Supplementary Material of “Dynamic Regret of Strongly Adaptive Methods”

Lijun Zhang' Tianbao Yang?> Rong Jin® Zhi-Hua Zhou'

A. Proof of Lemma 1

We first prove the first part of Lemma 1. Let & = |log ¢]. Then, integer ¢ can be represented in the base- K number system
as

k
t=> BiKI.
j=0
From the definition of base-K ending time, integers that are no larger than ¢ and alive at ¢ are

k k k
1« KO+ BiET, 25 KO+ Y BK7, ..., By« K°+ Y 8K/

j=1 j=1 j=1

k k k
L« K'Y KT, 2+ KM+ > BiK7, ., BisK' +)  BiK?

Jj=2 Jj=2 j=2
1 KP4 B KR, 1w KR BKR, L By« KR 4 B K"
L« K* 25 K* . B K"

The total number of alive integers are upper bounded by

k

D B < (k+1)(K —1) = ([logg t] + 1)(K — 1).
=0

We proceed to prove the second part of Lemma 1. Let k = |logy 7], and the representation of r in the base-K number
system be

k
r= ZB]KJ
j=0



Dynamic Regret of Strongly Adaptive Methods

We generate a sequence of segments as

k k
L=[ty,e" =1 = | D BKI, (Bi+ 1K' +> BiKI — 1|,

Jj=0 Jj=2

k k
L=t e =1 = | (B + DK + > BK, (B + DK+ 5K 1/,
j=2 j=3

k k
Iy =ts,e" =1 = (B2 + D>+ 5K, (B + DE® + ) 5K — 11,

Jj=3 Jj=4

Iy = [t — 1] = [(Bemy + DEF 4 BuKF, (B + DE — 1]
Tigr = [thgr, e — 1] = [(Be + RS KF -1,

Tpyo = [tepo, €2 — 1] = [KFHL KFP2 1]

until s is covered. It is easy to verify that
tmg1r >t + K™ — 1.

Thus, s will be covered by the first m intervals as long as
t + K™ —1> .

A sufficient condition is
r+ K™ —1>5

which is satisfied when
m=[logg(s—r+1)] + 1.

B. Proof of Theorem 1
From the second part of Lemma 1, we know that there exist m segments
I; = [tj,e — 1], j € [m]
with m < [logg (s —r + 1)] + 1, such that
ti=r, e =tj41, j€[m—1], and e’ > s.

Furthermore, the expert E% is alive during the period [¢;, e’ — 1].

Using Claim 3.1 of Hazan & Seshadhri (2009), we have

eti —1 1 etj —1 1
7 filwi) = fulwy) < = [logt; +2 Y - viem—1]
t=t; @ t=t;+1
where sz yeee ,WZ{J. . is the sequence of solutions generated by the expert E% . Similarly, for the last segment, we have

_Z filw) = fulwin) < <1ogtm+2 > 1) .

t=t,+1
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By adding things together, we have

m—1 [efi—1 s

Z fewi) = fr(wy) | + Z fe(we) = fe(wim)
j=1 t; t=tm, )
1 2 < m+2
<= logt; + — - < logT.
_Q;Ogj+at:;1t « 8

According to the property of online Newton step (Hazan et al., 2007, Theorem 2), we have, for any w € €,

b
ed—1

S i)~ filw) 54 (£ 4 GB) g, i € fm ~ 1] ©

t=t;

and

Z fe(wim (w) < 5d ( + GB) log T. (10)
Combining (8), (9), and (10), we have,
Z fe(wi) — Z fr(w) < ((5d+2m+2 + 5deB> log T
t=r t=r

for any w € Q.

C. Proof of Lemma 2
The gradient of exp(—af(w)) is

Vexp(—af(w)) = exp(—af(w))—aVf(w) = —aexp(—af(w))Vf(w).
and the Hessian is

V?exp(—af(w)) =—aexp(—af(w))—aV f(w)V' f(w) — aexp(—af(w))V?f(w)
=aexp(—af(w)) (aVf(wW)V' f(w) = V2 f(w)).
Thus, f(-) is a-exp-concave if
aV f(w)VT f(w) X V2 f(w).

We complete the proof by noticing
A
Gz VIW) VT f(w) 2 AL V2 f(w).

D. Proof of Theorem 2

Lemma 2 implies that all the A- strongly convex functions are also A—exp -concave. As a result, we can reuse the proof of

Theorem 1. Specifically, (8) with &« = %5 becomes

L — m 2
Z Z ft(wt) .ft Wt —+ Z ,ft Wt m) S H—%)CglogT (11)

According to the property of online gradient descent (Hazan et al., 2007, Theorem 1), we have, for any w € €2,

eli—1

G?
Z Fr(wi) = fu(w) < oy (1+10gT), ¥j € [m —1] (12)
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and

2
th ")~ fiw) < S (1 +logT) (13)

Combining (11), (12), and (13), we have,

th(wt th S m+(3m+4)10gT>
t=r
for any w € Q.

E. Proof of Theorem 4

As pointed out by Daniely et al. (2015), the static regret of online gradient descent (Zinkevich, 2003) over any interval of
length 7 is upper bounded by 3BG+/7. Combining this fact with Theorem 2 of Jun et al. (2017), we get Theorem 4 in this

paper.

F. Proof of Corollary 5

To simplify the upper bound in Theorem 3, we restrict to intervals of the same length 7, and in this case k = T'/7. Then, we
have

k
D-Regret(wi,...,wh) < lgngT (SA-Regret(T, 7) + 27Vr(i))
T i=1
) SA-Regret(T, )T
_1212T< - +2TZVT )
< min (SA-Regret(T7 T N QTVT) .
1<7<T T

Combining with Theorem 4, we have

8/ TlogT + 5)T
D-Regret(wi,...,wp) < min ((C+ og T +5) + QTVT> .
1<7<T T
where ¢ = 12BG/(v/2 — 1).
In the following, we consider two cases. If Vi > /log T'/T, we choose
B (T«/logT)w3 <7
=~ <
and have
VTlog T +5)T%/3V;}/?
D-Regret(w!, .., wh) < CF 8V cl)g 1/:T) + 2123V P 10g /3 T
8v5) T3V,
_(c+ lfl)/GT + (24 8VTITAVY P log A T
0g

Otherwise, we choose 7 = T, and have
D-Regret(w}, ..., wh) <(c+ 8/TlogT + 5)VT + 2TV

log T
<(c+8y/Tlog T + 5)VT + 2T,/%
<(c+9/TlogT + 5)VT
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In summary, we have

(c+9y/Tlog T + 5)VT

: * * 1/3

D-Regret(wy, ..., w) <max (c+ 8\/5)T2/3VT/
logl/GT

=0 (max{\/’ngT, TQ/?’VTI/3 1og1/3 T}) .

+ 24723V} B 1og! 3 T

G. Proof of Corollary 6

The first part of Corollary 6 is a direct consequence of Theorem 1 by setting K = [Tl/ 7.

Now, we prove the second part. Following similar analysis of Corollary 5, we have

d+1 1)+ 2 TlogT
D-Regret(wy,...,wp) < 12112T { <(5 +HO+D+ + 5d(y + 1)GB> 8- 4 QTVT} .
<7< (&% T

Then, we consider two cases. If Vi > log T//T, we choose

TlogT
=4/——<T
T T

d+1 1)+ 2
D-Regret(wi,...,wrp) < ((5 +HO+ D+ +5d(’y+1)GB+2) VTVrlogT.

and have

(67

Otherwise, we choose 7 = T, and have

IN

D-Regret(w}, ..., w}) ((5d + DO+ +

(67

<(5d+1)(7+1)+

<(5d+ D(y+1)+

2
+ 5d(y + 1)GB> log T + 2TV

IN

2 log T
+5d(y + 1)GB) log T + 2T 0;

2
5 +5d('y+1)GB—|—2> logT.

In summary, we have

D-Regret(wi,...,wrp) < <(5d + 1)(3 +1)+2 +5d(y+1)GB + 2) max {log T,\/TVrlog T}

=0 (d - max {logT7 W}) .

H. Proof of Corollary 7

The first part of Corollary 7 is a direct consequence of Theorem 2 by setting K = [Tl/ 7.

The proof of the second part is similar to that of Corollary 6. First, we have

G? T
D-Regret(wy,...,wp) < min {(’y +1+By+7)log T)? + QTVT}

—1<7<7 | 2\
2
< min { (v + 5vlog T)G?*T N QTVT}
1<7<T AT

where the last inequality is due to the condition v > 1.
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Then, we consider two cases. If Vi > log T'/T, we choose

TlogT <7
|

T =

and have

G2 [TVe  59G?
D-Regret(w;,...,w;;)g”A log;—’— 7/\ VTVrlog T + 2/TVy log T

~G? [ TVr 5vG?
=2 2) /TVrlogT.
A Viogr TN T Vr log

Otherwise, we choose 7 = T, and have
log T)G?
D-Regret(wi,...,wrp) < ks 57)\og )G +2TVp
<y +5ylog T)G?

logT
2T
X e

_G? 5vG?
= +( \ +2 ) logT.

In summary, we have

~G? 5vG?
— 2| logT
\ + ( \ + og

~G? [ TVr 5vG?
2 TVrlogT
X ”10gT+ \ +2)/TVrlog

=0 (max {log 7, TV log T } ).

D-Regret(wy, ..., wp) <max




