̂k+1 = Mk+1 · r−1n , and ζ̂k+1 = ζk+1 · r−1n for k ∈ [m(n),m(n+ 1)).

Note that {M̂k} is also a martingale difference sequence as {Mk}. We first establish boundedness of E[‖x̂(t)‖2]
as follows.

Lemma C.4. Under Assumption C.1, supt E[‖x̂(t)‖2] <∞.

Proof. It suffices to show that supm(n)≤k<m(n+1) E[‖x̂(tk)‖2] < M for some M > 0 independent of n. We
first write the update of x̂(tk) for k ∈ [m(n),m(n+ 1)) in a compact form as

x̂(tk+1) = (Ck ⊗ I)
(
x̂(tk) + γk

{
hrn [x̂(tk)] + M̂k+1 + ζ̂k+1

})
. (C.3)

Note that the additional term ζ̂k+1 also satisfies E(‖ζ̂k+1‖2 | Fk) ≤ K ′ · (1 + ‖x̂(tk)‖2) by condition (a.4) in
Assumption C.1 since rn ≥ 1. Moreover, since Ck ⊗ I has bounded norm, it follows similarly as in the proof for
Lemma 4 on page 25 in Borkar (2008) that

E[‖x̂(tk+1)‖2]1/2 ≤ E[‖x̂(tk)‖2]1/2(1 + γkK1) + γkK2,

for someK1,K2 > 0 and k ∈ [m(n),m(n+1)). Then, by Grönwall inequality, we have the desired boundedness
of E[‖x̂(t)‖2].

By Lemma C.4, we immediately have the following result.

Lemma C.5 (Lemma 5 on page 25 in Borkar (2008)). The sequence {
∑n−1
k=0 γkM̂k+1} converges almost surely.

We thus obtain the almost sure boundedness of the trajectory {x̂(t)}.
Lemma C.6. Under Assumption C.1, supt ‖x̂(t)‖ <∞ a.s.

Proof. Recall the update in (C.3) and note that ‖(Ck ⊗ I)x‖∞ ≤ ‖x‖∞ since Ck is a row stochastic matrix,
where ‖ · ‖∞ denotes the infinite norm of a vector. Thus we have

‖x̂(tk+1)‖∞ ≤‖x̂(tk)‖∞ + γk
∥∥hrn [x̂(tk)] + M̂k+1 + ζ̂k+1

∥∥
∞. (C.4)

By iterating (C.4), we obtain

‖x̂(tk+1)‖∞ ≤ ‖x̂(tm(n))‖∞ +

k−m(n)∑
l=0

γm(n)+l

(∥∥hrn [x̂(tm(n)+l)]
∥∥
∞ +

∥∥M̂m(n)+l+1

∥∥
∞ +

∥∥ζ̂m(n)+l+1

∥∥
∞

)
≤ ‖x̂(tm(n))‖∞ +

k−m(n)∑
l=0

γm(n)+l ·K3

[
1 +

∥∥x̂(tm(n)+l)
∥∥
∞

]
+

k−m(n)∑
l=0

γm(n)+l

∥∥M̂m(n)+l+1

∥∥
∞, (C.5)
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for some K3 > 0. The second inequality is due to the Lipschitz continuity of hrn and condition (a.4) on ζn+1,
by the equivalence of vector norms. Moreover, by Lemma C.5, the third term on the RHS of (C.5) is bounded
a.s. since {

∑n−1
k=0 γkM̂k+1} converges a.s. Recall that

∑k−m(n)
l=0 γm(n)+l ≤ T + supn γn <∞ by definition of

m(n) and Tn. Thus, there exist K4,K5 > 0 such that

‖x̂(tk+1)‖∞ ≤ K4 +K5

k−m(n)∑
l=0

γm(n)+l

∥∥x̂(tm(n)+l)
∥∥
∞.

By discrete-time Grönwall inequality, we have

sup
m(n)≤k<m(n+1)

‖x̂(tk)‖∞ ≤ K4 · exp
[
K5 ·

(
T + sup

n
γn
)]
, (C.6)

where the RHS of (C.6) is a (random) constant independent of n. Hence by equivalence of vector norms, we
further obtain supt ‖x̂(t)‖ <∞, which concludes the proof.

The stability of ‖x̂(t)‖ is essential in showing the convergence of the consensus update in (C.3). For n ≥ 0, let
yn(t) denote the trajectory of ẏ = h̃c(y) with c = rn and yn(Tn) = 〈x̂(Tn)〉, for t ∈ [Tn, Tn+1). Then we have
the following lemma.

Lemma C.7. Under Assumption C.1, limn supt∈[Tn,Tn+1) ‖x̂(t)− 1⊗ yn(t)‖ = 0.
Proof. Since x̂(t) is bounded a.s. on [Tn, Tn+1), we can mimic our proofs for Theorems 4.6 and 4.9 to show
the convergence of x̂(tk) for k ∈ [Tn, Tn+1) as n→∞. We will provide here only a sketch. One can first show
that over the set {supk ‖x̂(tk)‖ ≤M} for any M > 0, limk ‖J⊥x̂(tk)‖ = 0. The iteration of J⊥x̂(tk) has the
form (similar to (B.9))

J⊥x̂(tk+1) = [(I− 11>/N)Ck ⊗ I][J⊥x̂(tk) + γkyk+1], (C.7)

where yk+1 = hrn [x̂(tk)]+M̂k+1+ ζ̂k+1 here. One can easily verify that E
(
‖yk+1‖2I{supk ‖x̂(tk)‖≤M} | Fk

)
<

K6 for some K6 > 0, due to Lipschitz continuity of hrn and the conditions (a.3) and (a.4) in Assumption C.1.
Hence, by similar arguments as in the proof of Lemma B.3, we obtain limk ‖J⊥x̂(tk)‖ = 0 almost surely, i.e.,
the vector x̂(tk) reaches consensus as k → ∞. Then we proceed to show the convergence of the sequence
{〈x̂(tk)〉}. Define ĥc : Rd ×A→ Rd as ĥc(y, Yk) = 〈h(c · 1⊗ y) · c−1〉; then the iteration can be written as
follows

〈x̂(tk+1)〉 = 〈x̂(tk)〉+ γk · E(〈yk+1〉 | Fk) + γk · ξk+1

= 〈x̂(tk)〉+ γk · ĥrn [〈x̂(tk)〉, Yk] + γk · ξk+1 + γk · βk+1,

where ξk+1 = 〈(Ck ⊗ I)(yk+1 + γ−1k J⊥x̂(tk)〉 − E(〈yk+1〉 | Fk), βk+1 = E(〈yk+1〉 | Fk)− ĥrn [〈x̂(tk)〉, Yk],
and 〈yk+1〉 = 〈hrn [x̂(tk)]〉+ M̂k+1 + 〈ζ̂k+1〉. One can verify that {ξk+1} is a martingale difference sequence
satisfying E

(
‖ξt+1‖2

∣∣Ft,1) < K7 · (1 + ‖〈x̂(tk)〉‖2) for some K7 < ∞ over the set {supk ‖x̂(tk)‖ ≤ M}.
In addition, note that E(M̂k+1 | Fk) = 0 and thus E(〈yk+1〉 | Fk) = 〈h[x̂(tk), Yk]〉 · r−1n . Thus we have
‖βk+1‖ ≤ L · ‖J⊥x̂(tk)‖ · r−1n for some L < ∞ due to the Lipschitz continuity of h. Hence βk → 0

a.s. since ‖J⊥x̂(tk)‖ → 0 a.s. and rn ≥ 1. Moreover, ĥrn [〈x̂(tk)〉, Yk] is Lipschitz continuous in 〈x̂(tk)〉.
Therefore, by Theorem D.2, we obtain that 〈x̂(tk)〉 → yn(t) as n → ∞, namely k → ∞. Further we obtain
that x̂i(tk) → yn(t) for any i ∈ N , which concludes the proof following Theorem 2 in Chapter 2 of Borkar
(2008).

Now suppose that ‖xin‖ → ∞ for some i ∈ N ; then there exists a subsequence of {nq} such that ‖xi(Tnq )‖ →
∞ and thus ‖x(Tnq )‖ → ∞. Hence rnq → ∞. If rn > c0 ≥ 1, then ‖x̂(Tn)‖ = 1, and thus ‖yn(Tn)‖ =

‖〈x̂(Tn)〉‖ ≤ N−1/2. By Lemma C.3, we have ‖1⊗ yn(T−n )‖ = N1/2 · ‖yn(T−n )‖ ≤ 1− ε′. Thus by Lemma
C.7, we have ‖x̂(T−n+1)‖ < 1− ε′′ for some 0 < ε′′ < ε′. Hence for rn > c0 and sufficiently large n,

‖x(Tn+1)‖
‖x(Tn)‖

=
‖x̂(T−n+1)‖
‖x̂(Tn)‖

< 1− ε′′.
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It thus follows that if ‖x(Tn)‖ > 1, ‖x(Tk)‖ falls back to the unit ball at an exponential rate for k ≥ n. The rest
of the argument follows directly from the proof of Theorem 2 in Mathkar & Borkar (2016), which concludes the
proof.

Now we are ready to apply Theorem C.2 to prove Lemmas B.1 and B.4. We will return to the notations in §4.

C.2. Proof of Lemma B.1

The proof follows by verifying the conditions for Theorem C.2 to hold. Recall that the critic step in (3.3) has the
form

ωt+1 = (Ct ⊗ I)
(
ωt + βω,t · yt+1

)
,

with yt+1 = (δ1t φ
>
t , · · · , δNt φ>t )> ∈ RKN . Thus the terms corresponding to (C.1) are

hi(ωit, µ
i
t, st, at) = E(δitφ

>
t | Ft,1), M i

t+1 = δitφ
>
t − E(δitφ

>
t | Ft,1). (C.8)

Since the Markov chain {(st, at)}t≥0 is irreducible and aperiodic given policy πθ, we have h
i
(ωit, µ

i
t) =

Φ>Ds,a
θ [Ri − µit1+ P θΦωit −Φωit]. By Lemma B.2, it is established that {µit} is bounded a.s. Hence, over the

set {supt ‖µt‖ ≤ M} for any M > 0, there exists some K ′ > 0 such that ‖h(ωt, µt)− h(ωt, µt, st, at)‖2 ≤
K ′ · (1 + ‖ωt‖2), since the Markov chain is finite. This verifies the condition (a.4) in Assumption C.1. Moreover,
since rit+1 and ‖φt‖ are uniformly bounded, E(‖Mt+1‖2 | Ft,1) ≤ K · (1 + ‖ωt‖2) is also verified for some
K > 0. More importantly, over the set {supt ‖µt‖ ≤M}, h∞(y) exists and has the form

h∞(y) = lim
c
h̃c(y) = Φ>Ds,a

θ (P θ − I)Φy. (C.9)

Clearly ẏ = h∞(y) has origin as its globally asymptotically stable attractor (see the proof of Theorem 4.6 in
§B.2). Hence we apply Theorem C.2 to conclude the proof.

C.3. Proof of Lemma B.4

Recall that the critic step from (3.8) and (3.11) has the compact form

zt+1 = (Ct ⊗ I)
(
zt + βv,t · yt+1

)
, (C.10)

where zit = [µit, (λ
i
t)
>, (vit)

>]> and yt = [(y1t )>, · · · , (yNt )>]> ∈ R(1+M+L)N . Here yit+1 denotes yit+1 =
[rit+1 − µit, (rit+1 − f>t λit)f>t , δitϕ>t ]>. Thus the terms corresponding to (C.1) are

hi(zit, st, at) = E(yit+1 | Ft,1), M i
t+1 = yit+1 − E(yit+1 | Ft,1). (C.11)

Furthermore, we have

h
i
(zit) =

 −1 0 0
0 −F>Ds,a

θ F 0
−Φ>Ds

θ1 0 Φ>Ds
θ(P

θ − I)Φ

µitλit
vit

+

 J i(θ)
F>Ds,a

θ Ri

Φ>Ds
θR

i
θ

 ,

where J i(θ) =
∑
s∈S,a∈A dθ(s, a) ·Ri(s, a) and Riθ(s) =

∑
a πθ(s, a)Ri(s, a). Therefore, one can verify that

both conditions (a.3) and (a.4) in Assumption C.1 are satisfied. In addition, h∞(y) exists and has the form

h∞(y) = lim
c
h̃c(y) =

 −1 0 0
0 −F>Ds,a

θ F 0
−Φ>Ds

θ1 0 Φ>Ds
θ(P

θ − I)Φ

 · y.
Clearly ẏ = h∞(y) has origin as its globally asymptotically stable attractor (see the proof of Theorem 4.9 in
§B.4), which completes the proof.
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D. Technical Background
D.1. A Basic Result of Stochastic Approximation

For the sake of completeness, we reproduce here a key result from Borkar (2008) that has been used repeatedly
in our proofs. The results follow by specializing Corollary 8 and Theorem 9 on page 74-75 in Borkar (2008).
We note that this is actually an extension of Theorem 2.1 and Theorem 2.2 in Borkar & Meyn (2000) to the case
with irreducible Markovian state and diminishing noise in the update. More general conclusions can also be
found in Benaı̈m (1999); Kushner & Yin (2003).

Consider the n-dimensional stochastic approximation iteration

xt+1 = xt + γt[h(xt, Yt) +Mt+1 + βt+1], t ≥ 0, (D.1)

where γt > 0 and {Yt}t≥0 is a Markov chain on a finite set A.
Assumption D.1. We make the following assumptions:

(a.1) h : Rn ×A→ Rn is Lipschitz continuous in its first argument;
(a.2) {Yt}t≥0 is an irreducible Markov chain with stationary distribution π;
(a.3) The stepsize sequence {γt} satisfies

∑
t γt =∞ and

∑
t γ

2
t <∞;

(a.4) {Mt} is a martingale difference sequence, i.e., E[Mt+1 |xτ ,Mτ , Yτ , τ ≤ t] = 0, satisfying that for
some K > 0 and t ≥ 0

E
(
‖Mt+1‖2 |xτ ,Mτ , Yτ , τ ≤ t

)
≤ K ·

(
1 + ‖xt‖2

)
.

(a.5) The sequence {βt} is a bounded random sequence with βt → 0 almost surely as t→∞.

Then the asymptotic behavior of the iteration (D.1) is related to the behavior of the solution to the ODE

ẋ = h(x) =
∑
i

π(i)h(x, i). (D.2)

Suppose (D.2) has a unique globally asymptotically stable equilibrium x∗, we then have the following two
theorems.
Theorem D.2. Under Assumption D.1, if supt ‖xt‖ <∞ a.s., we have xt → x∗.
Theorem D.3. Under Assumption D.1, suppose that

lim
c→∞

h(cx)

c
= h∞(x)

exists uniformly on compact sets for some h∞ ∈ C(Rn). If the ODE ẏ = h∞(y) has origin as the unique
globally asymptotically stable equilibrium, then

sup
t
‖xt‖ <∞ a.s.

D.2. Kushner-Clark Lemma

We state here the well-known Kushner-Clark Lemma (Kushner & Clark, 1978; Metivier & Priouret, 1984; Prasad
et al., 2014) in the sequel.

Let Γ be an operator that projects a vector onto a compact set X ⊆ RN . Define a vector Γ̂(·) as

Γ̂[h(x)] = lim
0<η→0

{
Γ[x+ ηh(x)]− x

η

}
,

for any x ∈ X and with h : X → RN continuous. Consider the following recursion in N dimensions

xt+1 = Γ
{
xt + γt[h(xt) + ξt + βt]

}
. (D.3)

The ODE associated with (D.3) is given by

ẋ = Γ̂[h(x)]. (D.4)
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Assumption D.4. We make the following assumptions:

(a.1) h(·) is a continuous RN -valued function.
(a.2) The sequence {βt}, t ≥ 0 is a bounded random sequence with βt → 0 almost surely as t→∞.
(a.3) The stepsizes γt, t ≥ 0 satisfy γt → 0 as t→∞ and

∑
t γt =∞.

(a.4) The sequence ξt, t ≥ 0 satisfies for any ε > 0

lim
t

P

(
sup
n≥t

∥∥∥∥ n∑
τ=t

γτξτ

∥∥∥∥ ≥ ε
)

= 0.

Then the Kushner-Clark Lemma says the following.

Theorem D.5. Under Assumption D.4, suppose that the ODE (D.4) has a compact set K∗ as its set of asymptot-
ically stable equilibria. Then xt in (D.3) converges almost surely to K∗ as t→∞.
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E. Experiment Details
In this section, we provide the details of the simulation settings in §5.

E.1. Linear Function Approximation

We first consider the setting with linear function approximation to corroborate our theoretical results. Consider in
total N = 20 agents, each has a binary-valued action space, i.e.,Ai = {0, 1}, for all i ∈ N . Thus the cardinality
of the set of actions A is 220. In addition, there are in total |S| = 20 states. The following ways of selecting the
model and algorithm parameters, including transition probabilities, rewards, and features, follow from those in
Dann et al. (2014). The elements in the transition probability matrix P are uniformly sampled from the interval
[0, 1] and normalized to be stochastic. We also add a small constant 10−5 onto each element in the matrix to
ensure ergodicity of the MDP such that Assumption 2.2 is satisfied. For each agent i and each state-action pair
(s, a), the mean reward Ri(s, a) is sampled uniformly from [0, 4], which varies among agents. The instantaneous
rewards rit are sampled from the uniform distribution [Ri(s, a)− 0.5, Ri(s, a) + 0.5]. The policy πiθi(s, a

i) is
parametrized following the Boltzman policies, i.e.,

πiθi(s, a
i) =

exp
(
q>s,aiθ

i
)∑

bi∈Ai
exp

(
q>s,biθ

i
)

where qs,bi ∈ Rmi is the feature vector with the same dimension as θi, for any s ∈ S and i ∈ N . Here we set
m1 = m2 = · · · = mN = 5. The elements of qs,bi are also uniformly sampled from [0, 1]. In particular, the
gradient of the score function thus has the form

∇θi log πiθi(s, a
i) = qs,ai −

∑
bi∈Ai

πiθi(s, a
i)qs,bi .

The feature vectors φ ∈ RK for the action-value function Q(·, ·;ω) in Algorithm 1, ϕ ∈ RL for the state-value
function V (·; v) and f ∈ RM for the globally averaged reward function R(·, ·;λ) in Algorithm 2, are all
uniformly sampled from [0, 1], of dimensions K = 10 � |S| · |A|, L = 5 < |S|, and M = 10 � |S| · |A|.
Moreover, the selected feature matrices Φ, Φ, and F are all ensured to have full column rank as required in
Assumptions 4.5 and 4.8.

The consensus weight matrix Ct are chosen independent and identically distributed along time t, by normalizing
the absolute Laplacian matrix of a connected random graph Gt over agents N to be doubly stochastic3. The
graph Gt is generated by randomly placing communication links among agents such that the connectivity ratio4

is 4/N . The stepsizes are selected as βω,t = βv,t = 1/t0.65 and βθ,t = 1/t0.85, which satisfy Assumption 4.3.

The performances of the fully decentralized algorithms are compared with those of the centralized algorithms
in which the rewards rit of all agents are available at a centralized controller and the global policy πθ is also
updated there. These centralized version algorithms thus reduce to single-agent AC algorithms with linear
function approximation. We refer the two centralized AC algorithms for comparison as Central-1 and Central-2,
respectively. The algorithm Central-1 has the following critic step, which is based on action-value function
approximation as in Algorithm 1

µt+1 = (1− βω,t) · µt + βω,t · rt+1,

δt = rt+1 − µt +Qt+1(ωt)−Qt(ωt)
ωt+1 = ωt + βω,t · δt · ∇ωQt(ωt).

(E.1)

Recall that Qt(ω) = Q(st, at;ω) with Q(·, ·;ω) the estimate for the global action-value function Qθ, βω,t > 0
is the stepsize, and rt =

∑
i∈N r

i
t ·N−1. Accordingly, the central controller improves the policy for each agent

i, which results in the actor step

θit+1 = θit + βθ,t ·At · ψit, ∀i ∈ N , (E.2)

3A stochastic matrix P is doubly stochastic if it is both row and column stochastic.
4Note that the connectivity ratio is defined as the ratio between the total degree of the graph and the degree of the complete graph, i.e.,

2E/[N(N − 1)], where E is the number of edges.
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where βθ,t > 0 is the stepsize, At and ψit are defined as

At = Qt(ωt)−
∑
a∈A

πθt(st, a) ·Q(st, a;ωt), ψit = ∇θi log πiθit
(st, a

i
t). (E.3)

The algorithm Central-2 follows the updates of Algorithm 1 in Bhatnagar et al. (2009), based on state-value
approximation as in Algorithm 2 here. In particular, it has the following critic step

µt+1 = (1− βv,t) · µt + βv,t · rt+1,

δt = rt+1 − µt + Vt+1(vt)− Vt(vt),
vt+1 = vt + βv,t · δt · ∇vVt(vt),

(E.4)

where we recall that Vt(v) = V (st; v) for any v ∈ RL and βv,t > 0 is the stepsize satisfying Assumption 4.3.
Since the rewards of all agents {rit}i∈N are available to the controller, no estimation for the globally averaged

0 200 400 600 800 1000 1200
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

Figure 3. The convergence of globally averaged returns, when linear function approximation is used. We plot the returns
achieved by both Algorithm 1 and Algorithm 2, along with their centralized counterparts Central-1 and Central-2.
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(a) Algorithm 1 v.s. Central-1 (b) Algorithm 2 v.s. Central-2

Figure 4. The convergence of relative value functions at four randomly selected agents, when linear function approximation
is used. We randomly select the agents 2, 5, 8, and 17. In (a), we plot the convergence curve of the relative action-value at a
randomly selected state-action pair, obtained from Central-1 and Algorithm 1. In (b), we plot the convergence curve of the
relative state-value at a randomly selected state, obtained from Central-2 and Algorithm 2.
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reward functionR is needed in the update. Thus, the global state-value TD-error δt can be computed immediately
and used in the actor step as

θit+1 = θit + βθ,t · δt · ψit, ∀i ∈ N , (E.5)

where ψit is as defined in (E.3).

Convergence of the globally averaged returns, the relative action-value function, and the relative state-value
function are reported in Figure 3 and Figure 4, respectively. Figure 3 shows that both decentralized algorithms
converge to the globally averaged return as achieved by the two centralized counterparts. Moreover, Figure 4
illustrates that for each agent, the approximation of global value functions in Algorithms 1 and 2 reach consensus
much faster than the AC algorithm itself converges. In addition, the convergence of the value functions is
relatively slower for the decentralized algorithms than for the centralized ones, possibly due to the delay of
information diffusion across the network.

E.2. Nonlinear Function Approximation

We also evaluate the performance of Algorithm 1 and Algorithm 2 when nonlinear function approximators, for
example, neural networks, are adopted. Although it seems difficult to establish convergence guarantees in this
case, we believe that the empirical results are of independent interest, which justify the effectiveness of the
proposed fully decentralized algorithms in a more sophisticated environment.

To this end, we consider the simulation environment of the Cooperative Navigation task in Lowe et al. (2017).
In this environment, agents need to reach a set of L landmarks through physical movement. Agents are able to
observe the position of the landmarks and other agents, and are rewarded based on the proximity of any agent
to each landmark (Lowe et al., 2017). To fit in our networked MDP model, we modify the environment there
in the following aspects. First, we assume the state is globally observable, i.e., the position of the landmarks
and other agents are observable to each agent. Moreover, each agent has a certain target landmark to cover,
and the individual reward is determined by the proximity to that certain landmark, as well as the penalty from
collision with other agents. In this way, the reward function varies between agents. The reward is further
scaled by different positive coefficients, representing the different priority/preferences of different agents. In
addition, agents are connected via a time-varying communication network with several other agents nearby. The
collaborative goal of the agents is then to maximize the network-wide averaged long-term return. The illustration
of the modified Cooperative Navigation environment is provided in Figure 5.

Specifically, we consider N = 10 agents moving in a rectangular region of size 2× 2. Each agent has a single
target landmark, i.e., L = N = 10, which is randomly located in the region. The action set for each agent is the

agent 1

agent 2

agent 3

agent 4

Figure 5. Illustration of the experimental environment for the Cooperative Navigation task we consider, modified from Lowe
et al. (2017). In particular, the blue circles represent the agents, the orange stars represent the landmarks, the green arrows
represent the communication links between agents, and the gray arrows show the target landmark each agent need to cover.
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movement set {left, right, up, down, stay}, and thus |Ai| = 5 for any i ∈ N . The state s includes the position
of the landmarks and other agents, which thus has a dimension of 2(N + L) = 40. The reward of agent i is the
negative number of the distance to the target landmark, plus −1 if agent i collides with any other agents. The
coefficients that scale the reward of each agent are selected randomly from a uniform distribution over [0, 2].
Each agent maintains two neural networks for actor and critic, respectively. Both neural networks have one
hidden layer containing 24 neural units, which all use ReLU as the activation function. The output layer for the
actor network is softmax, and that for the critic network is linear.

The time-varying network Gt and consensus matrix Ct are constructed in the same way as in §E.2. The stepsizes
for the actor and critic step are set as constants 0.001 and 0.01, respectively. For each episode, the algorithms
terminate either all agents reach the target landmarks or after 1000 iterations, and we run in total 200 episodes
in each test run. We report the globally averaged return from 10 test runs in Figure 2, where the algorithms
Central-1 and Central-2 follow the update rules in §E.1, but with nonlinear function approximation.

To better illustrate the necessity of cooperation via communication among agents, we compare the results of
Algorithms 1 and 2 with the non-cooperative counterparts, where each agent performs single-agent RL, with no
awareness of the existence of other agents in the environment. These non-cooperative algorithms are equivalent
to our proposed consensus-based algorithms, when the communication network is disconnected and contains
only a self-loop at each node. Thus, we demonstrate the performance of the non-cooperative counterparts of
Algorithms 1 and 2 in Figure 6. Note that the results of Algorithms 1 and 2 follow from those in Figure 2. It is
shown that the non-cooperative algorithms are unstable, and achieve much worse long-term return with much
larger variance than the cooperative counterparts. These observations showcase the necessity of communication
in fully decentralized cooperative MARL.

Figure 6. The globally averaged returns for Cooperative Navigation, when neural networks are used for function approximation.
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F. Comparison with Existing Work on Multi-Agent Systems and MARL
In this section, we compare both our model and algorithms with related work on multi-agent systems and
collaborative MARL in details.

Our framework of networked multi-agent systems finds a broad range of applications in distributed cooperative
control problems, including formation control of unmanned vehicles (Fax & Murray, 2004), cooperative
navigation of robots (Corke et al., 2005), load management in energy networks (Dall’Anese et al., 2013), and
flocking of mobile sensor networks (Cortes et al., 2004), etc. Previously, the collective goal of the multi-agent
system is to either reach a stable and consensus state for all agents (Fax & Murray, 2004; Corke et al., 2005),
or solve a static optimization problem in a distributed fashion (Dall’Anese et al., 2013; Nedic & Ozdaglar,
2009). In the first line of work, including formation control and consensus problems, the objective is not
formulated explicitly as an optimization problem, and most of the work focuses on continuous-time dynamic
systems. Whereas in the second line of work, the problem is approached in a static setting, in the sense that the
optimization objective is deterministic and there is no control input affecting the transition of the system, see
recent efforts in Nedic & Ozdaglar (2009); Agarwal & Duchi (2011); Chen & Sayed (2012). In contrast, we here
model the interaction of multiple agents and evolution of the system as an MDP, a dynamic setting, and explicitly
use the network-wide long-term return as the collaborative goal of all agents. In this regard, our framework is
pertinent to the cooperative/distributed optimal control problems (Lewis et al., 2013; Movric & Lewis, 2014), but
focuses on the discrete-time setting and falls into the realm of reinforcement learning, where the model of the
system may be unknown. One recent work (Macua et al., 2017) for multi-task RL, which is almost concurrent to
ours, is also based on the model with networked agents. Nonetheless, the MDP problem solved by different
agents are totally decoupled, which excludes the work from the realm of MARL with interactive agents as we
consider here.

Our framework also departs from the existing framework on collaborative MARL models in the following
aspects. In contrast to the canonical multi-agent MDP (MMDP) model proposed in Boutilier (1996); Lauer
& Riedmiller (2000), our model allows the agents to exchange information over a communication network
with possibly sparse connectivity at each agent. This improves the scalability of the multi-agent model with a
high population of agents, which is one of the long-standing challenges in general MARL problems (Shoham
et al., 2003). Moreover, we allow heterogeneous agents to have various individual reward functions, while
the canonical MMDP assumes a common reward function for all agents. The latter setting greatly simplifies
the problem since no information exchange among agents is necessary to approximate the value function for
each agent. Our model not only fits in the multi-task setting which has gained increasing popularity in MARL
(Omidshafiei et al., 2017; Teh et al., 2017), but also applies to the general multi-agent RL setting. One of the few
models that also consider heterogeneous reward functions in collaborative MARL is Kar et al. (2013), where the
global action is assumed to be actuated by a remote controller, but in our case, the agents are fully decentralized
and have local control capabilities. Besides, the models in Guestrin et al. (2002); Kok & Vlassis (2006) also
consider heterogeneous rewards, but with a strong assumption that the global Q-function can be factorized as
several local Q-functions that depend on the actions of only a subset of agents, which simplified the general
setting we considered where the Q-function is affected by the joint action of all agents. It is also worth noting
that our model generalizes the team Markov game model for collaborative MARL, see Littman (2001); Wang &
Sandholm (2003); Arslan & Yüksel (2017), where all agents have individual action sets but share a common
payoff function as in the canonical MMDP.

Moreover, our algorithms designed for networked MMDP are distinct from the existing collaborative MARL
algorithms in the following aspects. First, our MARL algorithms belong to the type of actor-critic algorithms,
whereas several of the existing MARL algorithms are designed based on Q-learning type (critic-based) algorithms
only (Boutilier, 1996; Lauer & Riedmiller, 2000; Guestrin et al., 2002; Kok & Vlassis, 2006; Kar et al., 2013).
Moreover, these algorithms assume either the rewards are common to all agents (Boutilier, 1996; Lauer &
Riedmiller, 2000), or there exists a remote central controller to take actions for the agents (Kar et al., 2013).
The rest of them (Guestrin et al., 2002; Kok & Vlassis, 2006) utilize the factorized structure of the Q-function
as mentioned above, which fail to handle our general MARL setting. More recently, some actor-critic type
MARL algorithms with distributed/decentralized structures have gained increasing attention (Gupta et al., 2017;
Lowe et al., 2017; Omidshafiei et al., 2017). They are developed for more complicated settings where both
cooperation and competition may appear among agents. However, they all rely on a central controller to perform
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the critic step, which are closer to the hierarchical structure rather than the fully decentralized structure we
consider here. Second, our algorithms apply function approximation to handle the setting with massively large
state and action spaces, while enjoying theoretical guarantees for convergence as we show in §4. However, the
existing collaborative MARL algorithms are either guaranteed to converge only for tabular cases (Hu & Wellman,
2003; Wang & Sandholm, 2003; Kar et al., 2013; Prasad et al., 2014), or only have empirical convergence when
function approximation is applied (Foerster et al., 2016; Gupta et al., 2017; Lowe et al., 2017; Omidshafiei et al.,
2017). The recent work on multi-task RL with networked agents (Macua et al., 2017) also focuses on empirical
results only, with no complete convergence analysis.


