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Abstract

Deep latent variable models, trained using varia-
tional autoencoders or generative adversarial net-
works, are now a key technique for representa-
tion learning of continuous structures. However,
applying similar methods to discrete structures,
such as text sequences or discretized images, has
proven to be more challenging. In this work, we
propose a flexible method for training deep latent
variable models of discrete structures. Our ap-
proach is based on the recently-proposed Wasser-
stein autoencoder (WAE) which formalizes the ad-
versarial autoencoder (AAE) as an optimal trans-
port problem. We first extend this framework to
model discrete sequences, and then further ex-
plore different learned priors targeting a control-
lable representation. This adversarially regular-
ized autoencoder (ARAE) allows us to generate
natural textual outputs as well as perform manipu-
lations in the latent space to induce change in the
output space. Finally we show that the latent rep-
resentation can be trained to perform unaligned
textual style transfer, giving improvements both in
automatic/human evaluation compared to existing
methods.

1. Introduction

Recent work on deep latent variable models, such as vari-
ational autoencoders (Kingma & Welling, 2014) and gen-
erative adversarial networks (Goodfellow et al., 2014), has
shown significant progress in learning smooth representa-
tions of complex, high-dimensional continuous data such as
images. These latent variable representations facilitate the
ability to apply smooth transformations in latent space in or-
der to produce complex modifications of generated outputs,
while still remaining on the data manifold.

Unfortunately, learning similar latent variable models of
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discrete structures, such as text sequences or discretized
images, remains a challenging problem. Initial work on
VAEs for text has shown that optimization is difficult, as the
generative model can easily degenerate into a unconditional
language model (Bowman et al., 2016). Recent work on
generative adversarial networks (GANSs) for text has mostly
focused on dealing with the non-differentiable objective
either through policy gradient methods (Che et al., 2017;
Hjelm et al., 2018; Yu et al., 2017) or with the Gumbel-
Softmax distribution (Kusner & Hernandez-Lobato, 2016).
However, neither approach can yet produce robust represen-
tations directly.

In this work, we extend the adversarial autoencoder (AAE)
(Makhzani et al., 2015) to discrete sequences/structures.
Similar to the AAE, our model learns an encoder from an
input space to an adversarially regularized continuous latent
space. However unlike the AAE which utilizes a fixed
prior, we instead learn a parameterized prior as a GAN.
Like sequence VAEs, the model does not require using
policy gradients or continuous relaxations. Like GANSs,
the model provides flexibility in learning a prior through a
parameterized generator.

This adversarially regularized autoencoder (ARAE) can fur-
ther be formalized under the recently-introduced Wasser-
stein autoencoder (WAE) framework (Tolstikhin et al.,
2018), which also generalizes the adversarial autoencoder.
This framework connects regularized autoencoders to an
optimal transport objective for an implicit generative model.
We extend this class of latent variable models to the case of
discrete output, specifically showing that the autoencoder
cross-entropy loss upper-bounds the total variational dis-
tance between the model/data distributions. Under this
setup, commonly-used discrete decoders such as RNNs, can
be incorporated into the model. Finally to handle non-trivial
sequence examples, we consider several different (fixed
and learned) prior distributions. These include a standard
Gaussian prior used in image models and in the AAE/WAE
models, a learned parametric generator acting as a GAN in
latent variable space, and a transfer-based parametric gener-
ator that is trained to ignore targeted attributes of the input.
The last prior can be directly used for unaligned transfer
tasks such as sentiment or style transfer.

Experiments apply ARAE to discretized images and text
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sequences. The latent variable model is able to gener-
ate varied samples that can be quantitatively shown to
cover the input spaces and to generate consistent image
and sentence manipulations by moving around in the la-
tent space via interpolation and offset vector arithmetic.
When the ARAE model is trained with task-specific ad-
versarial regularization, the model improves upon strong
results on sentiment transfer reported in Shen et al. (2017)
and produces compelling outputs on a topic transfer task
using only a single shared space. Code is available at
https://github.com/jakezhaojb/ARAE.

2. Background and Notation

Discrete Autoencoder Define X = V" to be a set of
discrete sequences where V is a vocabulary of symbols.
Our discrete autoencoder will consist of two parameterized
functions: a deterministic encoder function encyg : X — Z
with parameters ¢ that maps from input space to code space,
and a conditional decoder py (x | ) over structures X’ with
parameters 1. The parameters are trained based on the
cross-entropy reconstruction loss:

£rec(¢7 w) = - Ingw (X | enc¢(x))

The choice of the encoder and decoder parameterization is
problem-specific, for example we use RNNs for sequences.
We use the notation, X = arg maxy py (x | encg(x)) for the
decoder mode, and call the model distribution P,;.

Generative Adversarial Networks GANS are a class of
parameterized implicit generative models (Goodfellow et al.,
2014). The method approximates drawing samples from
a true distribution z ~ P, by instead employing a noise
sample s and a parameterized generator function z = gy(s)
to produce z ~ P,. Initial work on GANs implicitly min-
imized the Jensen-Shannon divergence between the distri-
butions. Recent work on Wasserstein GAN (WGAN) (Ar-
jovsky et al., 2017), replaces this with the Earth-Mover
(Wasserstein-1) distance.

GAN training utilizes two separate models: a generator
go(s) maps a latent vector from some easy-to-sample noise
distribution to a sample from a more complex distribution,
and a critic/discriminator f,,(z) aims to distinguish real data
and generated samples from gy. Informally, the generator
is trained to fool the critic, and the critic to tell real from
generated. WGAN training uses the following min-max
optimization over generator 6 and critic w,

min max B, . [fw(z)] — Eap,[fu(2)],

where f,, : Z — R denotes the critic function, z is ob-
tained from the generator, Z = gy(s), and P, and P, are
real and generated distributions. If the critic parameters w
are restricted to an 1-Lipschitz function set WV, this term cor-
respond to minimizing Wasserstein-1 distance W (P, P,).

We use a naive approximation to enforce this property by
weight-clipping, i.e. w = [—¢, €]% (Arjovsky et al., 2017).!

3. Adversarially Regularized Autoencoder

ARAE combines a discrete autoencoder with a GAN-
regularized latent representation. The full model is shown
in Figure 1, which produces a learned distribution over the
discrete space IPy,. Intuitively, this method aims to provide
smoother hidden encoding for discrete sequences with a
flexible prior. In the next section we show how this sim-
ple network can be formally interpreted as a latent variable
model under the Wasserstein autoencoder framework.

The model consists of a discrete autoencoder regularized
with a prior distribution,

%111/{1 »Crec((z)a 7/’) =+ )‘(I)W(PQ»PZ)

)

Here W is the Wasserstein distance between [P, the distri-
bution from a discrete encoder model (i.e. ency(x) where
x ~ P,), and P,, a prior distribution. As above, the W func-
tion is computed with an embedded critic function which is
optimized adversarially to the generator and encoder.”

The model is trained with coordinate descent across: (1)
the encoder and decoder to minimize reconstruction, (2) the

critic function to approximate the W term, (3) the encoder
adversarially to the critic to minimize W:

Dmin - Lue($,9) = Exnr, [~ logpy (x|ency(x))]

2)max  Lei(w) = Ex~p, [fulence(x))] — Eznr, [fu(2)]
3) m(gn »Cenc((b) = EXN]P’* [fw (enc¢(x))] - EZN]PZ [fw(i)}

The full training algorithm is shown in Algorithm 1.
Empirically we found that the choice of the prior distribu-

tion [P, strongly impacted the performance of the model.
The simplest choice is to use a fixed distribution such as
a Gaussian N(0, I'), which yields a discrete version of the
adversarial autoencoder (AAE). However in practice this
choice is seemingly too constrained and suffers from mode-
collapse.’

Instead we exploit the adversarial setup and use learned
prior parameterized through a generator model. This is
analogous to the use of learned priors in VAEs (Chen et al.,
2017; Tomczak & Welling, 2018). Specifically we introduce
a generator model, gg(s) over noise s ~ A/(0, I) to act as an

"While we did not experiment with enforcing the Lipschitz
constraint via gradient penalty (Gulrajani et al., 2017) or spectral
normalization (Miyato et al., 2018), other researchers have found
slight improvements by training ARAE with the gradient-penalty
version of WGAN (private correspondence).

2Other GANs could be used for this optimization. Experimen-
tally we found that WGANS to be more stable than other models.

3We note that recent work has successfully utilized AAE for
text by instead employing a spherical prior (Cifka et al., 2018).
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Figure 1: ARAE architecture. A discrete sequence x is encoded
and decoded to produce X. A noise sample s is passed though a
generator gg (possibly the identity) to produce a prior. The critic
function f, is only used at training to enforce regularization W'.
The model produce discrete samples x from noise s. Section 5
relates these samples x ~ Py, to x ~ P,.

Algorithm 1 ARAE Training

for each training iteration do
(1) Train the encoder/decoder for reconstruction (¢, 1))
Sample {x(V}™, ~ P, and compute z() = enc,(x")
Backprop loss, Lree = — = >0 log py (x| )
(2) Train the critic (w)
Sample {x(V}™ | ~ P, and {s'V}7, ~ N(0,1)
Compute z9 = ency(xV) and 2V = g4(2z?)
Backprop loss — = 37, fu(a) + £ 02, fu(39)
Clip critic w to [—¢, €]%.

(3) Train the encoder/generator adversarially (¢, 0)
Sample {xV}™ | ~ P, and {sV}7, ~ N(0,1)
Compute z9 = ency(x?) and 2V = gy(sV).

Backprop loss 7 357 fu(2) = 5 37, fu(2)
end for

implicit prior distribution P,.* We optimize its parameters
0 as part of training in Step 3.

Algorithm 2 ARAE Transfer Extension

Each loop additionally:
(2b) Train attribute classifier (u)
Sample {x(V}™ | ~ P,, lookup y(*), and compute z(*) =
ency(x() o
Backprop loss —- 3" log p,, (y?]z())

m

(3b) Train the encoder adversarially (¢)

Sample {x(V}™ | ~ P,, lookup y(?), and compute z(*) =
ency(x) -
Backprop loss —2 3™ log p, (1 — y® | 2())

m

Extension: Unaligned Transfer Regularization of the la-
tent space makes it more adaptable for direct continuous
optimization that would be difficult over discrete sequences.
For example, consider the problem of unaligned transfer,

“The downside of this approach is that the latent variable z is
now much less constrained. However we find experimentally that
using a a simple MLP for gp significantly regularizes the encoder
RNN.

where we want to change an attribute of a discrete input
without aligned examples, e.g. to change the topic or senti-
ment of a sentence. Define this attribute as y and redefine
the decoder to be conditional py (x | z, y).

To adapt ARAE to this setup, we modify the objective to
learn to remove attribute distinctions from the prior (i.e.
we want the prior to encode all the relevant information
except about y). Following similar techniques from other
domains, notably in images (Lample et al., 2017) and video
modeling (Denton & Birodkar, 2017), we introduce a latent
space attribute classifier:

Lrec(6,1) + XOW (P, B,) — AP Lojuss (¢, 1)

min
where Leass (0, u) is the loss of a classifier p, (y | z) from
latent variable to labels (in our experiments we always set
A(2) = 1). This requires two more update steps: (2b) train-
ing the classifier, and (3b) adversarially training the encoder
to this classifier. This algorithm is shown in Algorithm 2.

4. Theoretical Properties

Standard GANs implicitly minimize a divergence measure
(e.g. f-divergence or Wasserstein distance) between the
true/model distributions. In our case however, we implicitly
minimize the divergence between learned code distributions,
and it is not clear if this training objective is matching the
distributions in the original discrete space. Tolstikhin et al.
(2018) recently showed that this style of training is minimiz-
ing the Wasserstein distance between the data distribution
IP, and the model distribution P, with latent variables (with

density py (x) = [ py(x| z) p(z) dz).

In this section we apply the above result to the discrete case
and show that the ARAE loss minimizes an upper bound on
the total variation distance between P, and Py,.

Definition 1 (Kantorovich’s formulation of optimal trans-
port). Let P, P, be distributions over X, and further let
c(x,y) : X x X — R* be a cost function. Then the optimal
transport (OT) problem is given by

W.(P,,P,) = inf

Ex y~r|c(x,
FeP(xPu,y~Py) Y rle(x,y)]

where P(x ~ P,y ~ Py) is the set of all joint distribu-
tions of (x,y) with marginals P, and P.

In particular, if ¢(x,y) = [|x — y||? then W,(P,,P,)7
is the Wasserstein-p distance between P, and Py. Now
suppose we utilize a latent variable model to fit the data, i.e.
z ~ P, x ~ Py (x| z). Then Tolstikhin et al. (2018) prove
the following theorem:

Theorem 1. Let Gy : Z — X be a deterministic func-
tion (parameterized by 1) from the latent space Z to data
space X that induces a dirac distribution Py (x | z) on
X, ie py(x|z) = 1{x = Gy(z)}. Let Q(z | x) be
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any conditional distribution on Z with density pg(z | x).
Define its marginal to be Pg, which has density pg(x) =

[ pa(z | ) pu(x)dx. Then,

W,(P,,P,) =  inf
( * 7/)) Q(z | x):Po=P,

Ep, Eq(z | x)lc(x, Gy (2))]
Theorem 1 essentially says that learning an autoencoder can
be interpreted as learning a generative model with latent vari-
ables, as long as we ensure that the marginalized encoded
space is the same as the prior. This provides theoretical justi-
fication for adversarial autoencoders (Makhzani et al., 2015),
and Tolstikhin et al. (2018) used the above to train deep gen-
erative models of images by minimizing the Wasserstein-2
distance (i.e. squared loss between real/generated images).
We now apply Theorem 1 to discrete autoencoders trained
with cross-entropy loss.

Corollary 1 (Discrete case). Suppose x € X where X
is the set of all one-hot vectors of length n, and let fy :
Z — A" be a deterministic function that goes from the
latent space Z to the n — 1 dimensional simplex A",
Further let Gy, : Z — X be a deterministic function such
that G, (z) = argmaxy,cy W' fy(2), and as above let
Py (x | z) be the dirac distribution derived from G, such
that py,(x | z) = 1{x = Gy(2z)}. Then the following is an
upper bound on |Py, — P,||1v, the total variation distance
between P, and P:

inf ]EIP’*EQ(z | x) [ -

1 T
Q(z | x):Pg=P, 08X fw (Z)

log 2

The proof is in Appendix A. For natural language we have
n = |V|™ and therefore X is the set of sentences of length
m, where m is the maximum sentence length (shorter sen-
tences are padded if necessary). Then the total variational
(TV) distance is given by

1
By = Pullry = 5 D Ipe(x) = ()]
xeym

This is an interesting alternative to the usual maximum
likelihood approach which instead minimizes KL(P,,P,).
It is also clear that —logx " f,(z) = — log py(x | z), the
standard autoencoder cross-entropy loss at the sentence level
with fy as the decoder. As the above objective is hard to
minimize directly, we follow Tolstikhin et al. (2018) and
consider an easier objective by (i) restricting Q(z | x) to a
family of distributions induced by a deterministic encoder
parameterized by ¢, and (ii) using a Langrangian relaxation
of the constraint P = P,. In particular, letting Q(z | x) =
1{z = ency(x)} be the dirac distribution induced by a
deterministic encoder (with associated marginal Py), the
objective is given by

>The relationship between KL-divergence and total variation
distance is also given by Pinsker’s inquality, which states that
2|[Py — Pulltv < KL(Ps, Py).

I;lldljl Ep, [—logpy(x | encg(z))] + AW (Py, Py,)

)

Note that our minimizing the Wasserstein distance in the
latent space W (P4, P,) is independent from the Wassertein
distance minimization in the output space in WAEs. Finally,
instead of using a fixed prior (which led to mode-collapse
in our experiments) we parameterize [P, implicitly by trans-
forming a simple random variable with a generator (i.e.
s ~ N(0,1),z = gy(s)). This recovers the ARAE objec-
tive from the previous section.

We conclude this section by noting that while the theoretical
formalization of the AAE as a latent variable model was an
important step, in practice there are many approximations
made to the actual optimal transport objective. Meaning-
fully quantifying (and reducing) such approximation gaps
remains an avenue for future work.

5. Methods and Architectures

We experiment with ARAE on three setups: (1) a small
model using discretized images trained on the binarized
version of MNIST, (2) a model for text sequences trained
on the Stanford Natural Language Inference (SNLI) corpus
(Bowman et al., 2015), and (3) a model trained for text
transfer trained on the Yelp/Yahoo datasets for unaligned
sentiment/topic transfer. For experiments using a learned
prior, the generator architecture uses a low dimensional s
with a Gaussian prior s ~ A(0,I), and maps it to z using
an MLP gy. The critic f,, is also parameterized as an MLP.

The image model encodes/decodes binarized images. Here
X = {0,1}" where n is the image size. The encoder
used is an MLP mapping from {0, 1}" — R™, ency(x) =
MLP(x;¢) = z. The decoder predicts each pixel in x
with as a parameterized logistic regression, py(x | z) =
[1j-, o(h)* (1 — o(h))'~*s where h = MLP(z; ).

The text model uses a recurrent neural network (RNN) for
both the encoder and decoder. Here X = V" where n is the
sentence length and V is the vocabulary of the underlying
language. We define enc,(x) = z to be the last hidden
state of an encoder RNN. For decoding we feed z as an
additional input to the decoder RNN at each time step, and
calculate the distribution over V at each time step via soft-
max, py(x | z) = []j_, softmax(Wh; + b),, where W
and b are parameters (part of ) and h; is the decoder RNN
hidden state. To be consistent with Corollary 1 we need to
find the highest-scoring sequence X under this distribution
during decoding, which is intractable in general. Instead
we approximate this with greedy search. The text transfer
model uses the same architecture as the text model but ex-
tends it with a classifier p,, (y | z) which is modeled using
an MLP and trained to minimize cross-entropy.

We further compare our approach with a standard autoen-
coder (AE) and the cross-aligned autoencoder (Shen et al.,
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Figure 2: Image samples. The top block shows output generation
of the decoder for random noise samples; the bottom block shows
sample interpolation results.

Data Reverse PPL  Forward PPL
Real data 27.4 -
LM samples 90.6 18.8
AE samples 97.3 87.8
ARAE samples 82.2 44.3

Table 1: Reverse PPL: Perplexity of language models trained on
the synthetic samples from a ARAE/AE/LM, and evaluated on real
data. Forward PPL: Perplexity of a language model trained on real
data and evaluated on synthetic samples.

2017) for transfer. In both our ARAE and standard AE
experiments, the encoder output is normalized to lie on the
unit sphere, and the generator output is bounded to lie in
(=1,1)™ by the tanh function at output layer.

Note, learning deep latent variable models for text sequences
has been a significantly more challenging empirical problem
than for images. Standard models such as VAEs suffer from
optimization issues that have been widely documented. We
performed experiments with recurrent VAE, introduced by
(Bowman et al., 2016), as well as the adversarial autoen-
coder (AAE) (Makhzani et al., 2015), both with Gaussian
priors. We found that neither model was able to learn mean-
ingful latent representations—the VAE simply ignored the
latent code and the AAE experienced mode-collapse and
repeatedly generated the same samples.® Appendix F in-
cludes detailed descriptions of the hyperparameters, model
architecture, and training regimes.

6. Experiments

6.1. Distributional Coverage

Section 4 argues that [Py, is trained to approximate the true
data distribution over discrete sequences P,. While it is
difficult to test for this property directly (as is the case with
most GAN models), we can take samples from model to test
the fidelity and coverage of the data space. Figure 2 shows
a set of samples from discretized MNIST and Appendix C
shows a set of generations from the text ARAE.

A common quantitative measure of sample quality for gener-
ative models is to evaluate a strong surrogate model trained
on its generated samples. While there are pitfalls of this
style of evaluation methods (Theis et al., 2016), it has pro-

SHowever there have been some recent successes training such
models, as noted in the related works section

Positive great indoor mall .

= ARAE no smoking mall .

=> Cross-AE terrible outdoor urine .

Positive it has a great atmosphere , with wonderful service .

= ARAE it has no taste , with a complete jerk .

=> Cross-AE it has a great horrible food and run out service .

Positive we came on the recommendation of a bell boy and the food was amazing .
= ARAE we came on the recommendation and the food was a joke .

=> Cross-AE we went on the car of the time and the chicken was awful .

Negative hell no !

= ARAE hell great !

= Cross-AE incredible pork !

Negative small , smokey , dark and rude management .

= ARAE small , intimate , and cozy friendly staff .

= Cross-AE great , , , chips and wine .

Negative the people who ordered off the menu did n’t seem to do much better .
= ARAE the people who work there are super friendly and the menu is good .
=> Cross-AE the place , one of the office is always worth you do a business .

Table 2: Sentiment transfer results, where we transfer from posi-
tive to negative sentiment (Top) and negative to positive sentiment
(Bottom). Original sentence and transferred output (from ARAE
and the Cross-Aligned AE (from Shen et al. (2017)) of 6 randomly-
drawn examples.

vided a starting point for image generation models. Here
we use a similar method for text generation, which we call
reverse perplexity. We generate 100k samples from each
of the models, train an RNN language model on generated
samples and evaluate perplexity on held-out data.” While
similar metrics for images (e.g. Parzen windows) have been
shown to be problematic, we argue that this is less of an
issue for text as RNN language models achieve state-of-the-
art perplexities on text datasets. We also calculate the usual
“forward” perplexity by training an RNN language model on
real data and testing on generated data. This measures the
fluency of the generated samples, but cannot detect mode-
collapse, a common issue in training GANs (Arjovsky &
Bottou, 2017; Hu et al., 2018).

Table 1 shows these metrics for (i) ARAE, (ii) an autoen-
coder (AE),? (iii) an RNN language model (LM), and (iv)
the real training set. We further find that with a fixed
prior, the reverse perplexity of an AAE-style text model
(Makhzani et al., 2015) was quite high (980) due to mode-
collapse. All models are of the same size to allow for fair
comparison. Training directly on real data (understand-
ably) outperforms training on generated data by a large
margin. Surprisingly however, training on ARAE samples
outperforms training on LM/AE samples in terms of reverse

perplexity.
6.2. Unaligned Text Style Transfer

Next we evaluate the model in the context of a learned adver-
sarial prior, as described in Section 3. We experiment with
two unaligned text transfer tasks: (i) transfer of sentiment on
the Yelp corpus, and (ii) topic on the Yahoo corpus (Zhang

"We also found this metric to be helpful for early-stopping.

8To “sample” from an AE we fit a multivariate Gaussian to
the code space after training and generate code vectors from this
Gaussian to decode back into sentence space.
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Automatic Evaluation Scie;\t/l[ce. w}}:al %s an ev;m hgdzqn with r_e&ar&is to blzticlk h;)les ?
= Music what is your favorite sitcom with adam sandler ?
Model Transfer BLEU Forward Reverse => Politics what is an event with black people ?
Cross—Aligned AE 77.1% 17.75 65.9 124.2 Science take 1ml of hcl ( concentrated ) and dilute it to 50ml .
AE 59.3% 37.28 31.9 68.9 = Mu:xic take em to you and shout it to me
(1) = Politics take bribes to islam and it will be punished .
ARAE, A\, 73.4% 31.15 29.7 70.1
(1) Science just multiply the numerator of one fraction by that of the other .
ARAE, Ab 81.8% 20.18 27.7 77.0 = Music just multiply the fraction of the other one that &apos;s just like it .
=> Politics just multiply the same fraction of other countries .
Human Evaluation Mussic. go you l]znnw a wetsile t:at you };:dln find pé(;‘plelwho v\?/anl to join bands ?
. L . o = Science o you know a website that can help me with science ?
Model Transfer Slmllarlty Naturalness => Politics do you think that you can find a person who is in prison ?
CfOSS-Aligned AE 57% 3.8 2.7 Music all three are fabulous artists , with just incredible talent ! !
(1) => Science all three are genetically bonded with water , but just as many substances ,
ARAE’ )\b 4% 3.7 3.8 are capable of producing a special case .
=> Politics all three are competing with the government , just as far as i can .
Table 3: Sentiment transfer. (Top) Automatic metrics (Trans- Musi ot th ¢ can &eaoset think of !
usic ut there are so many more i can &apos;t think of !
fer/BLEU/Forward PPL/Reverse PPL), (Bottom) Human evalua- => Science but there are so many more of the number of questions .
tion metrics (Transfer/Similarity/Naturalness). Cross-Aligned AE = Politics  but there are so many more of the can i think of today .
is from Shen et al. (2017) Politics republicans : would you vote for a cheney / satan ticket in 2008 ?
=> Science guys : how would you solve this question ?
. = Music guys : would you rather be a good movie ?
et al., 2015). For sentiment we follow the setup of Shen et al.
(2017) and split the Yelp corpus into two sets of unaligned Polities 4 years of an idiot in office + electing the idiot again =7
. i . . i = Science 4 years of an idiot in the office of science ?
positive and negative reviews. We train ARAE with two = Music 4) <unk> in an idiot , the idiot is the best of the two points ever !
Separate decoder RNNS, one fOl‘ pOSlthe, p(X ‘ z,Y = 1 ) 5 Politics anyone who doesnt have a billion dollars for all the publicity cant win .
: : _ : => Science anyone who doesnt have a decent chance is the same for all the other .
and one for negatlve sentiment p(X | Z,Yy = 0) ’ and Incorpo = Music anyone who doesnt have a lot of the show for the publicity .

rate adversarial training of the encoder to remove sentiment
information from the prior. Transfer corresponds to encod-
ing sentences of one class and decoding, greedily, with the
opposite decoder. Experiments compare against the cross-
aligned AE of Shen et al. (2017) and also an AE trained
without the adversarial regularization. For ARAE, we exper-
imented with different \(!) weighting on the adversarial loss
(see section 4) with /\511) =1, /\l()l) = 10. Both use A(?) = 1.
Empirically the adversarial regularization enhances trans-
fer and perplexity, but tends to make the transferred text
less similar to the original, compared to the AE. Randomly
selected example sentences are shown in Table 2 and addi-
tional outputs are available in Appendix G.

Table 3 (top) shows quantitative evaluation. We use four
automatic metrics: (i) Transfer: how successful the model
is at altering sentiment based on an automatic classifier
(we use the fastText library (Joulin et al., 2017)); (ii)
BLEU: the consistency between the transferred text and the
original; (iii) Forward PPL: the fluency of the generated
text; (iv) Reverse PPL: measuring the extent to which the
generations are representative of the underlying data distri-
bution. Both perplexity numbers are obtained by training
an RNN language model. Table 3 (bottom) shows human
evaluations on the cross-aligned AE and our best ARAE
model. We randomly select 1000 sentences (500/500 posi-
tive/negative), obtain the corresponding transfers from both
models, and ask crowdworkers to evaluate the sentiment
(Positive/Neutral/Negative) and naturalness (1-5, 5 being
most natural) of the transferred sentences. We create a sepa-
rate task in which we show the original and the transferred
sentences, and ask them to evaluate the similarity based on
sentence structure (1-5, 5 being most similar). We explicitly
requested that the reader disregard sentiment in similarity

Table 4: Topic Transfer. Random samples from the Yahoo dataset.
Note the first row is from ARAE trained on titles while the follow-
ing ones are from replies.

Model Medium  Small Tiny

Supervised Encoder 65.9% 62.5% 57.9%
Semi-Supervised AE 68.5% 64.6% 59.9%
Semi-Supervised ARAE ~ 70.9% 66.8% 62.5%

Table 5: Semi-Supervised accuracy on the natural language infer-
ence (SNLI) test set, respectively using 22.2% (medium), 10.8%
(small), 5.25% (tiny) of the supervised labels of the full SNLI
training set (rest used for unlabeled AE training).

assessment.

The same method can be applied to other style transfer
tasks, for instance the more challenging Yahoo QA data
(Zhang et al., 2015). For Yahoo we chose 3 relatively dis-
tinct topic classes for transfer: SCIENCE & MATH, ENTER-
TAINMENT & MUSIC, and POLITICS & GOVERNMENT.
As the dataset contains both questions and answers, we sep-
arated our experiments into titles (questions) and replies
(answers). Randomly-selected generations are shown in Ta-
ble 4. See Appendix G for additional generation examples.

6.3. Semi-Supervised Training

Latent variable models can also provide an easy method
for semi-supervised training. We use a natural language in-
ference task to compare semi-supervised ARAE with other
training methods. Results are shown in Table 5. The full
SNLI training set contains 543k sentence pairs, and we use
supervised sets of 120k (Medium), 59k (Small), and 28k
(Tiny) and use the rest of the training set for unlabeled train-
ing. As a baseline we use an AE trained on the additional
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Figure 3: Left: /> norm of encoder output z and generator output z during ARAE training. (z is normalized, whereas the generator learns
to match). Middle: Sum of the dimension-wise variances of z and generator codes z as well as reference AE. Right: Average cosine
similarity of nearby sentences (by word edit-distance) for the ARAE and AE during training.

Model Samples
k  AE ARAE

Original A woman wearing sunglasses
0 1.06 2.19 Noised A woman sunglasses wearing

AE A woman sunglasses wearing sunglasses
1 451 4.07 ARAE A woman wearing sunglasses
2 66l 3.39 Original ~ Pets galloping down the street

riginal ets galloping down the streef

3 9.14 6.86 Noised Pets down the galloping street
4 997 7.47 AE Pets riding the down galloping

ARAE Pets congregate down the street near a ravine

Figure 4: Reconstruction error (negative log-likelihood averaged
over sentences) of the original sentence from a corrupted sentence.
Here k is the number of swaps performed on the original sentence.

data, similar to the setting explored in Dai & Le (2015).
For ARAE we use the subset of unsupervised data of length
< 15 (i.e. ARAE is trained on less data than AE for unsuper-
vised training). The results are shown in Table 5. Training
on unlabeled data with an AE objective improves upon a
model just trained on labeled data. Training with adversarial
regularization provides further gains.

7. Discussion

Impact of Regularization on Discrete Encoding We
further examine the impact of adversarial regularization
on the encoded representation produced by the model as
it is trained. Figure 3 (left), shows a sanity check that the
{5 norm of encoder output z and prior samples z converge
quickly in ARAE training. The middle plot compares the
trace of the covariance matrix between these terms as train-
ing progresses. It shows that variance of the encoder and
the prior match after several epochs.

Smoothness and Reconstruction We can also assess the
“smoothness” of the encoder model learned ARAE (Rifai
et al., 2011). We start with a simple proxy that a smooth
encoder model should map similar sentences to similar z
values. For 250 sentences, we calculate the average co-
sine similarity of 100 randomly-selected sentences within
an edit-distance of at most 5 to the original. The graph in
Figure 3 (right) shows that the cosine similarity of nearby
sentences is quite high for ARAE compared to a standard
AE and increases in early rounds of training. To further test
this property, we feed noised discrete input to the encoder
and (i) calculate the score given to the original input, and

(ii) compare the resulting reconstructions. Figure 4 (right)
shows results for text where k£ words are first permuted in
each sentence. We observe that ARAE is able to map a
noised sentence to a natural sentence (though not necessar-
ily the denoised sentence). Figure 4 (left) shows empirical
results for these experiments. We obtain the reconstruction
error (negative log likelihood) of the original non-noised
sentence under the decoder, utilizing the noised code. We
find that when k& = 0 (i.e. no swaps), the regular AE better
reconstructs the exact input. However, as the number of
swaps pushes the input further away, ARAE is more likely
to produce the original sentence. (Note that unlike denois-
ing autoencoders which require a domain-specific noising
function (Hill et al., 2016; Vincent et al., 2008), the ARAE
is not explicitly trained to denoise an input.)

Manipulation through the Prior An interesting property
of latent variable models such as VAEs and GANSs is the
ability to manipulate output samples through the prior. In
particular, for ARAE, the Gaussian form of the noise sam-
ple s induces the ability to smoothly interpolate between
outputs by exploiting the structure. While language models
may provide a better estimate of the underlying probability
space, constructing this style of interpolation would require
combinatorial search, which makes this a useful feature of
latent variable text models. In Appendix D we show inter-
polations from for the text model, while Figure 2 (bottom)
shows the interpolations for discretized MNIST ARAE.

A related property of GANS is the ability to move in the
latent space via offset vectors.” To experiment with this
property we generate sentences from the ARAE and com-
pute vector transforms in this space to attempt to change
main verbs, subjects and modifier (details in Appendix E).
Some examples of successful transformations are shown in
Figure 5 (bottom). Quantitative evaluation of the success of
the vector transformations is given in Figure 5 (top).

°Similar to the case with word vectors (Mikolov et al., 2013),
Radford et al. (2016) observe that when the mean latent vector
for “men with glasses” is subtracted from the mean latent vector
for “men without glasses” and applied to an image of a “woman
without glasses”, the resulting image is that of a “woman with
glasses”.
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Transform Match % Prec

walking 85 79.5
man 92 80.2
two 86 74.1
dog 88 71.0
standing 89 79.3
several 70 67.0

A man in a tie is sleeping and clapping on balloons . = walking
A man in a tie is clapping and walking dogs .

The jewish boy is trying to stay out of his skateboard . = man
The jewish man is trying to stay out of his horse .

Some child head a playing plastic with drink . =Two
Two children playing a head with plastic drink .

The people shine or looks into an area . =>dog
The dog arrives or looks into an area .

A women are walking outside near a man . =standing
Three women are standing near a man walking .

A side child listening to a piece with steps playing on a table . =>Several

Several child playing a guitar on side with a table .

Figure 5: Top: Quantitative evaluation of transformations. Match
% refers to the % of samples where at least one decoder samples
(per 100) had the desired transformation in the output, while Prec.
measures the average precision of the output against the original
sentence. Bottom: Examples where the offset vectors produced
successful transformations of the original sentence. See Appendix
E for the full methodology.

8. Related Work

While ideally autoencoders would learn latent spaces which
compactly capture useful features that explain the observed
data, in practice they often learn a degenerate identity map-
ping where the latent code space is free of any structure,
necessitating the need for some regularization on the la-
tent space. A popular approach is to regularize through an
explicit prior on the code space and use a variational approx-
imation to the posterior, leading to a family of models called
variational autoencoders (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014). Unfortunately VAEs for discrete text
sequences can be challenging to train—for example, if the
training procedure is not carefully tuned with techniques
like word dropout and KL annealing (Bowman et al., 2016),
the decoder simply becomes a language model and ignores
the latent code. However there have been some recent suc-
cesses through employing convolutional decoders (Yang
et al., 2017; Semeniuta et al., 2017), training the latent rep-
resentation as a topic model (Dieng et al., 2017; Wang et al.,
2018), using the von Mises—Fisher distribution (Guu et al.,
2017), and combining VAE with iterative inference (Kim
et al., 2018). There has also been some work on making
the prior more flexible through explicit parameterization
(Chen et al., 2017; Tomczak & Welling, 2018). A notable
technique is adversarial autoencoders (AAE) (Makhzani
et al., 2015) which attempt to imbue the model with a more
flexible prior implicitly through adversarial training. Recent
work on Wasserstein autoencoders (Tolstikhin et al., 2018)
provides a theoretical foundation for the AAE and shows
that AAE minimizes the Wasserstein distance between the
data/model distributions.

The success of GANs on images have led many researchers
to consider applying GANSs to discrete data such as text.
Policy gradient methods are a natural way to deal with the
resulting non-differentiable generator objective when train-
ing directly in discrete space (Glynn, 1987; Williams, 1992).
When trained on text data however, such methods often re-
quire pre-training/co-training with a maximum likelihood
(i.e. language modeling) objective (Che et al., 2017; Yu
et al., 2017; Li et al., 2017). Another direction of work
has been through reparameterizing the categorical distri-
bution with the Gumbel-Softmax trick (Jang et al., 2017;
Maddison et al., 2017)—while initial experiments were en-
couraging on a synthetic task (Kusner & Hernandez-Lobato,
2016), scaling them to work on natural language is a chal-
lenging open problem. There have also been recent related
approaches that work directly with the soft outputs from
a generator (Gulrajani et al., 2017; Rajeswar et al., 2017;
Shen et al., 2017; Press et al., 2017). For example, Shen
et al. (2017) exploits adversarial loss for unaligned style
transfer between text by having the discriminator act on the
RNN hidden states and using the soft outputs at each step
as input to an RNN generator. Our approach instead works
entirely in fixed-dimensional continuous space and does not
require utilizing RNN hidden states directly. It is therefore
also different from methods that discriminate in the joint
latent/data space, such as ALI (Vincent Dumoulin, 2017)
and BiGAN (Donahue et al., 2017). Finally, our work adds
to the recent line of work on unaligned style transfer for
text (Hu et al., 2017; Mueller et al., 2017; Li et al., 2018;
Prabhumoye et al., 2018; Yang et al., 2018).

9. Conclusion

We present adversarially regularized autoencoders (ARAE)
as a simple approach for training a discrete structure au-
toencoder jointly with a code-space generative adversarial
network. Utilizing the Wasserstein autoencoder framework
(Tolstikhin et al., 2018), we also interpret ARAE as learning
a latent variable model that minimizes an upper bound on the
total variation distance between the data/model distributions.
We find that the model learns an improved autoencoder and
exhibits a smooth latent space, as demonstrated by semi-
supervised experiments, improvements on text style transfer,
and manipulations in the latent space.

We note that (as has been frequently observed when training
GANS5s) the proposed model seemed to be quite sensitive to
hyperparameters, and that we only tested our model on sim-
ple structures such as binarized digits and short sentences.
Cifka et al. (2018) recently evaluated a suite of sentence
generation models and found that models are quite sensitive
to their training setup, and that different models do well
on different metrics. Training deep latent variable models
that can robustly model complex discrete structures (e.g.
documents) remains an important open issue in the field.
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