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Appendix: Proofs
Lemma 1 Let f(x) be a continuously strictly log-concave differentiable probability density function with support
(−∞,+∞). F (x) =

∫ x
−∞ f(t)dt is strictly log-concave.

Proof: The proof is slightly modified from (Bagnoli & Bergstrom, 2005). We will prove ∂2 lnF (x)
∂x2 = d

dx ( f(x)
F (x) ) =

f ′(x)F (x)−f(x)2

F (x)2 < 0. Since F (x) > 0, we only need to prove f ′(x)F (x)− f(x)2 < 0.

Because f(x) is strictly log-concave, we have that d ln f(x)
dx = f ′(x)

f(x) is decreasing for any x ∈ R. So we have f ′(x)
f(x) F (x) =

f ′(x)
f(x)

∫ x
−∞ f(t)dt <

∫ x
−∞

f ′(t)
f(t) f(t)dt = f(x)− limx→−∞ f(x) = f(x).

This proves the lemma. �

Lemma 2 For any alternatives ai, ai′ with distributions πi, πi′ > 0 defined on (−∞,+∞), we define L = θi − θi′ and let

pii′(~θ) denote the probability of ai � ai′ given πi and πi′ . For any ε > 0, there exists L s.t. |∂pii′ (~θ)∂θi
|, |∂pi′i(~θ)∂θi

| ≤ ε.

Proof: Because pii′(~θ) + pi′i(~θ) = 1, for any 1 ≤ l ≤ m, we have

∂pii′(~θ)

∂θl
+
∂pi′i(~θ)

∂θl
= 0 (8)

So we have |∂pii′ (~θ)∂θi
| = |∂pi′i(~θ)∂θi

|. We only need to prove |∂pii′∂θi
| ≤ ε.

Let θi′ = 0 and θi = L. This is without loss of generality because pii′(~θ) remains the same under parameter shifts. Let ui
and ui′ denote the sampled utilities. We have

pii′(~θ) = pii′(L) = Pr(ui > ui′ |~θ) =

∫ ∞
−∞

πi′(x
′)

∫ ∞
x′

πi(x− L)dxdx′ =

∫ ∞
−∞

πi′(x
′)

∫ ∞
x′−L

πi(x)dxdx′

When L increases,
∫∞
x′−L πi(x)dx increases given any x′. So we have ∂pii′ (

~θ)
∂θi

= dpii′ (L)
dL

∂L
∂θi

= dpii′ (L)
dL > 0. On the other

hand, because 0 ≤ pii′(L) ≤ 1 we have
∫ +∞
−∞

dpii′ (L)
dL dL = pii′(L)|+∞ − pii′(L)|−∞ ≤ 1.

Therefore, for any ε, any interval I whose length is 1/ε, we claim there exists an L s.t. ∂pii′∂θi
≤ ε. The reason is as follows.

Suppose for all L ∈ I , ∂pii′∂θi
> ε holds. Then we have

∫ +∞
−∞

dpii′ (L)
dL dL >

∫
I
dpii′ (L)
dL dL >

∫
I
εdL = ε× 1

ε = 1, which is a
contradiction. �

Lemma 3 For any alternatives ai, ai′ with distributions πi, πi′ > 0 defined on (−∞,+∞). Define L = θi − θi′ . For any
ε > 0, there exists L s.t.

| κ̄ii
′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
| ≤ ε

Proof: Let max{G} denote the maximum weight on the edges of G. Since κ̄ii′
pii′

is upper bounded by max{G} and wii′ is

finite, we let M = max{| κ̄ii′wii′
pii′ (

~θ)
|, | κ̄i′iwi′i

pi′i(
~θ)
|} and ε′ = ε

2M . By Lemma 2 there exists L s.t. |∂pii′ (~θ)∂θi
|, |∂pi′i(~θ)∂θi

| ≤ ε′. Then

we have | κ̄ii′wii′
pii′ (

~θ)

∂pii′ (
~θ)

∂θi
+ κ̄i′iwi′i

pi′i(
~θ)

∂pi′i(
~θ)

∂θi
| ≤ | κ̄ii′wii′

pii′ (
~θ)

∂pii′ (
~θ)

∂θi
|+ | κ̄i′iwi′i

pi′i(
~θ)

∂pi′i(
~θ)

∂θi
| ≤ ε′ × 2M = ε �

Lemma 4 For any pair of alternatives ai and ai′ with equal weights wii′ = wi′i, if θi = θi′ , then we have

κ̄ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
= 0

Proof: Since θi = θi′ , we have pii′(~θ) = pi′i(~θ) and κ̄ii′ = κ̄i′i, the lemma follows from (8). �
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Lemma 5 Let G∗ be the graph obtained by labeling the vertices of G reversely,M∗ be the model obtained by flipping all of
the utility distributions ofM around their means, andW∗ be the weight vector where w∗ii′ = wi′i. For any RUMM, if
RBCML(G,W) is consistent forM, then RBCML(G∗,W∗) is consistent forM∗.

Proof: By Theorem 5, we only need to prove the solution to RBCML(G,W), which is the ground truth, is the only
solution to RBCML(G∗,W∗). Due to strict concavity, RBCML(G∗,W∗) does not have multiple solutions. So we only need
to prove the solution to RBCML(G,W) is the solution to RBCML(G∗,W∗).

For any i ∈ {1, . . . ,m} and any ~θ, (7) holds. Since M∗ is flipped M, for any ranking R, we have PrM∗(R|~θ) =

PrM(rev(R)|~θ), where rev(R) is the reverse of R. Therefore, for any pair of alternatives a and a′, a � a′ ∈ G∗(R) if and
only if a′ � a ∈ G(rev(R)).

Then for any i ∈ {1, . . . ,m}, we have

∇iELLM∗(~θ) =
∑
i′ 6=i

(
κ̄ii′w

∗
ii′

p∗ii′(
~θ)

∂p∗ii′(
~θ)

∂θi
+
κ̄i′iw

∗
i′i

p∗i′i(
~θ)

∂p∗i′i(
~θ)

∂θi
) =

∑
i′ 6=i

(
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂(θi)
+
κ̄ii′wii′

pii′(~θ)

∂pii′(~θ)

∂(θi)
) = 0.

This finishes the proof of the lemma. �

Lemma 6 Let G[k1,k2] denote the subgraph G restricted to nodes between k1 and k2 (inclusive). For any RUM M, if
RBCML(G,Wu) is consistent, then for any 1 ≤ k1 < k2 ≤ m, RBCML(G[k1,k2],Wu) is either empty or consistent for
k2 − k1 + 1 alternatives.

Proof: We prove that if RBCML(G[k1,k2],Wu) is not consistent then RBCML(G,Wu) is not consistent. Suppose
RBCML(G[k1,k2],Wu) is not consistent. For convenience we keep the index of G in G[k1,k2] and letM′ denote the model
with the k2 − k1 + 1 alternatives. Then there exists θi where k1 ≤ i ≤ k2 s.t.

|∇iELLM′(~θ)| = |
∑

k1≤i′≤k2,i′ 6=i

(
κ̄ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
)| = C > 0

We now construct other elements in ~θ to show that RBCML(G,Wu) is not consistent. We let θ1 = . . . = θk1−1 = L and
θk2 + 1 = . . . = θr = −L. Then when L→∞, with probability that goes to 1, a1, . . . , ak1−1 are ranked in the top k1 − 1
positions and ak2+1, . . . , am are ranked in the bottom m− k2 positions.

By Lemma 3 for any k1 ≤ i ≤ k2 and i′ < k1 (or i′ > k2) there exists L s.t. | κ̄ii′wii′
pii′ (

~θ)

∂pii′ (
~θ)

∂θi
+ κ̄i′iwi′i

pi′i(
~θ)

∂pi′i(
~θ)

∂θi
)| ≤ C

m . Then

we have |∇iELLM(~θ)| ≥ |∇iELLM′(~θ)| − (m − (k2 − k1 + 1))Cm = (k2−k1+1)C
m > 0. So we have ∇iELLM(~θ) 6= 0.

RBCML(G,Wu) is thus not consistent. �

Lemma 7 For any m ≥ 3, RBCML(G,Wu) for the Plackett-Luce model is not consistent if G = {g1m = C}, where C > 0
is a constant.

Proof: It suffices to prove RBCML(G,Wu) for the Plackett-Luce model is not consistent if G = {g1m = 1}. We prove
this lemma by constructing a counter-example. Let θ1 = x and θ2 = . . . = θm = 0. For any ranking R1 with alternative
a1 at top, the probability is Pr(R1|~θ) = 1

(m−1)!
ex

ex+(m−1) . For any ranking R2 with a1 at bottom, the probability is

Pr(R2|~θ) = 1∏m−1
k=1 (ex+k)

. For any ai where 2 ≤ i ≤ m, we have κ̄1i = (m− 1)! Pr(R1|~θ) and κ̄i1 = (m− 1)! Pr(R2|~θ).

Therefore, we have ∇iELLPL(~θ) =
∑
i′ 6=i(κ̄ii′ − (κ̄ii′ + κ̄i′i)

1
ex+1 ) = (m− 1)( e2x

ex+m−1 −
(m−1)!∏m−1
k=1 (ex+k)

). Let x = ln 2,

then we have ∇iELLPL(~θ) = 4m−2
m(m+1) 6= 0. This proves the lemma. �

Lemma 8 For any m ≥ 3, RBCML(G,Wu) for any RUM location family with the same symmetric pdf is not consistent if
G = {g1m = C} where C > 0 is a constant.

Proof: Let π denote the PDF of the utility distribution for all alternatives with mean 0. That is, for any i ≤ m and any
x ∈ R, we have πi(x) = π(x− θi). Let B > 0 be an arbitrary number so that 1− ε >

∫ B
−B π(x)dx > ε. Let L be a large

number that will be specified later.
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We first prove the lemma for m = 3. Let θ1 = L and θ2 = θ3 = 0. Since θ2 = θ3, we have κ̄12

p12(~θ)

∂p12(~θ)
∂θ1

+ κ̄21

p21(~θ)

∂p21(~θ)
∂θ1

=

κ̄13

p13(~θ)

∂p13(~θ)
∂θ1

+ κ̄31

p31(~θ)

∂p31(~θ)
∂θ1

. Due to (8), it suffices to prove κ̄12

p12(~θ)
6= κ̄21

p21(~θ)
, which is equivalent to Pr(a1 top and a2 bottom)

Pr(a1�a2) 6=
Pr(a2 top and a1 bottom)

Pr(a2�a1) . That is p132
p312+p132+p123

6= p231
p321+p231+p213

, where p123 is the short form of Pr(a1 � a2 � a3). Because
p123 = p132 and p231 = p321, we only need to prove p132

p312
6= p231

p213
. This is obvious because p312 = p213 but p132 6= p231.

We now prove the lemma for any m ≥ 4. Let θ1 = θ2 = L and θ3 = . . . = θm = 0. By Lemma 4 we have κ̄12

p12(~θ)

∂p12(~θ)
∂θ1

+

κ̄21

p21(~θ)

∂p21(~θ)
∂θ1

= 0. For all 3 ≤ i ≤ m, we have κ̄1i

p1i(~θ)

∂p1i(~θ)
∂θ1

+ κ̄i1
pi1(~θ)

∂pi1(~θ)
∂θ1

= κ̄1m

p1m(~θ)

∂p1m(~θ)
∂θ1

+ κ̄m1

pm1(~θ)

∂pm1(~θ)
∂θ1

. So we

have ∇iELLM(~θ) = (m− 2)( κ̄1m

p1m(~θ)

∂p1m(~θ)
∂θ1

+ κ̄m1

pm1(~θ)

∂pm1(~θ)
∂θ1

). It suffices to prove κ̄1m

p1m(~θ)
6= κ̄m1

pm1(~θ)
, which is

Pr(a1 top and am bottom)

Pr(a1 � am)
6= Pr(am top and a1 bottom)

Pr(am � a1)
(9)

Because L is large, Pr(a1 top or a2 top) ≈ 1. Because πi’s have the same shape, we have that

Pr(a1 top and am bottom) ≈ Pr(a1 � a2 and am is ranked lower than a3, . . . , am−1)

Therefore, the LHS of (9) is 1
2(m−2) as L→∞. We will show that the RHS of (9) is converges to 0 as L→∞. We define a

partition of {(u1, um) : u1 < um} = S1 ∪ S2 as follows.

• S1 = {(u1, um) : u1 < B and um > L−B},

• S2 = others.

We further define the following two functions π and π∗ for u1 < um.

π(u1, um) = π1(u1)× πm(um)

π∗(u1, um) = π1(um)× πm(um)×
m−1∏
i=2

∫ um

u1

πi(ui)dui

It follows that

Pr(am top and a1 bottom)

Pr(am � a1)
=

∫
S1
π∗(u1, um) +

∫
S2
π∗(u1, um)∫

S1
π(u1, um) +

∫
S2
π(u1, um)

Claim 1 limL→∞

∫
S1
π(u1, um)∫

S2
π(u1, um)

= 0.

Proof: Let S = {(u1, um) : u1 < B < um < L−B}. We have

∫
S1
π(u1, um)∫

S
π(u1, um)

=

∫∞
L−B πm(um)dum∫ L−B
B

πm(um)dum
, which converges

to 0. The claim follows after observing that S ⊆ S2. �

Claim 2 limε→0

∫
S2
π∗(u1, um)∫

S2
π(u1, um)

= 0.

Proof: For any (u1, um) ∈ S2, either u1 > B or um < L−B. If u1 > B, then

m−1∏
i=2

∫ um

u1

πi(ui)dui ≤
∫ um

u1

πm−1(um−1)dum−1 ≤
∫ ∞
B

πm−1(um−1)dum−1 ≤ ε
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If um < L − B, then we have
∏m−1
i=2

∫ um
u1

πi(ui)dui ≤
∫ um
u1

π2(u2)du2 ≤
∫ L−B
−∞ π2(u2)du2 ≤ ε Therefore, for any

(u1, um) ∈ S2,
π∗(u1, um)

π(u1, um)
≤ ε. This proves the claim. �

We are now ready to prove the lemma.

Pr(am top and a1 bottom)

Pr(am � a1)
=

∫
S1
π∗(u1, um) +

∫
S2
π∗(u1, um)∫

S1
π(u1, um) +

∫
S2
π(u1, um)

≤
∫
S1
π(u1, um) +

∫
S2
π∗(u1, um)∫

S1
π(u1, um) +

∫
S2
π(u1, um)

=

∫
S1
π(u1,um)∫

S2
π(u1,um)

+

∫
S2
π∗(u1,um)∫

S2
π(u1,um)∫

S1
π(u1,um)∫

S2
π(u1,um)

+ 1

Therefore, by combining Claim 1 and Claim 2, we have

lim
L→∞,ε→0

Pr(am top and a1 bottom)

Pr(am � a1)
= 0

Therefore, there exist L and ε so that RBCML(G,Wu) is inconsistent. �

Let G1 and G2 be a pair of weighted breakings. Define G1 + G2 to be a breaking with weights being the sum of weights
of corresponding edges in G1 and G2. Note that no edge between two vertices is equivalent to an edge with zero weight
between the two vertices. If weights of all edges of G1 are no less than those in G2 (denoted as G1 ≥ G2), we define G1 − G2

to be a breaking whose weight on each edge is the difference of the corresponding edge in G1 and G2 s.t. weights on all
edges are nonnegative.

Lemma 9 G1 and G2 are weighted breakings.

• If RBCML(G1,Wu) and RBCML(G2,Wu) are both consistent, then RBCML(G1 + G2,Wu) is also consistent. Further,
if G1 ≥ G2, then RBCML(G1 − G2,Wu) is consistent.

• If RBCML(G1,Wu) is consistent but RBCML(G2,Wu) is not consistent, then RBCML(G1 + G2,Wu) is not consistent.
Further, if G1 ≥ G2, then RBCML(G1 − G2,Wu) is not consistent.

Proof: For any breaking G, let ELLGM(~θ) denote the expected log-marginal likelihood function under RBCML(G,Wu).

Case 1. Because RBCML(G1,Wu) and RBCML(G2,Wu) are both consistent, for any 1 ≤ i ≤ m, we have

∇iELLG1M(~θ) =
∑
i′ 6=i

(
κ̄G1ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄G1i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0

∇iELLG2M(~θ) =
∑
i′ 6=i

(
κ̄G2ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄G2i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0

It follows that

∇iELLG1+G2
M (~θ) = ∇iELLG1M(~θ) +∇iELLG2M(~θ) = 0

∇iELLG1−G2M (~θ) = ∇iELLG1M(~θ)−∇iELLG2M(~θ) = 0

Case 2. Because RBCML(G1,Wu) is consistent and RBCML(G2,Wu) is not consistent, there exists 1 ≤ i ≤ m s.t.

∇iELLG1M(~θ) =
∑
i′ 6=i

(
κ̄G1ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄G1i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0

∇iELLG2M(~θ) =
∑
i′ 6=i

(
κ̄G2ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄G2i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) 6= 0
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It follows that

∇iELLG1+G2
M (~θ) = ∇iELLG1M(~θ) +∇iELLG2M(~θ) 6= 0

∇iELLG1−G2M (~θ) = ∇iELLG1M(~θ)−∇iELLG2M(~θ) 6= 0

which implies inconsistency. �

Lemma 10 Let m = 3 and let RUM(π1, π2, π3) be an RUM with symmetric distributions, where for at least one πi we
have (lnπi)

′ =
π′i(x)
πi(x) is monotonically decreasing and limx→−∞

π′i(x)
πi(x) → ∞, then RBCML(G{2×{1,2},{1,3}},Wu) is not

consistent for RUM(π1, π2, π3).

Proof: Let G210 denote G{2×{1,2},{1,3}}. W.l.o.g. suppose limx→−∞(π′1(x)) → ∞. Let θ1 > 0 and θ2 = θ3 = 0. We
will prove that when θ1 is sufficiently large, Equation (7) does not hold. Let

Pr(a1 � a2 � a3) = Pr(a1 � a3 � a2) = p1

Pr(a2 � a1 � a3) = Pr(a3 � a1 � a2) = p2

Pr(a2 � a3 � a1) = Pr(a3 � a2 � a1) = p3

We have p1 + p2 + p3 = 1
2 and Pr(a1 � a2) = 2p1 + p2, Pr(a2 � a1) = p2 + 2p3. Given G210, κ̄12 = 3p1 and

κ̄21 = 2p2 + p3. Therefore, Equation (7) becomes

∇1ELLM(~θ) =
∑
i=2,3

(
κ̄1i

p1i(~θ)

∂p1i(~θ)

∂θ1
+

κ̄i1

pi1(~θ)

∂pi1(~θ)

∂θ1
) = 2(

κ̄12

p12(~θ)

∂p12(~θ)

∂θ1
+

κ̄21

p21(~θ)

∂p21(~θ)

∂θ1
)

= 2
∂p12(~θ)

∂θ1
(

3p1

2p1 + p2
− 2p2 + p3

p2 + 2p3
) = 0

Therefore, the following equation holds for all cases with θ2 = θ3 = 0 and θ1 > 0.

3p1

2p1 + p2
=

2p2 + p3

p2 + 2p3
(10)

As θ1 → ∞, p1 → 0.5 and p2, p3 goes to 0. Equation (10) becomes 2p2+p3
p2+2p3

= 3
2 . It follows that limθ1→∞

p2
p3

= 4. We
next prove that limθ1→∞

p2
p3

=∞, which will lead to a contradiction. For i = 2, 3, we let CDFi denote the CDF of πi. By

symmetry, it suffices to prove that limθ1→∞

∫∞
−∞ π1(U1−θ1)CDF2(U1)(1−CDF3(U1))dU1∫∞

−∞ π1(U1−θ1)(1−CDF2(U1))(1−CDF3(U1))dU1
=∞.

The idea is to choose B and θ1 so that U1 < B in the integration of both numerator and denominator can be ignored, and
the ratio for the remainders of numeration and denominator can be arbitrarily large. More precisely, for any K > 0, let

B > 0 denote any number such that
CDF2(B + 1)

1− CDF2(B + 1)
> K + 1. Let θ1 be any number such that

(lnπ1)′(B + 1− θ1) > ln(K

∫ B
−∞(1− CDF2(U1))(1− CDF3(U1))dU1∫ 3B+1

B+1
(1− CDF2(U1))(1− CDF3(U1))dU1

)
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Such a θ exists because limx→−∞
π′i(x)
πi(x) →∞. Because π1(x) is monotonically increasing for all x < 0, we have∫ ∞

B

π1(U1 − θ1)(1− CDF2(U1))(1− CDF3(U1))dU1

>

∫ 3B+1

B+1

π1(U1 − θ1)(1− CDF2(U1))(1− CDF3(U1))dU1

>π1(B + 1− θ1)×
∫ 3B+1

B+1

(1− CDF2(U1))(1− CDF3(U1))dU1

>e(lnπ1)′(B+1−θ1)π1(B − θ1)×
∫ 3B+1

B+1

(1− CDF2(U1))(1− CDF3(U1))dU1

>Kπ1(B − θ1)

∫ B

−∞
(1− CDF2(U1))(1− CDF3(U1))dU1

>K

∫ B

−∞
π1(U1 − θ1)(1− CDF2(U1))(1− CDF3(U1))dU1

Therefore, we have ∫∞
−∞ π1(U1 − θ1)CDF2(U1)(1− CDF3(U1))dU1∫∞

−∞ π1(U1 − θ1)(1− CDF2(U1))(1− CDF3(U1))dU1

>

∫∞
B+1

π1(U1 − θ1)CDF2(U1)(1− CDF3(U1))dU1

(1 + 1
K )

∫∞
B+1

π1(U1 − θ1)(1− CDF2(U1))(1− CDF3(U1))dU1

>
CDF2(B + 1)(1− CDF3(B + 1))

(1 + 1
K )(1− CDF2(B + 1))(1− CDF3(B + 1))

> K

Therefore, it is impossible that Equation (10) holds for all θ1, which proves the lemma. �

Lemma 11 1. For any location family RUM(π1, . . . , πm),

(a) RBCML(G,W) is consistent if and only if RBCML(k1G, k2W) is consistent for all k1, k2 > 0.

(b) If for any pair of alternatives ai, ai′ we have

κ̄ii′

κ̄i′i
=

Pr~θ(ai � ai′)
Pr~θ(ai′ � ai)

(11)

then RBCML(G,W) is consistent if and only ifW is connected and symmetric.

(c) If G has positive weight on an adjacent edge l→ l + 1, then RBCML(G,W) is consistent only ifW is connected and
symmetric.

2. For any RUM(π),

(a) RBCML(G,W) is consistent only if for any alternative ai we have∑
i′ 6=i

wii′ =
∑
i′ 6=i

wi′i (12)

(b) Suppose the breaking graph contains an edge {l, l′} that is different from {1,m}, then RBCML(G,W) is consistent only
if theW is connected and symmetric.

(c) RBCML(G,W) is consistent only if RBCML(G,Wu) is consistent.

3. For any location family RUM(π1, . . . , πm) where each πi is symmetric around 0, if RBCML(G,W) is consistent, then
RBCML(G,W ′) with symmetric weights w′ii′ = wii′ + wi′i is also consistent.
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Proof:

1(a). Let CLLM(~θ, P ) be the composite log-likelihood of RBCML(G,W). Then the composite log-likelihood for
RBCML(k1G, k2W) is k1k2CLLM(~θ, P ). So if ~θ∗ maximizes CLLM(~θ, P ), it also maximizes k1k2CLLM(~θ, P ), or
vice versa. That is to say, RBCML(G,W) and RBCML(k1G, k2W) are equivalent estimators.

1(b). The “if" direction: by combining (8) and (11), the ground truth is the solution to (7). Due to the strict concavity of
CLLM(~θ, P ), the ground truth is the only solution. Consistency follows by Theorem 5.

The “only if" direction: we first prove connectivity, then prove symmetry.

IfW is not connected, then by Theorems 3 and 4, the solution to (7) is unbounded or non-unique. And by Theorem 5,
RBCML(G,W) is not consistent.

Now we prove symmetry ofW by contradiction. For the purpose of contradiction suppose w12 6= w21 (w.l.o.g.). We will
construct a counterexample where RBCML(G,W) is not consistent. Let θ1 = θ2 = 0 and θ3 = . . . = θm = L. By Lemma 3,

we have for any ε > 0, there exists L s.t. ∇1ELLM(~θ) = κ̄12w12

p12(~θ)

∂p12(~θ)
∂θ1

+ κ̄21w21

p21(~θ)

∂p21(~θ)
∂θ1

+ ε = κ̄21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

+ ε,

where the last equality is obtained due to Lemma 4. Since w12 6= w21, we have κ21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

6= 0. Let ε <

|κ21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

|, then we have ∇1ELLM(~θ) 6= 0. This means the ground truth does not maximize ELLM(~θ). By
Theorem 5, the estimator is not consistent.

1(c). The proof for connectivity ofW is the same as in the proof of 1(b). We only prove necessity of symmetry. For the
purpose of contradiction suppose w12 6= w21. Let θ1 = θ2 = 0, θ3 = . . . = θl+1 = −L, and θl+2 = . . . = θm = L. By
Lemma 3, for any ε > 0, we have∇1ELLM(~θ) = κ̄12w12

p12(~θ)

∂p12(~θ)
∂θ1

+ κ̄21w21

p21(~θ)

∂p21(~θ)
∂θ1

+ε = κ̄21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

+ε, where the

last equality is obtained by Lemma 4. Since w12 6= w21, we have κ21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

6= 0. Let ε < |κ21(w21−w12)

p21(~θ)

∂p21(~θ)
∂θ1

|,

then we have ∇1ELLM(~θ) 6= 0. This means the ground truth does not maximize ELLM(~θ). By Theorem 5, the estimator
is not consistent.

2(a). Let θ1 = . . . = θm = 0. Thus for any pair of alternatives ai, ai′ , we have κ̄ii′ = κ̄i′i and Pr~θ(ai � ai′) = Pr~θ(ai′ �
ai). (12) follows by applying (8) to ELLM(~θ) = 0.

2(b). The proof for connectivity of W is the same as in the proof of 1(b). For necessity of W , it suffices to prove
w12 = w21. Let ∆l = l′ − l (w.l.o.g. suppose l < l′). Let θ1 = . . . = θ∆l+1 = 0, and θ∆l+2 = . . . = θl+∆l = L,
θl′+1 = . . . = θm = −L. When L→ +∞, with probability approaching 1, θ1 through θ∆l+1 are ranked at positions from
l to l′. For any 1 ≤ i, i′ ≤ ∆l + 1 and i′ 6= i, we have κ̄ii′ = κ̄i′i and Pr~θ(ai � ai′) = Pr~θ(ai′ � ai). So we have

∆l+1∑
i=2

w1i =

∆l+1∑
i=2

wi1 (13)

If we swap the values of θ∆l+2 and θi′ where 2 ≤ i′ ≤ ∆l + 1, we have

∆l+2∑
i=2

w1i − w1i′ =

∆l+2∑
i=2

wi1 − wi′1 (14)

Note that (14) contains ∆l equations. Summing up all equations in (13) and (14), we have

∆l+2∑
i=2

w1i =

∆l+2∑
i=2

wi1 (15)

Let i′ = 2 in (14), we get
∆l+2∑
i=3

w1i =

∆l+2∑
i=3

wi1 (16)

(15)-(16), we have w12 = w21.
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2(c). For any ~θ, ∇ELLM(~θ) = ~0 holds. By relabeling the alternatives (by permuting the elements in ~θ), we can obtain
m! similar equations. Equivalently, each wii′ inW will be the weight of a1 � a2 (or any other pairwise comparison) for
(m− 2)! times. By summing up all corresponding equations, we obtain another set of equations, which is the gradient of the
composite likelihood with uniformW ′ = (m− 2)!

∑
i 6=i′ wii′ . So RBCML(G,W ′) is also consistent.

3. For any ~θ, we re-write (7)

∇iELLM(~θ) =
∑
i′ 6=i

(
κ̄ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0 (17)

Consider the RUM with ~θ′ = −~θ, we have pii′(~θ′) = pi′i(~θ). So we have

∇iELLM(~θ′) =
∑
i′ 6=i

(
κ̄ii′wii′

pii′(~θ′)

∂pii′(~θ
′)

∂θ′i
+
κ̄i′iwi′i

pi′i(~θ′)

∂pi′i(~θ
′)

∂θ′i
)

=
∑
i′ 6=i

(− κ̄ii
′wi′i

pii′(~θ)

∂pii′(~θ)

∂θi
− κ̄i′iwii′

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0 (18)

(17)-(18), we have
∑
i′ 6=i(

κii′ (wii′+wi′i)

pii′ (
~θ)

∂pii′ (
~θ)

∂θi
+ κi′i(wi′i+wi′i)

pi′i(
~θ)

∂pi′i(
~θ)

∂θi
) = 0, which means RBCML(G,W ′) is consistent

by Theorem 5. �

Theorem 1 Let f(x) and g(x) be two continuous and strictly log-concave functions on R. Then f ∗ g is also strictly
log-concave on R.

Proof: The proof is done by examining the equality condition for the Prékopa-Leindler inequality. Let h = f ∗ g, namely,
for any y ∈ R, h(y) =

∫
R f(y − x)g(x)dx. Because f and g are continuous, so does h. To prove the strict log-concavity of

h, it suffices to prove that for any different y1, y2 ∈ R, h(y1+y2
2 ) >

√
h(y1)h(y2).

Suppose for the sake of contradiction that this is not true. Since log-concavity preserves under convolution (Saumard &
Wellner, 2014), h is log-concave. So, there exist y1 < y2 such that h(y1+y2

2 ) =
√
h(y1)h(y2). Let Λ(x, y) = f(y−x)g(x).

We further define

H(x) = Λ(x,
y1 + y2

2
) = f(

y1 + y2

2
− x)g(x)

F (x) = Λ(x, y1) = f(y1 − x)g(x)

G(x) = Λ(x, y2) = f(y2 − x)g(x)

Because (non-strict) log-concavity is preserved under convolution, Λ(x, y) is log-concave. We have that for any x ∈ R,
H(x) ≥

√
F (x)G(x). The Prékopa-Leindler inequality asserts that

∫
R
H(x)dx ≥

√∫
R
F (x)dx

∫
R
G(x)dx (19)

Because h(y1+y2
2 ) =

∫
RH(x)dx, h(y1) =

∫
R F (x)dx, h(y2) =

∫
RG(x)dx, and h(y1+y2

2 ) =
√
h(y1)h(y2), (19) becomes

an equation. It was proved by Dubuc (1977) that: there exist a > 0 and b ∈ R such that the following conditions hold almost
everywhere for x ∈ R (see the translation of Dubuc’s result in English by Ball & Böröczky (2010)). 1. F (x) = aH(x+ b),
2. G(x) = a−1H(x− b).

The first condition means that for almost every x ∈ R,

f(y1 − x)g(x) = af(
y1 + y2

2
− x− b)g(x+ b)

⇐⇒ g(x)

g(x+ b)
= a

f(y1+y2
2 − x− b)
f(y1 − x)

(20)
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The second condition means that for almost all x ∈ R, f(y2 − x)g(x) = a−1f(y1+y2
2 − x + b)g(x − b) ⇐⇒ g(x−b)

g(x) =

a f(y2−x)

f(
y1+y2

2 −x+b)
. Therefore, for almost all x ∈ R,

g(x)

g(x+ b)
= a

f(y2 − x− b)
f(y1+y2

2 − x)
(21)

Combining (20) and (21), for almost every x ∈ R we have

g(x)

g(x+ b)
= a

f(y2 − x− b)
f(y1+y2

2 − x)
= a

f(y1+y2
2 − x− b)
f(y1 − x)

(22)

Because f(x) is strictly log-concave, for any fixed c 6= 0, f(x+c)
f(x) is strictly monotonic. Because y1 6= y2 and y2 − x− b−

(y1+y2
2 − x) = y1+y2

2 − x− b− (y1 − x) = y2−y1
2 − b, we must have that y2−y12 − b = 0, namely b = y2−y1

2 . Therefore,
(22) becomes g(x)

g(x+
y2−y1

2 )
= a for almost every x ∈ R, which contradicts the strict log-concavity of g. This means that

h = f ∗ g is strictly log-concave. �

Theorem 2 Let h(x, y) be a strictly log-concave function on R2. Then
∫
R h(x, y)dx is strictly log-concave on R.

Proof: Again, the proof is done by examining the equality condition for the Prékopa-Leindler inequality. Let h∗(y) =∫
R h(x, y)dx. It suffices to prove that for any different y1, y2 ∈ R, h∗(y1+y2

2 ) >
√
h∗(y1)h∗(y2).

Suppose for the sake of contradiction the claim is not true. Because (non-strict) log-concavity is preserved under marginal-
ization, h∗ is log-concave. Therefore, there exist y1 < y2 such that h∗(y1+y2

2 ) =
√
h∗(y1)h∗(y2). We further define the

following functions. H(x) = h(x, y1+y2
2 ), F (x) = h(x, y1), and G(x) = h(x, y2).

Because h(x, y) is strictly log-concave, we have that for any x ∈ R, H(x) >
√
F (x)G(x). The Prékopa-Leindler inequality

asserts that ∫
R
H(x)dx ≥

√∫
R
F (x)dx

∫
R
G(x)dx (23)

Because h∗(y1+y2
2 ) =

∫
RH(x)dx, h∗(y1) =

∫
R F (x)dx, h∗(y2) =

∫
RG(x)dx, and h∗(y1+y2

2 ) =
√
h∗(y1)h∗(y2), (23)

becomes an equation. Following Dubuc (1977)’s result, we have that there exist a > 0 and b ∈ R such that F (x) = aH(x+b)
and G(x) = a−1H(x− b) hold almost everywhere for x ∈ R.

F (x) = aH(x+ b) means that for almost every x ∈ R, ah(x+ b, y1+y2
2 ) = h(x, y1). G(x) = a−1H(x− b) means that

for almost every x ∈ R, a−1h(x− b, y1+y2
2 ) = h(x, y2). This means that for almost every x ∈ R, a−1h(x+ b, y1+y2

2 ) =

h(x+ 2b, y2). Therefore, for almost every x ∈ R, we have h(x+ b, y1+y2
2 ) · h(x+ b, y1+y2

2 ) = h(x, y1) · h(x+ 2b, y2),
which contradicts the strict log-concavity of h. �

Theorem 3 Given any profile P , the composite likelihood function for Plackett-Luce, i.e. CLPL(~θ, P ), is strictly log-concave
if and only ifW is weakly connected. arg max~θ CLPL(~θ, P ) is bounded if and only ifW ⊗G(P ) is strongly connected.

Proof: It is not hard to check that whenW is not weakly connected, there exist ~θ(1) and ~θ(2) such that for any 0 < λ < 1 we
have CLLPL(~θ(1), P ) = CLLPL(~θ(2), P ) = λCLLPL(~θ(1), P ) + (1− λ)CLLPL(~θ(2), P ), which violates strict log-concavity.

SupposeW is weakly connected, we only need to show that

f(~θ) =
∑
i1 6=i2

(−(κi1i2wi1i2 + κi2i1wi2i1) ln(eθi1 + eθi2 )) (24)

is concave. The proof is similar to the log-concavity of likelihood for BTL by (Hunter, 2004). Hölder’s inequality shows
that for positive ct, dt > 0, where t = 1, . . . , N and 0 < λ < 1, we have

ln

N∑
t=1

cλt d
1−λ
t ≤ λ ln

N∑
t=1

ct + (1− λ) ln

N∑
t=1

dt (25)
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with equality if and only if ∃ζ s.t. ct = ζdt for all t.

Let ~θ(1) and ~θ(2) be two parameters. For any two alternatives ai1 and ai2 , by (25), we have

− ln(eλθ
(1)
i1

+(1−λ)θ
(2)
i1 + eλθ

(1)
i2

+(1−λ)θ
(2)
i2 ≥ −λ ln(eθ

(1)
i1 + eθ

(1)
i2 )− (1− λ) ln(eθ

(2)
i1 + eθ

(2)
i2 )

Multiplying both sides by κi1i2wi1i2 + κi2i1wi2i1 and summing over all ii 6= i2 demonstrates the concavity of (24).

To prove strict concavity, we need to check the condition when the equality of (25) holds. For all 1 ≤ i ≤ m, eθ
(1)
i = ζeθ

(2)
i .

Namely θ(1)
i = θ

(2)
i + ln ζ holds for all i. Because random utility models are invariant under parameter shifts, it is exactly

the same model. Thus, we proves the strict concavity of (24).

The proof for the condition of boundedness is also similar to that by Hunter (2004). �

Theorem 4 LetM be an RUM where the CDF of each utility distribution is strictly log-concave. Given any profile P ,
the composite likelihood function forM, i.e. CLM(~θ, P ), is strictly log-concave if and only ifW is weakly connected.
arg max~θ CLM(~θ, P ) is bounded if and only ifW ⊗G(P ) is strongly connected.

Proof: Similar to the proof for Plackett-Luce, the only hard part is to prove that whenW is weakly connected, CLM(~θ, P )

is strictly log-concave. It suffice to prove for any i1 6= i2, Pr(ai1 � ai2 |~θ) is log-concave, namely Pr(ui1 > ui2 |~θ) is
log-concave. We can write this probability as integral over ui2 − ui1 : Pr(ui1 > ui2 |~θ) =

∫∞
0

Pr(ui2 − ui1 = s|~θ)ds.

Let π∗i2(·|~θ) denote the flipped distribution of πi2(·|~θ) around x = s, then we have π∗i2(s− x|~θ) = πi2(s+ x|~θ). Therefore
we have

Pr(ui1 > ui2 |~θ) =

∫ ∞
0

∫ ∞
−∞

πi1(x|θi1)πi2(x+s|θi2)dxds =

∫ ∞
0

∫ ∞
−∞

πi1(x|θi1)π∗i2(s−x|θi2)dxds =

∫ ∞
0

πi1 ∗π∗i2ds

By Theorem 1 we know πi1 ∗ π∗i2 is strictly log-concave. We only need to prove that tail probability of a strictly log-concave
distribution is also strictly log-concave, which is shown in Lemma 1. �

Theorem 5 Given any RUMM, any ~θ0 and any profile P with n rankings. Let ~θ∗ be the output of RBCML(G,W). When
n→∞, we have ~θ∗

p−→ ~θ0 and
√
n(~θ∗ − ~θ0)

d−→ N(0, H−1
0 (~θ0)Var[∇CLLM(~θ0, R)]H−1

0 (~θ0)) if and only if ~θ0 is the only
solution to

∇ELLM(~θ) = ~0 (26)

Proof: The “only if" direction is straightforward. The solution to (26) is unique because CLLM(~θ, P ) is strictly concave.
Suppose ~θ1, other than ~θ0, is the solution to (26), then when n → ∞, ~θ1 will be the estimate of RBCML(G,W), which
means RBCML(G,W) is not consistent.

Now we prove the “if" direction. First we prove consistency. It is required by Xu & Reid (2011) that for different parameters,
the probabilities for any composite likelihood event are different, which is not true in our case. A simple counterexample is
θ

(1)
1 = 1, θ

(2)
1 = 2, θ

(1)
2 = θ

(1)
3 = θ

(2)
2 = θ

(2)
3 = 0. Then Pr(a2 � a3|~θ(1)) = Pr(a2 � a3|~θ(2)).

By the law of large numbers, we have for any ε, Pr(|CLLM(~θ, P ) − ELLM(~θ)| ≤ ε/2) → 1 as n → ∞. This implies
limn→∞ Pr(CLLM(~θ∗, P ) ≤ ELLM(~θ∗) + ε/2) = 1. Similarly we have limn→∞ Pr(ELLM(~θ0) ≤ CLLM(~θ0, P ) +

ε/2) = 1. Since ~θ∗ maximize CLLM(~θ, P ), we have Pr(CLLM(~θ0, P ) ≤ CLLM(~θ∗, P )) = 1. The above three equations
imply that limn→∞ Pr(ELLM(~θ0)− ELLM(~θ∗) ≤ ε) = 1.

Let Θε be the subset of parameter space s.t. ∀~θ ∈ Θε, ELLM(~θ0)− ELLM(~θ) ≤ ε. Because ELLM(~θ) is strictly concave,
Θε is compact and has a unique maximum at ~θ0. Thus for any ε > 0, limn→∞ Pr(~θ∗ ∈ Θε) = 1. This implies consistency,
i.e., ~θ∗

p−→ ~θ0.

Now we prove asymptotic normality. By mean value theorem, we have 0 = ∇CLLM(~θ∗, P ) = ∇CLLM(~θ0, P ) +

H(α~θ∗ + (1 − α)~θ0, P )(~θ∗ − ~θ0), where 0 ≤ α ≤ 1. Therefore, we have
√
n(~θ∗ − ~θ) = −H−1(α~θ∗ + (1 −

α)~θ0, P )(
√
n∇CLLM(~θ0, P )). Since ∇CLLM(~θ0, P ) = 1

n

∑n
j=1∇CLLM(~θ0, Rj), by the central limit theorem, we

have



Composite Marginal Likelihood Methods for Random Utility Models

√
n∇CLLM(~θ0, P )

d−→ N(0,Var[∇CLLM(~θ0, R)])

Because ~θ∗
p−→ ~θ0 andH is continuous, we haveH(α~θ∗+(1−α)~θ0, P )

p−→ H(~θ0, P ). SinceH(~θ, P ) = 1
n

∑n
j=1H(~θ,Rj),

by law of large numbers, we have H(~θ, P )
p−→ H0(~θ0). Therefore, we have

√
n(~θ∗ − ~θ) = −H−1

0 (~θ0)(
√
n∇CLLM(~θ0, P )),

which implies that Var[
√
n(~θ∗ − ~θ)] = H−1

0 (~θ0)Var[∇CLLM(~θ0, R)]H−1
0 (~θ0). �

Theorem 6 RBCML(G,Wu) is consistent for Plackett-Luce if and only if the breaking is weighted union of position-k
breaking.

Proof: The “if" direction is proved in (Khetan & Oh, 2016b). We only prove the “only if" direction.

We will prove this theorem by induction on m. When m = 2, the only breaking is the comparison between the two
alternatives. The conclusion holds. Suppose it holds for m = l, then when m = l + 1, we first apply Lemma 2 to G[2,m],
which must be a weighted union of position-k breaking. Then apply Lemma 2 to G[1,m−1]. For all i ≤ m− 1, g1i are the
same, denoted by g0. We claim that g1m = g0. The reason is as follows.

For the purpose of contradiction suppose g1m 6= g0. If g1m > g0. We split this edge into two parts, one with weight g0 and
the other g1m − g0. Let G1 = {g1m = g0} ∪ (G − g1m) , and G2 = {g1m = g − g0}. So we have G = G1 + G2. Because
RBCML(G1,Wu) is consistent and RBCML(G2,Wu) is not (Lemma 7). By Lemma 9, RBCML(G,Wu) is not consistent,
which is a contradiction. The case where g < g0 is similar. �

Theorem 7 Let π1, π2, . . . , πm denote the utility distributions for a symmetric RUM. Suppose there exists πi s.t. (lnπi(x))′

is monotonically decreasing and limx→−∞(lnπi(x))′ →∞. RBCML(G,W) is consistent if and only if G is uniform.

Proof: We prove the theorem by induction on m. m = 2 is trivial because the only breaking is uniform. For m = 3 we
know the uniform breaking is consistent and the one-edge breaking G = {g13 = C > 0} is not consistent by Lemma 8.
Suppose the breaking is G = {g12 = x, g23 = y, g13 = z}.

Case 1: x+ y 6= 2z. For the sake of contradiction suppose RBCML(G,Wu) is consistent. By Lemma 5, RBCML(G∗,Wu)
is consistent forM∗, which isM due to the symmetry of utility distributions. Applying Lemma 9 we have RBCML(G +
G∗,Wu) is consistent, where G + G∗ = {g12 = x+ y, g23 = x+ y, g13 = 2z}. If x+ y < 2z, we have RBCML(G + G∗−
(x + y)Gu,Wu) is consistent, where G + G∗ − (x + y)Gu = {g1m = 2z − x − y}. This contradicts Lemma 8. The case
with x+ y > 2z is similar.

Case 2: x+y=2z. Lemma 10 states that RBCML(G210,Wu) is not consistent where G210 = {g12 = 2, g13 = 1}. We have
G = yGu + (z − y)G210. Since any Gu is consistent, RBCML(G,Wu) is not consistent.

Suppose the theorem holds for m = k. When m = k + 1, W.l.o.g. we let π2 satisfy the conditions that (lnπi(x))′ is
monotonically decreasing and limx→−∞(lnπi(x))′ → ∞. Let θ1 = L, θm = −L, and θ2 = . . . = θm−1 = 0. So when
L→∞, with probability that goes to 1, a1 is ranked at the top and am is ranked at the bottom. Let G{1m} = {g1m = 1}.
We apply Lemma 6 to G[2,m] and G[1,m−1]. By induction hypothesis G[2,m] (or G[1,m−1]) is uniform breaking graph or
empty. If G[2,m] is empty, then G[1,m−1] is also empty. As G is nonempty, G = CG{1m}, which contradicts Lemma 8. If
G[2,m] is uniform. We denote the weight as g0. Then G[1,m−1] is also uniform with weight g0. Then the only consistent
breaking is uniform. The reason is as follows. We can write G = g0Gu + (g1m − g0)G{1m}. By Lemma 8 and Lemma 9,
RBCML(G,W) is not consistent, which is a contradiction. �

Theorem 8 RBCML(G,W) for Plackett-Luce is consistent if and only if G is the weighted union of position-k breakings
andW is connected and symmetric.

Proof: The “only if" direction: 2(c) part of the Lemma 11 states that if RBCML(G,W) is consistent then RBCML(G,Wu)
is consistent, which means that G is the weighted union of position-k breakings by Theorem 6. Then following 1(c) part of
the Lemma 11,W must be connected and symmetric.

The “if" direction: G is the weighted union of position-k breakings. For any ai, ai′ , we have
∑
i′ 6=i(κ̄ii′ − (κ̄ii′ +

κ̄i′i)
eθi

eθi+eθi′
) = 0. Because wii′ = wi′i, we have ∇iELLM(~θ) =

∑
i′ 6=i(κ̄ii′wii′ − (κii′wii′ + κ̄i′iwi′i)

eθi

eθi+eθi′
) = 0.

This means the ground truth is the solution to ∇ELLM(~θ) = ~0. AsW is connected and symmetric, it is strongly connected.
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Thus CLLPL is strictly concave, which means the ground truth is the only solution. Further by Theorem 5, RBCML(G,W)
is consistent. �

Theorem 9 Let π be any symmetric distribution that satisfies the condition in Theorem 7. Then RBCML(G,W) is consistent
for RUM(π) if and only if G is uniform andW is connected and symmetric.

Proof: The “only if" direction: 2(c) part of Lemma 11 states that RBCML(G,W) is consistent with uniformW , which
implies G must be uniform by Theorem 7. Then 1(c) of Lemma 11 implies that RBCML(G,W) is consistent for any
connected and symmetricW .

The “if" direction: Since G is uniform breaking, we have
∑
i′ 6=i(

κ̄ii′

pii′ (
~θ)

∂pii′ (
~θ)

∂θi
+ κ̄i′i

pi′i(
~θ)

∂pi′i(
~θ)

∂θi
) = 0 Because wii′ = wi′i,

we have

∇iELLM(~θ) =
∑
i′ 6=i

(
κ̄ii′wii′

pii′(~θ)

∂pii′(~θ)

∂θi
+
κ̄i′iwi′i

pi′i(~θ)

∂pi′i(~θ)

∂θi
) = 0

holds for all i. This means the ground truth is the solution to ∇ELLM(~θ) = ~0. As W is connected and symmetric, it
is strongly connected. Thus CLLM is strictly concave, which means the ground truth is the only solution. Further by
Theorem 5, RBCML(G,W) is consistent. �


