Composite Marginal Likelihood Methods for Random Utility Models

Appendix: Proofs

Lemma 1 Let f ( ) be a continuously stricily log-concave differentiable probability density function with support
(=00, +0). f ft)dt is strictly log-concave.

Proof: The proof is slightly modified from (Bagnoli & Bergstrom, 2005). We will prove Pk _ 4 (

Ox2
M < 0. Since F(z) > 0, we only need to prove f'(z)F(z) — f(z)? < 0.

dlnd‘z( 2) is decreasing for any = € R. So we have £ j( ) 2 F(z) =

Pl 7 fdt < [7 5L p(tdt = f(z) = lima o f(2) = f(2).

This proves the lemma. u
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Because f(z) is strictly log-concave, we have that

||v

Lemma 2 For any alternatives a;, a;: with distributions 7;, m > 0 defined on (—o00, +00), we deﬁne L =0; —0; and let

i () denote the probability of a; - a; given 7; and 7. For any € > 0, there exists L s.1. |dp“’(9) l, |6p“(9) | <e

— —

Proof: Because p;;/(0) + p;7;(6) = 1, forany 1 <1 < m, we have

Opisr (5) + Opiri (5)
00, 06,

=0 ®)

319“/ (9) | =| 3291'

So we have | 1(9) |. We only need to prove | Opss S

<e.

—

Let ;; = 0 and §; = L. This is without loss of generality because p;;s (f) remains the same under parameter shifts. Let u;
and u;, denote the sampled utilities. We have

—

pis (8) = pisr (L) = Pr(us > up|f) = / R / i — D)dwda’ = / R / T (@) dads!

—o00 ’ —o00 '—L

: o - - / Op;ir(0) _ dp;y(L) OL _ dp“/w)
When L increases, ft,_ 7 T (x)dx increases given any 2’. So we have be - = UL o0 — 4 > 0. On the other

hand, because 0 < p;; (L) < 1 we have f_Jr;O dpii"i’L(L)dL = Piir (L)] oo — Pisr (L)] —0o < 1.

f’p“

Therefore, for any ¢, any interval I whose length is 1/¢, we clalm there exists an L s.t. < e. The reason is as follows.

Suppose forall L € I, 65’(;; > ¢ holds. Then we have f+°° dp” Dar > Ik dl’u'(L dL > f] edL = e x t =1, whichisa
contradiction. |

Lemma 3 For any alternatives a;, a; with distributions 7;, 7;; > 0 defined on (—oo, +00). Define L = 0; — 0,,. For any
€ > 0, there exists L s.t.

— —

|Fm/wiz" Opiir(0)  Rirswir; Opiri(0)
pii’(g) 90, pm'(g) 00;

| <e

Proof: Let max{G} denote the maximum weight on the edges of G. Since @ is upper bounded by max{G} and w;; is

Llfa)/ “""(”(;/)L }and € = 55;. By Lemma 2 there exists L s.t. |3p“/(9)| |ap, 10) | <¢. Then
Rirwigr 0piyr (6) | Ryrgwyrg 9171 7 ALY 8117”'(9) Ryrywyr Opiri (6) —
i + <€ x2M =€ |
pir(6) 00 piri(0) P (0) | pyri () 00 |

Lemma 4 For any pair of alternatives a; and a; with equal weights w;;; = w;;, if 0; = 6,1, then we have

Riowip Opiy (0) | Farwyr; Opi(0)
pn"(g) 90, pi’i(§> 9

— —

Proof: Since 6; = 0,,, we have p;;»(0) = py;(0) and R;;r = Fy;, the lemma follows from (8). [ |
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Lemma 5 Let G* be the graph obtained by labeling the vertices of G reversely, M* be the model obtained by flipping all of
the utility distributions of M around their means, and YW* be the weight vector where w};, = w;:;. For any RUM M, if
RBCML(G, W) is consistent for M, then RBCML(G*, W*) is consistent for M*.

Proof: By Theorem 5, we only need to prove the solution to RBCML(G, W), which is the ground truth, is the only
solution to RBCML(G*, W*). Due to strict concavity, RBCML(G*, W*) does not have multiple solutions. So we only need
to prove the solution to RBCML(G, W) is the solution to RBCML(G*, W*).

For any i € {1,...,m} and any 6, (7) holds. Since M* is flipped M, for any ranking R, we have Pr(R|0) =
Praq(rev(R)|6), where rev(R) is the reverse of R. Therefore, for any pair of alternatives a and a/, a > o’ € G*(R) if and
only if ' > a € G(rev(R)).

Then for any ¢ € {1,...,m}, we have
3 Rii/w:i/ 8}’;/ (5) K:z zw 4 apz 1( ) Hz iWig 8pz 1(&) KZ”/U}“ 6pu (5)
iz Pin(0) ¢ Py (0) i Iy piri(0) pir (0)
This finishes the proof of the lemma. n

Lemma 6 Let G, 1,) denote the subgraph G restricted to nodes between ki and ky (inclusive). For any RUM M, if
RBCML(G,W,) is consistent, then for any 1 < ky < ko < m, RBCML(Gyi, i,), Wu) is either empty or consistent for
ko — k1 + 1 alternatives.

Proof: ~ We prove that if RBCML(G[x, x,], Wa) is not consistent then RBCML(G, W, ) is not consistent. Suppose
RBCML(Gx, k], Wu) is not consistent. For convenience we keep the index of G in i, ,) and let M’ denote the model
with the ko — k1 + 1 alternatives. Then there exists 6; where k1 < 7 < kg s.t.

7 Kiir Wiz Opggy 0)  Riiwii Opiri
VELLW@ =] Y (e Oell) s 89”>|—c>0
ko <it <hg,iri Pii (0) i piri(6)
We now construct other elements in 6§ to show that RBCML(G, W,) is not consistent. We let ; = ... = 0,1 = L and
Ok, + 1 =... =0, = —L. Then when L — oo, with probability that goes to 1, a1, ..., ax,—1 are ranked in the top k1 — 1
positions and ag,41, - - . , G, are ranked in the bottom m — kg positions.
Ry wiy 0Py (0) RiriWir; Ap;r;(6) C

By Lemma 3 for any k; < ) paei ) pae )| < -=. Then
we have |V;ELL v((6)| > [V;ELL ¢ (0)] — (m — (ky — ky 4 1)) € = Ba=hithi@ o sO we have V,ELL () #
RBCML(G, W,) is thus not consistent. u

Lemma 7 For any m > 3, RBCML(G,W,) for the Plackett-Luce model is not consistent if G = {g1,m = C}, where C > 0
is a constant.

Proof: It suffices to prove RBCML(G, W,) for the Plackett-Luce model is not consistent if G = {g1,, = 1}. We prove
this lemma by constructing a counter-example Let 91 =g and 0y = = 0,, = 0. For any ranking R; with alternative

ay at top, the probability is Pr(R1|9) ml i m For any ranking Ry with a; at bottom, the probability is

Pr(R|0) = (- For any a; where 2 < i < m, we have fy; = (m — 1)! Pr(R;|0) and 7jy = (m — 1)! Pr(R,|0).
k=1 (€7
0 = = = &3 m—1)!
Therefore, we have V;ELLpy () = >, (Fiir — (Riir + ﬁm)e,—lﬂ) = (m =) (&5 — Hzé_ll(ez%)). Letz =1n2,
then we have V,;ELLpp (0) = nf(’;:;%) # 0. This proves the lemma. [ |

Lemma 8 For any m > 3, RBCML(G,W,) for any RUM location family with the same symmetric pdf is not consistent if
G = {g1m = C} where C > 0 is a constant.

Proof: Let 7 denote the PDF of the utility distribution for all alternatives with mean 0. That is, for any ¢ < m and any

x € R, we have ;(z) = m(x — 6;). Let B > 0 be an arbitrary number so that 1 — e > ffB m(x)dx > e. Let L be a large
number that will be specified later.
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We first prove the lemma for m = 3. Let §; = L and §, = 65 = 0. Since 6, = 03, we have Rl% Op12(0) Fa1_9p21(6) _

12(6) 001 p21(9") 964

Ri3_ Op13(0) R31_ Aps1(0) Pr(a; top and as bottom)
T o (B 00, . Due to (8), it suffices to prove — (9) #* o (9) which is equlvalent to Pr(ar—as) #*
P da;ib

r(a21;°rp(22>‘211)°n°m) That is psn-&-iii-&-plza + p321+£2§1+p2m where p123 is the short form of Pr(a; = a2 = a3). Because
P123 = p132 and pe3; = p321, we only need to prove ?fz #* g;il This is obvious because p312 = p213 but p132 7 pasi-
We now prove the lemma for any m > 4. Let6; = 6, = Land 03 = ... = 6, = 0. By Lemma 4 we have "1(29) 8”5;1(9) +

o1 Op21(0) _ ; Rii_ Ap1:(0) R 90 (0) Ry Op1m(9) Fm1_ OPm1(0)
oo ® 00 = 0. Forall 3 < i < m, we }jave (7 00, (D) 00 = (5) 50, TN . So we

0\ Rim  OP1m(0) Rmi1  OPm1(0 ) Rm1 : :
have V,ELL = (m — 2)(Lfam 22 L It suffices to prove —“1m — which is
v M( ) ( )(phn(e) 06, + prnl(a) 901 ) p ph”(g) p,ml(e)

Pr(a; top and a,,, bottom)
PI‘(U,l - am)

Pr(a,, top and a; bottom)
Pr(am - CL1)

4

(€))

Because L is large, Pr(a; top or as top) = 1. Because 7;’s have the same shape, we have that

Pr(a; top and a,,, bottom) =~ Pr(a; > as and a,, is ranked lower than a3, ..., amm_1)

Therefore, the LHS of (9) is 5 2) as L — oo. We will show that the RHS of (9) is converges to 0 as L — co. We define a
partition of {(u1, u,) : u1 < um} = S1 U Sy as follows.

e Sy ={(u1,um) : u1 < Bandu,, > L — B},
e S, = others.
We further define the following two functions 7 and 7* for u; < Uy,

(U1, Up) = 1 (U1) X T (Urn)
T (U1, U ) = 71 (W) X T (U)X H / () du;

It follows that

Pr(a,, top and a; bottom) fsl (w1, um) + fS (U1, um)

Pr(am - al) N fS (ulvum + fg ulaum)

(U, Uy
Claim 1 lim;_,.. Js, mlunsum) 0

fSZ ﬂ-(ulvum)
‘fsl 71'(11,1, um) - fl?iB 7Tm(um)dum

S m(ur, um) B fBL_B Tom (W ) dty,
to 0. The claim follows after observing that S C S. |

Proof: LetS = {(u1,um) : u; < B < u,, < L— B}. We have , which converges

UL, U,
Claim 2 lim, ., Joy i um) _

f52 (U1, Un)

Proof: For any (u1,u,) € Se, either uy > B or u,, < L — B. If u; > B, then

H / i(ui)du; < / " ot (1 )ty < / Tm—1(Um—1)dUm—1 < €

1 B



Composite Marginal Likelihood Methods for Random Utility Models

If u,, < L — B, then we have HZ’;I ;le mi(u;)du; < qulm mo(ug)dugy < f_LO_OB 7o (uz)duy < € Therefore, for any
T (U1, Uy )

(u1, um) € So, (i )

< e. This proves the claim. [ |

We are now ready to prove the lemma.

Pr(a,, top and a; bottom) fsl T (U1, U) + fSQ T (U1, Unm)

Pr(am = a1) e ) + fg, m(un, um)
* Jo, m(urum) - [g, 7 (w1,um)
- Jo, T, um) + [g, 7 (ui, ) T, werwm) T Ty, wlunum)
< fSl W(ul,Um)+fs2 W(ul,um) M )

f52 (U1, Um,)

Therefore, by combining Claim 1 and Claim 2, we have

Pr(a, top and a; bottom)

lim =
L—00,e—0 Pr(am - al)
Therefore, there exist L and e so that RBCML(G, W,) is inconsistent. [ |

Let G; and G- be a pair of weighted breakings. Define G; + G5 to be a breaking with weights being the sum of weights
of corresponding edges in G; and G,. Note that no edge between two vertices is equivalent to an edge with zero weight
between the two vertices. If weights of all edges of G; are no less than those in G2 (denoted as G; > G»), we define G — Go
to be a breaking whose weight on each edge is the difference of the corresponding edge in G; and G5 s.t. weights on all
edges are nonnegative.

Lemma 9 G, and G> are weighted breakings.

e I[fRBCML(Gy,W,) and RBCML(G>, W,,) are both consistent, then RBCML(Gy + G2, W,) is also consistent. Further,
if G1 > Go, then RBCML(Gy — G2, W,) is consistent.

e IfRBCML(G1,W,) is consistent but RBCML(G2, W,) is not consistent, then RBCML(G, + G2, W,) is not consistent.
Further, if G > Ga, then RBCML(Gy — G2, W,) is not consistent.

Proof: For any breaking G, let ELL?M (5) denote the expected log-marginal likelihood function under RBCML(G, W,).
Case 1. Because RBCML(G;, W, ) and RBCML(G2, W,) are both consistent, for any 1 < i < m, we have

e 7 =g 0

N R Wi apii’ (9) fi'/1~wi’i 8pl'l(9)

VELLY (0) =) (—4 % e

g 7 =g 0

o R73wg apii’ (9) K Wi apl'l(a)

ViELL,g\i(G) _ ( i v Ok Rkl ) =
; pir(0) 00 piri(6) 00

)=0

It follows that

VELLS Y9 (0) = V,ELLSY (9) + V;ELLS (0)

—0
V,ELLS,9*(0) = V;ELL{,(6) — V,ELLY(0) = 0

Case 2. Because RBCML(G1, W, ) is consistent and RBCML(G2, W, ) is not consistent, there exists 1 < i < m s.t.

=g 0 =g 7
- H»-}wii/ ap“'/ (9) Ii»,l»wi'i apm(e)
V,ELLY, (0) =) (F -1 + )=0
%: pir (@) i ps(6) 00
g = g -
7 Ko Wiy Opiwr (0) | Kjiwiri Opiri(6)
ViELLZ (0) => (-2 S ) #0
i Pii (0) 90; piri(0) 90;
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It follows that
V,ELLY, 92 () = V;ELLYY (6) + V;ELLY%(6) # 0
V,ELL$, "9 () = V;ELLYY(6) — V,;ELLY:(A) # 0
which implies inconsistency. u

Lemma 10 Let m = 3 and let RUM(my, wa, 73) be an RUM with symmetric distributions, where for at least one w; we
_ mi(@) i()

have (Inm;) = ) :l(m) — 00, then RBCML(Gy2x (1,2} ,{1,3}}> Wh) is not
consistent for RUM(my, ma, T3).

is monotonically decreasing and lim,_, _

Proof: Let Go10 denote Grayq1,2},{1,3}}- W.l.0.g. suppose lim, , (7} (x)) — oo. Let f; > 0and 6, = 03 = 0. We
will prove that when 6, is sufficiently large, Equation (7) does not hold. Let

Pr(a; = az = az) = Pr(a; = a3z = as) = p;
Pr(ag = a1 > a3) = Pr(ag = a1 > az) = po
Pr(as = az = a1) = Pr(ag = as = a1) = p3

We have p; + po + p3 = % and Pr(a1 - ag) = 2py1 + po, PI‘(CLQ - 0,1) = po + 2p3. Given Gao1g, K12 = 3p; and
K21 = 2ps + ps. Therefore, Equation (7) becomes

VlELLM(é): Z( K14 a1011‘(_))_F Ki1 ap¢1(§)):2( K12 31012(67)+ Ko1 3?21(5))
i=a3 P1i(0) 961 pa(0) 99 pi2(f) 90 pa1(6) 00

Opr2(0)  3p1 2patps, 0
901 “2p1+p2 p2+2p3

=2

Therefore, the following equation holds for all cases with 5 = 83 = 0 and 6; > 0.

3L 2pa+ps
2p1+p2 p2+2p3

(10)

As 67 — oo, p1 — 0.5 and p2, p3 goes to 0. Equation (10) becomes ;Qpiizﬁi = % It follows that limg, _, i—z = 4. We

next prove that limg, o %2 = 00, which will lead to a contradiction. For ¢ = 2, 3, we let CDF; denote the CDF of m;. By
° 71 (Uy—01)CDF2 (U1 )(1—CDF3(U1))dUy

symmetry, it suffices to prove that limg, _, o fjxjm(Ul_91)(1_CDF2(Ul))(l_CDF3(U1))dU1

= Q.

The idea is to choose B and 67 so that U; < B in the integration of both numerator and denominator can be ignored, and
the ratio for the remainders of numeration and denominator can be arbitrarily large. More precisely, for any K > 0, let
CDF;(B +1)

1— CDFy(B + 1)

B > 0 denote any number such that > K + 1. Let 6, be any number such that

JZ (1 — CDF2(U1))(1 — CDF3(U1))dU;

(1 — CDFy(U1))(1 — CDFs5(U1))dUy

(lnm)/(B +1-— 91) > IH(K
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Such a 6 exists because lim,_, o : Erg — oo. Because 71 (z) is monotonically increasing for all z < 0, we have

/OO 7T1(U1 — 01)(1 — CDFQ(Ul))(]. - CDFg(Ul))dUl
B

> /3B+1 7T1(U1 — 91)(1 — CDFQ(Ul))(l — CDF3(U1))dU1

B+1
3B+1
s (B+1—0) x / (1 — CDFs(U1))(1 — CDF3(U,))dl;
B+1
, 3B+1
Selnm) (B+1-00) 1 (B g / (1 — CDFs(U1))(1 — CDF3(U))d0U;
B+1
B
SKm (B - 91)/ (1 — CDFs(U1))(1 — CDFs(U))dU;

>K/ 1(Uy — 6;)(1 — CDF,(U4))(1 — CDF3(Uy ))dUy

Therefore, we have

[ m(Uy — 61)CDF,(Uy)(1 — CDF3(Uy))dUy
S5 m (U — 61)(1 — CDF,(Uy))(1 — CDF3(Uy))dU,
f;jl 71 (Uy — 61)CDF3(Uy)(1 — CDF3(Uy))dU,y
T+ L) [, mi(Ur — 01)(1 — CDF(Uh))(1 — CDFy(Ur))dU;
- CDFQ(B +1)(1 — CDF3(B + 1))
(14+ +)(1 — CDF3(B +1))(1 — CDF3(B + 1))

> K

Therefore, it is impossible that Equation (10) holds for all 61, which proves the lemma. |

Lemma 11 /. For any location family RUM(71, . .., Tm),
(a) RBCML(G, W) is consistent if and only if RBCML(k1G, koW ) is consistent for all ky, ko > 0.
(b) If for any pair of alternatives a;, a;r we have

Rii’ . Pré‘(ai - ai/)

R’ PI‘@*((LL'/ = a;)

Y

then RBCML(G, W) is consistent if and only if W is connected and symmetric.

(¢c) If G has positive weight on an adjacent edge | — | + 1, then RBCML(G, W) is consistent only if W is connected and
symmetric.

2. For any RUM(~),
(a) RBCML(G, W) is consistent only if for any alternative a; we have
ST )
i i i i
(b) Suppose the breaking graph contains an edge {1,1'} that is different from {1, m}, then RBCML(G, W) is consistent only
if the W is connected and symmetric.
(¢) RBCML(G, W) is consistent only if RBCML(G, W,) is consistent.

3. For any location family RUM(71, . .., T, ) where each m; is symmetric around 0, if RBCML(G, W) is consistent, then
RBCML(G, W') with symmetric weights w};, = wy; + wy; is also consistent.
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Proof:

1(a). Let CLL (6, P) be the composite log-likelihood of RBCML(G, W). Then the composite log-likelihood for
RBCML(k1G, koW) is k1kaCLL (0, P). So if 0* maximizes CLL (6, P), it also maximizes k1koCLL A4 (6, P), or
vice versa. That is to say, RBCML(G, W) and RBCML(%1 G, ko) are equivalent estimators.

1(b). Thg “if" direction: by combining (8) and (11), the ground truth is the solution to (7). Due to the strict concavity of
CLL (6, P), the ground truth is the only solution. Consistency follows by Theorem 3.

The “only if" direction: we first prove connectivity, then prove symmetry.

If W is not connected, then by Theorems 3 and 4, the solution to (7) is unbounded or non-unique. And by Theorem 5,
RBCML(G, W) is not consistent.

Now we prove symmetry of VV by contradiction. For the purpose of contradiction suppose wi2 7 ws; (w.l.0.g.). We will
construct a counterexample where RBCML(G, W) is not consistent. Let; = 5 = 0andf3 = ... = 6,, = L. By Lemma 3,

=

. _ Riowiz 9p12(6) Faywsay Op21 () _ Ro1(wa1—wia) Apai ()
we have for any € > 0, there exists L s.t. V{ELL\(0) = WG + SR +e= (B 59, T6

where the last equality is obtained due to Lemma 4. Since wis # wa;, we have “21(w21(g)w12) apgél(e) # 0. Lete <
P21

| ”21(;”21(;;”12) apgél(e) |, then we have V1ELL \((f) # 0. This means the ground truth does not maximize ELL r(f). By
21

Theorem 5, the estimator is not consistent.

1(c). The proof for connectivity of W is the same as in the proof of 1(b). We only prove necessity of symmetry. For the

purpose of contradiction suppose wya # wey. Lety =602 =0,03=...=60;,1 = —L,and ;4o = ... =0, = L. By
7\ Riowis 9p12(8) | Rojwoy Op21(6) _ Roi(wai—wiz) Opa1(6)
Lemma 3, for any € > 0, we have V{ELL \((6) = @y o0 + By o0 +e= r (B) 53, ¢ where the

K21 (w21 —wiz2) Ip21 () 0. Lete < K21 (W21 —wiz) Ip21(H)
p21(0) 90 7 0. €<| p21(0) 96, :

— —

then we have V1ELL v (¢) # 0. This means the ground truth does not maximize ELL o((#). By Theorem 53, the estimator
is not consistent.

last equality is obtained by Lemma 4. Since wy2 # wa1, we have

2(a). Let 0, = ... = 0,, = 0. Thus for any pair of alternatives a;, a;/, we have k;;; = R;; and Prg(ai - ay) = Prg(a,;/ -

a;). (12) follows by applying (8) to ELL o4(6) = 0.

2(b). The proof for connectivity of W is the same as in the proof of 1(b). For necessity of W, it suffices to prove
w1 = woy. Let Al =1 — [ (w.l.o.g. suppose | < I'). Letf; = ... = Oa;y1 = 0, and Opjyo = ... = Opn; = L,
041 =...=0, =—L. When L — +o0o, with probability approaching 1, #; through ;41 are ranked at positions from
ltol’. Forany 1 <4,i" < Al 4 1and ¢’ # i, we have K;; = Ry; and Prg(a; = a;) = Pry(ay = a;). So we have

Al+1 Al+1

Z Wi = Z wi1 (13)
=2 =2

If we swap the values of 612 and 6; where 2 < i’ < Al + 1, we have

Al+2 Al+2

E Wi; — Wi = E W;1 — Wi (14)
=2 i=2

Note that (14) contains Al equations. Summing up all equations in (13) and (14), we have

Al+2 Al+2

Z w1y = Z Wi (15)
i=2 i=2

Letdi’ = 21in (14), we get
Al+2 Al+2

D wi= ) wa (16)
=3 =3

(]5)—(]6), we have W12 = W21.
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2(c). For any g, VELL M (5) = 0 holds. By relabeling the alternatives (by permuting the elements in 5), we can obtain
m/! similar equations. Equivalently, each w;;» in W will be the weight of a; > a2 (or any other pairwise comparison) for
(m — 2)! times. By summing up all corresponding equations, we obtain another set of equations, which is the gradient of the
composite likelihood with uniform W’ = (m —2)!37, ,, w;ir. So RBCML(G, W') is also consistent.

3. For any 5, we re-write (7)

=

Z Hu’wu 6pu( ) Ri’iwi’i 8pz’z(9))
5 pm‘(g) 90;

ViELLM =0 a7

?é ZZ

—

Consider the RUM with 6" = —@, we have p;;/ (') = pyi(8). So we have

Z RiirWiir Opyir (él) KiriWir g 8]92"2'(9_7))

2 i (0') 90; pis(07) 0

. Z R Wirg 3Pii’(§) _ RirqWair api’i(g)
il Dis (g) 891 pm‘(é} 691

VELL v (0') =

)=0 (18)

(17)-(18), we have >, ,#(”""'(;‘:f'(;i;”“') apgéi(t?) + N’“(Zf'i"’(g;”“ i) Bpéé( )) = 0, which means RBCML(G, W) is consistent
by Theorem 5. |

Theorem 1 Let f(x) and g(x) be two continuous and strictly log-concave functions on R. Then f * g is also strictly
log-concave on R.

Proof: The proof is done by examining the equality condition for the Prékopa-Leindler inequality. Let h = f * g, namely,
forany y € R, h(y fR (z)dx. Because f and g are continuous, so does h. To prove the strict log-concavity of

h, it suffices to prove that for any dlfferent 1,92 € R, h(%) > /h(y1)h(y2).

Suppose for the sake of contradiction that this is not true. Since log-concavity preserves under convolution (Saumard &
Wellner, 2014), h is log-concave. So, there exist y; < yo such that i( y1+y2 = /h(y1)h(y2). Let A(z,y) = f(y—x)g(z).
We further define

H(w) = Ao, 2222) = p(PT2 — ayg(a)
F(z) = Mz, y1) = flyr — x)g(x)
Gl) = Aw,2) = {2 — 2)g(a)

Because (non-strict) log-concavity is preserved under convolution, A(z, y) is log-concave. We have that for any = € R,
H(z) > \/F(x)G(z). The Prékopa-Leindler inequality asserts that

/RH(m)dx > \//RF(x)dx/RG(x)dx (19)

Because h(4H2) = [0 H(z)dz, h(y1) = [ F(z)dz, h(y2) = [ G(z)dz, and h(L522) = \/h(y1)h(y2), (19) becomes
an equation. It was proved by Dubuc (1977) that: there exista > 0 and b E R such that the followmg conditions hold almost

everywhere for 2 € R (see the translation of Dubuc’s result in English by Ball & Boroczky (2010)). 1. F(x) = aH (x + b),
2.G(z) =a"tH(x —b).

The first condition means that for almost every = € R,

Pl = )g(w) = af (P2 — o~ bg(a +)

glz) _ S5 —z-b)
g(x +b) flyr — )

(20)
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The second condition means that for almost all z € R, f(y2 — z)g(z) = a~ ! f(LF2 — 2 4 b)g(z — b) <= gle—b) _

g(z)
f(y2—1)

A0 -
f(y1;y2 —z+b)

Therefore, for almost all z € R,

g(x) fly2 =z —b)
= a 21
gz +0b) fage —g) .

Combining (20) and (21), for almost every = € R we have

9(@) _ fp—w—b) _ f(AE -z —b)
gle+b) f(ugE —a) for — )

(22)

Because f(x) is strictly log-concave, for any fixed ¢ # 0, u E‘QEI)C) is strictly monotonic. Because y; # y2 and yo — x — b —

(adie gy = dvz g p— (y; —2) = 258 — b, we must have that 2;%2 — b = 0, namely b = ¥2-%. Therefore,

(22) becomes % = qa for almost every « € R, which contradicts the strict log-concavity of g. This means that
glz+ 2255

h = f x g is strictly log-concave. |

Theorem 2 Let h(x, y) be a strictly log-concave function on R?. Then [, h(z, y)da is strictly log-concave on R.

Proof: Again, the proof is done by examining the equality condition for the Prékopa-Leindler inequality. Let h*(y) =
Jg h(z,y)dz. It suffices to prove that for any different y1,yo € R, h*(L442) > /h*(y1)h*(y2).

Suppose for the sake of contradiction the claim is not true. Because (non-strict) log-concavity is preserved under marginal-
ization, h* is log-concave. Therefore, there exist ; < ¥ such that h*(%) = \/h*(y1)h*(y2). We further define the
following functions. H(z) = h(z, 23%2), F(z) = h(z,y1), and G(z) = h(x,yg).

Because h(z, y) is strictly log-concave, we have that for any « € R, H(x) > /F(z ). The Prékopa-Leindler inequality

asserts that
/H(x)dm > \// F(x)dw/G(x)dw (23)
R R R

Because h*(413¥2) = [ H(z)dx, h*(y1) = [ F(z)dz, h*(y2) = [p G(z)dx, and h* (LF2) = \/B*(y1)h*(y2), (23)
becomes an equatlon Followmg Dubuc (1977)’s result, we have that there ex1st a > 0and b € R such that F( ) = aH(z+Db)

and G(z) = a~ ' H(z — b) hold almost everywhere for = € R.

F(z) = aH (z + b) means that for almost every = € R, ah(z + b, 2322) = h(z,y;). G(z) = a~'H(z — b) means that
for almost every z € R, a~*h(z — b, 2442 ) = h(z, y»). This means that for almost every = € R, a~'h(z + b, L1¥2) =
h(z + 2b,ys). Therefore, for almost every = € R, we have h(z + b, L3¥2) - h(z + b, BE¥2) = h(z,y1) - h(z + 2b, y2),
which contradicts the strict log-concavity of h. |

Theorem 3 Given any profile P, the composite likelihood function for Plackett-Luce, i.e. CLpL(g, P), is strictly log-concave
if and only if W is weakly connected. arg max; CLpy (¢, P) is bounded if and only if YW ® G(P) is strongly connected.

Proof: It is not hard to check that when JV is not weakly connected, there exist 0_31) and 62 such that for any 0 < A < 1we
have CLLpy (/1)), P) = CLLpy. (0, P) = ACLLp (1), P) 4 (1 — A\)CLLp(A®, P), which violates strict log-concavity.
Suppose W is weakly connected, we only need to show that

FO) = D (—(KiyiaWiyia + Figiy Wiy, ) (e + €%2)) 24)
11742

is concave. The proof is similar to the log-concavity of likelihood for BTL by (Hunter, 2004). Holder’s inequality shows
that for positive ¢;, d; > 0, wheret =1,..., N and 0 < A < 1, we have

N N N
Y i <AInY e+ (1-Nnd dy (25)
t=1 t=1 t=1
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with equality if and only if 3¢ s.t. ¢; = (d; for all t.
Let 8 and 6® be two parameters. For any two alternatives a;, and a;,, by (25), we have

ot o 6 9

(1) (2)
A0 HAN0L S (el 4% ) — (1 — A)In(efn +e)

(1) @
— ln(e)‘ail +(1*/\)0i1 +e
Multiplying both sides by &, i, Wi, i, + Kiyi, Wiy, and summing over all 4; # 5 demonstrates the concavity of (24).

To prove strict concavity, we need to check the condition when the equality of (25) holds. Forall 1 < ¢ < m, 601( - ¢ 6952).

Namely 951) = 01(2) + In ¢ holds for all . Because random utility models are invariant under parameter shifts, it is exactly
the same model. Thus, we proves the strict concavity of (24).

The proof for the condition of boundedness is also similar to that by Hunter (2004). |

Theorem 4 Let M be an RUM where the CDF of each utility distribution is strictly log-concave. Given any profile P,
the composite likelihood function for M, i.e. CL (6, P), is strictly log-concave if and only if W is weakly connected.
arg maxz; CL (6, P) is bounded if and only if W ® G(P) is strongly connected.

Proof: Similar to the proof for Plackett-Luce, the only hard part is to prove that when W is weakly connected, CL y4 (5, pP)
is strictly log-concave. It suffice to prove for any i1 # 42, Pr(a;, > a;, |5) is log-concave, namely Pr(u;, > u,, |§) is
log-concave. We can write this probability as integral over u;, — u;,: Pr(u;, > ug,|0) = Jo Pr(ui, —uiy, = s|6)ds.

Let 7}, (/@) denote the flipped distribution of 7y, (+|#) around z = s, then we have 7 (s — 2|6) = 7, (s + x|6). Therefore
we have
0

Pr(u;, > u,|0) = / / iy (2105, )7, (x+ 5|0, ) dxds :/ / iy (2)0,) 7, (s — 210, )dxds :/ i, ¥ 70, ds
0 —00 0 —o0

By Theorem 1 we know 7;, * 7} is strictly log-concave. We only need to prove that tail probability of a strictly log-concave
distribution is also strictly log-concave, which is shown in Lemma 1. |

Theorem 5 Given any RUM M, any (‘70 and any profile P with n rankings. Let 6* be the output of RBCML(G, W). When

n — oo, we have 0% 2 G and \/n(6* — fg) % N (0, Hy *(0) Var[VCLL v (0, R)|H; " (fo)) if and only if 0 is the only
solution to

—

VELL v (f) =0 (26)

Proof: The “only if" direction is straightforward. The solution to (26) is unique because CLL 4 (5, P) is strictly concave.

Suppose 51, other than 50, is the solution to (26), then when n — oo, 51 will be the estimate of RBCML(G, W), which
means RBCML(G, W) is not consistent.

Now we prove the “if" direction. First we prove consistency. It is required by Xu & Reid (2011) that for different parameters,
the probabilities for any composite likelihood event are different, which is not true in our case. A simple counterexample is
0 =1,60? = 2,6 = 6" = 9{* = 6 = 0. Then Pr(ay > a3|fV)) = Pr(ay = a3]6(?).

By the law of large numbers, we have for any ¢, Pr(|CLL(f, P) — ELLo((0)| < ¢/2) — 1 as n — co. This implies
limy, 00 Pr(CLL o (6%, P) < ELL(6*) 4 ¢/2) = 1. Similarly we have lim,, oo Pr(ELL¢(fy) < CLLA¢(f, P) +
€/2) = 1. Since §* maximize CLL o (6, P), we have Pr(CLL v (fy, P) < CLL(6*, P)) = 1. The above three equations
imply that lim,,_, oo Pr(ELL o (o) — ELL (%) <€) = 1.

Let O, be the subset of parameter space s.t. V8 € O, ELL v (6y) — ELL z((8) < €. Because ELL 4 (f) is strictly concave,
O is compact and has a unique maximum at 50. Thus for any € > 0, lim,,_, o Pr(g* € O,) = 1. This implies consistency,
i.e., 5* ﬁ) 5()_

Now we prove asymptotic normality. By mean value theorem, we have 0 = VCLL M<§*7 P) = VCLL M(é_fo,P) +
H(ab* + (1 — a)fy, P)(6* — 6,), where 0 < « < 1. Therefore, we have /n(6* — 0) = —H '(ab* + (1 —
a)fo, P)(/nVCLL(f, P)). Since VCLLA((f0, P) = 2 3" | VCLLa(f0, R;). by the central limit theorem, we
have
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VIV CLL (85, P) % N(0, Var[VCLL 4 (6, R)))

Because §* 2+ 6 and H is continuous, we have H (af* 4 (1—a)fy, P) £+ H(6y, P). Since H (4, P) = 1 Z?=1 H(, R;),
by law of large numbers, we have H (6, P) 2> Hy(fy). Therefore, we have

- —

Vn(0* = 0) = —Hy ' (60) (v/nVCLL (60, P)),
which implies that Var[y/n(6* — 6)] = Hy ' (60) Var[VCLL (6o, R) Hy ™ (60). |

Theorem 6 RBCML(G,W,) is consistent for Plackett-Luce if and only if the breaking is weighted union of position-k
breaking.

Proof: The “if" direction is proved in (Khetan & Oh, 2016b). We only prove the “only if" direction.

We will prove this theorem by induction on m. When m = 2, the only breaking is the comparison between the two
alternatives. The conclusion holds. Suppose it holds for m = [, then when m = [ + 1, we first apply Lemma 2 t0 G ,,,),
which must be a weighted union of position-k breaking. Then apply Lemma 2 to Gjy ,,—1]. For all i < m — 1, g1, are the
same, denoted by go. We claim that g1,,, = go. The reason is as follows.

For the purpose of contradiction suppose g1, # go- If g1m > go. We split this edge into two parts, one with weight g¢ and
the other g1,, — go- Let G1 = {g1m = 90} U (G — g1m) - and Go = {g1,n» = g — go}. So we have G = G; + G,. Because
RBCML(G;, W,) is consistent and RBCML(G2, W,) is not (Lemma 7). By Lemma 9, RBCML(G, W,) is not consistent,
which is a contradiction. The case where g < go is similar. |

Theorem 7 Let 7y, 7o, . . ., T, denote the utility distributions for a symmetric RUM. Suppose there exists 7; s.t. (Inm;(x))’
is monotonically decreasing and lim,_, o (In;(x))" — oco. RBCML(G, W) is consistent if and only if G is uniform.

Proof: We prove the theorem by induction on m. m = 2 is trivial because the only breaking is uniform. For m = 3 we
know the uniform breaking is consistent and the one-edge breaking G = {g13 = C > 0} is not consistent by Lemma 8.
Suppose the breaking is G = {g12 = z, ga3 = ¥, g13 = 2}

Case 1: x + y # 2z. For the sake of contradiction suppose RBCML(G, W, ) is consistent. By Lemma 5, RBCML(G*, W,,)
is consistent for M*, which is M due to the symmetry of utility distributions. Applying Lemma 9 we have RBCML(G +
G*,W,) is consistent, where G + G* = {g12 =2+ y, g3 = x + y, g13 = 2z}. f z + y < 2z, we have RBCML(G + G* —
(x + y)Gu, W,) is consistent, where G + G* — (z + y)Gy = {g1m = 22 — « — y}. This contradicts Lemma 8. The case
with x 4+ y > 2z is similar.

Case 2: x+y=2z. Lemma 10 states that RBCML (G219, W, ) is not consistent where Go10 = {g12 = 2, g13 = 1}. We have
G = yGy + (2 — y)Ga10- Since any G, is consistent, RBCML(G, W, ) is not consistent.

Suppose the theorem holds for m = k. When m = k + 1, W.lo.g. we let 7o satisfy the conditions that (In;(z))’ is
monotonically decreasing and lim,_, o (In7;(z))" — o0. Let6; = L, 0,, = —L,and 02 = ... = 0,,,_1 = 0. So when
L — oo, with probability that goes to 1, a; is ranked at the top and a,, is ranked at the bottom. Let g{lm} = {g1m = 1}.
We apply Lemma 6 to G5 ,,) and Gy ,,—1). By induction hypothesis Gz ;. (or Gy 1, 1)) is uniform breaking graph or
empty. If Gz ,,) is empty, then Gy ,,,—1) is also empty. As G is nonempty, G = CGy1,,}, which contradicts Lemma 8. If
Gi2,m) 1s uniform. We denote the weight as go. Then Gy ,,,—1) is also uniform with weight go. Then the only consistent
breaking is uniform. The reason is as follows. We can write G = goGy + (91m — 90)G{1m}- By Lemma 8 and Lemma 9,
RBCML(G, W) is not consistent, which is a contradiction. |

Theorem 8 RBCML(G, W) for Plackett-Luce is consistent if and only if G is the weighted union of position-£ breakings
and W is connected and symmetric.

Proof: The “only if" direction: 2(c) part of the Lemma 11 states that if RBCML(G, W) is consistent then RBCML(G, W,)
is consistent, which means that G is the weighted union of position-k breakings by Theorem 6. Then following 1(c) part of
the Lemma 11, V¥ must be connected and symmetric.

—

The “if" direction: G is the weighted union of position-k breakings. For any a;, a,/, we have ), #(Riif — (R +
i ) = 0. Because w;;; = w;;, we have V,;ELL((0) = Zi,#(/_@”/wii/ — (K wigr + Rirgwirg)

_ e —
K/i/i)ieei-&-eei’ = 0

This means the ground truth is the solution to VELL x4 (5) = 0. As W is connected and symmetric, it is strongly connected.

e’t )
efiyefi/
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Thus CLLpy, is strictly concave, which means the ground truth is the only solution. Further by Theorem 5, RBCML(G, W)
is consistent. |

Theorem 9 Let 7 be any symmetric distribution that satisfies the condition in Theorem 7. Then RBCML(G, W) is consistent
for RUM() if and only if G is uniform and W is connected and symmetric.

Proof: The “only if" direction: 2(c) part of Lemma 11 states that RBCML(G, W) is consistent with uniform W, which
implies G must be uniform by Theorem 7. Then 1(c) of Lemma 11 implies that RBCML(G, W) is consistent for any
connected and symmetric V.

o g Qs . . : Riir Opy (0) Ry Opis(0)
The “if" direction: Since G is uniform breaking, we have >, . (—iil ZPis i 2B = 0 Because w;;» = w;/;,
g & le#l(pii’(e) 99; pir;(0) 90 ) il i
we have
= RiiWiyr Opiir () Rirjwir; Opyri(0)

ViELLum(6) = > ( ) =0

i p71’(§) 90; pi’i(g) 90,

holds for all %. This means the ground truth is the solution to VELL M(@) = 0. As W is connected and symmetric, it
is strongly connected. Thus CLL s is strictly concave, which means the ground truth is the only solution. Further by
Theorem 5, RBCML(G, W) is consistent. [ |



