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Abstract
In many sequential planning applications a nat-
ural approach to generating high quality plans is
to maximize an information reward such as mu-
tual information (MI). Unfortunately, MI lacks
a closed form in all but trivial models, and so
must be estimated. In applications where the cost
of plan execution is expensive, one desires plan-
ning estimates which admit theoretical guaran-
tees. Through the use of robust M-estimators we
obtain bounds on absolute deviation of estimated
MI. Moreover, we propose a sequential algorithm
which integrates inference and planning by max-
imally reusing particles in each stage. We vali-
date the utility of using robust estimators in the
sequential approach on a Gaussian Markov Ran-
dom Field wherein information measures have a
closed form. Lastly, we demonstrate the bene-
fits of our integrated approach in the context of
sequential experiment design for inferring causal
regulatory networks from gene expression levels.
Our method shows improvements over a recent
method which selects intervention experiments
based on the same MI objective.

1. Introduction
In many applications of Bayesian inference one is faced
with the following challenges: (1) exact inference is in-
tractable, and (2) the cost of measurement far exceeds the
cost of inference. The former challenge is well studied,
however the latter so-called planning problem has received
comparatively little attention within machine learning. We
consider a formulation analogous to sequential Bayesian
experiment design, whereby actions lead to observations
that maximize a reward. Observations are chosen to max-
imize information gain over some latent variables, known
as information theoretic planning.
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The Bayesian perspective on information planning largely
arises from statistics with the classic work of Black-
well (1950), Lindley (1956) and later Bernardo (1979).
In these works, information rewards are considered to
quantify the expected reduction in posterior uncertainty
(Ali & Silvey, 1966). Subsequent analyses (Basseville,
1989; Bartlett et al., 2003; Nguyen et al., 2009) link
such measures to bounds on risk. More recently their
use has been considered for sensor planning (Ertin et al.,
2003; Kreucher et al., 2005; Williams et al., 2007), ex-
periment design (Drovandi et al., 2014), and active learn-
ing (MacKay, 1992; Settles, 2012).

When performing closed-loop planning over T -stages,
where observed values for an action are incorporated before
choosing the next action, the policy with highest expected
reward can be determined using a dynamic programming
approach (Bertsekas, 1995) which leverages backwards re-
cursion to reduce computational complexity. This ap-
proach has exponential complexity in planning horizon T
and combinatorial complexity in the number of action-
observation pairs. Consequently, tractable greedy heuris-
tics, which have computational complexity linear in the
number of actions and in the planning horizon, are often
applied instead.

While the greedy heuristic greatly reduces computation,
consideration must also be given to the cost of evaluating
the information reward. In many problems exact evalu-
ation of MI lacks a closed-form expression and so must
be estimated. Moreover, the ability to accurately esti-
mate rewards, and characterize estimation error, is cru-
cial to making high quality decisions. For this reason,
we propose a sample-based approach that employs M-
estimators (Catoni, 2012) to yield MI estimates that are
robust to outliers and facilitates both asymptotic and finite-
sample analysis of estimator properties. In a comprehen-
sive analysis we: formulate the estimator bias, establish
a central limit theorem and consistency, show probabilis-
tic bounds of estimator deviation for finite samples, and
present a probabilistic statement of plan quality.

Most existing work and guarantees on entropy estimation
assume nonparametric estimates of the data generating pro-
cess (Beirlant et al., 1997), for example using kernel den-
sity estimators (Paninski & Yajima, 2008) or kNN density
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functional estimators (Singh & Póczos, 2016). Our ap-
proach, by contrast, considers the Bayesian setting wherein
we utilize the specified generative model. Our estima-
tor can be interpreted as a resubstitution estimate using a
model-specific and non-stationary kernel. Finally, to re-
duce sample complexity we extend our method with a prac-
tical sequential importance sampling procedure which re-
duces computation by reusing samples drawn during infer-
ence for efficient planning.

Combining these elements we demonstrate the proposed
approach for planning in two models, beginning with a
tree-structured Gaussian MRF. The ability to perform ex-
act posterior inference in this model allows us to numer-
ically validate properties of the estimator with respect to
non-robust empirical estimation. Next we consider the in-
ference of causal regulatory networks from gene expression
data, a challenging problem where exact inference is infea-
sible. We demonstrate that our general method compares
favorably to a recent baseline (Cho et al., 2016), specifi-
cally designed for the current application, and in particular
shows large relative gains in early planning stages.

2. Robust Information Planning
In the most basic form information planning sequentially
chooses actions that maximize information gain. Actions
typically consist of measurement choices, or a combination
of measurements and interventions as in the regulatory net-
work example in Sec. 5. We begin this section with a for-
mulation of planning with the mutual information reward,
discuss its computational challenges, and present a robust
estimation procedure for information theoretic planning.

2.1. Information-Theoretic Planning

Consider a simple model with latent variables x and condi-
tionally independent observations YT = {y1, . . . , yT }. At
each time t a discrete action at ∈ {1, . . . , A} parameterizes
the likelihood, denoted pat(yt | x). Given observations YT
and actions AT = {a1, . . . , aT } the posterior is:

p(x | YT ;AT ) ∝ p(x)

T∏
t=1

pat(yt | x). (1)

We consider closed loop planning, where where observa-
tions are incorporated into the plan as they are observed.
Alternatively, planning can be performed in an open loop
manner, entirely offline (Williams, 2007). At stage t greedy
planning selects the action maximizing the posterior mu-
tual information (MI):

a∗t = arg max
a

Ia(X;Yt | Yt−1) (2)

= arg max
a

Ha(Yt | Yt−1)−Ha(Yt | X,Yt−1)

whereHa(·) denotes differential entropy under the hypoth-
esized action a. MI can be expressed in other ways; we
choose the above form only for clarity. Similarly, our
choice of conditionally independent observations in the
joint Eqn. (1) is for simplification but is easily extended to
the case where nuisance variables must be integrated out.

2.2. Sample-Based Estimate of Information

The MI objective (2) typically lacks a closed form.
In particular, entropy requires a posterior expectation
and the marginal entropy H(Yt | Yt−1) requires
evaluation of the log-posterior predictive distribution
log p(yt|Yt−1). At time t we have posterior samples
{xi, yit}Ni=1 ∼ pa(x, y | Yt−1). The empirical plug-in es-
timate of MI for each action is:

Îa =
1

N

N∑
i=1

log
pa(yit | xi)

1
M

∑M
j=1 pa(yit | xij)

. (3)

Independent samples {xij}Mj=1 ∼ p(x | Yt−1) for each
action and observation yi ensure estimates are independent.
All estimates can be computed in parallel across actions.

Naive empirical mean estimation is sensitive to outliers,
particularly in the small sample regime (Catoni, 2012). In
the next section we present a robust sample-based approach
to information theoretic planning which avoids large esti-
mator deviations and facilitates theoretical analysis of esti-
mator properties in subsequent sections.

2.3. Robust Estimation of Mutual Information

We define a pair of M-estimators of the posterior moments
in Eqn. (2). The class of M-estimators (Huber, 2011) is
characterized by the extrema of an influence function which
modulates the impact of outlier samples. We use the M-
estimator due to (Catoni, 2012) as it was developed to
challenge empirical estimation in the finite sample setting.
Given a collection of i.i.d. samples {θi}Ni=1 the estima-
tor θ̂ ≈ E[θ] is given by the solution to the root equation∑N
i=1 ψ

(
α(θi − θ̂)

)
= 0 where,

ψ(x) =

{
log(1 + x+ x2/2), x ≥ 0

− log(1− x+ x2/2), x < 0.
(4)

Here α is a free parameter controlling sensitivity to outlier
samples. The function ψ(x) is monotonically increasing in
x and has a unique root, thus making root finding efficient
with standard methods.

At time t we estimate MI for each potential action
using posterior samples {xi, yi}Ni=1 ∼ pat(x, yt | Yt−1).
Given an estimate of the posterior predictive distribution,
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p̂iat ≈ pat(y
i | Yt−1) the M-estimate of MI is:

θi = log
pat(y

i | xi)
p̂iat

, for i = 1, . . . , N (5)

Îat ⇔
N∑
i=1

ψ(α(θi − Îat)) = 0. (6)

Here we use a plug-in M-estimate of the posterior predic-
tive distribution. As before we ensure that estimators are
independent via M i.i.d. posterior samples. Our estimate
of the posterior predictive is then:

θij = pat(y
i
t | xij), j = 1, . . . ,M (7)

p̂iat ⇔
M∑
j=1

ψ(α(θij − p̂iat)) = 0. (8)

For planning we select the action a∗t = arg maxa Îa maxi-
mizing MI. By exploiting properties of the M-estimator we
are able to characterize both asymptotic and finite-sample
behavior, which we address next.

3. Estimator Properties
We begin by characterizing estimator bias and establishing
the rate of bias decay as sample size grows. Given these
results we show that the estimator is asymptotically consis-
tent and Gaussian distributed. For finite samples we show
probabilistic bounds on absolute estimation error and char-
acterize the role of estimator bias. Importantly, we con-
clude with formulating the probability of selecting an opti-
mal action in a single time instance.

Bias arises in both empirical and robust estimators from
the marginal entropy. More generally, an unbiased plug-in
estimator of p(y) will give rise to a biased estimate of the
log p(y). We begin by establishing a bias decay rate using
a Taylor expansion of the estimator mean:

Proposition 1. Let χ2(p(x)||q(x)) denote the chi-square
divergence of p from q. The bias of the empirical estimator
depends on N,M as follows:

E[ÎNM ]− I =
χ2(p(y, x)||p(y)p(x))

2M
+O(M−2).

M-estimators obey consistency and asymptotic normal-
ity under fairly mild assumptions placed on the influence
function (continuity, monotonicity, and the existence of a
unique root); for a nice summary see (DasGupta, 2008).
Having established the rate of bias decay we conclude that
M = ω(

√
N) avoids systematic bias in the limiting distri-

bution, leading to a consistent estimator:

Proposition 2. Let {xi, yi}Ni=1 ∼ p(x, y | Y) and for each
yi let {xij}Mj=1 ∼ p(x | Y) be independent samples. As

N → ∞ and M = ω(
√
N), the estimator ÎNM is asymp-

totically normal and consistent:
√
N(ÎNM − I)→ N (0, σ2

Î
)

with variance σ2
Î

= σ2
(

log p(y|x)
p(y|Y)

)
and α =

√
2/(Nσ2).

We have chosen the setting of α, the free parameter in the
influence function, for ease of analysis. In this way α→ 0
as sample size increases and, due to continuity of the influ-
ence function, the robust estimator converges to the same
limiting distribution as the empirical mean. Our choice of
this parameter is motivated by theory presented in (Catoni,
2012) and leads to the finite sample deviation bounds given
in Prop. 3.

We now establish probabilistic bounds on the deviation of
the robust and empirical estimators for finite samples. Un-
like in the general setting considered by Catoni (2012), the
existence of estimator bias (Prop. 1) leads to systematic
overestimates of the MI. For any confidence level ε > 0
we have that with probability at least 1 − 2ε the absolute
error is bounded as follows:
Proposition 3. Let N > 2 + 2 log(ε−1) and denote the
posterior predictive estimator as p̂(y;x) to make explicit
its dependence on the samples x , {xj}Mj=1. Then with
probability p ≥ 1− 2ε,

b− c ≤ ÎNM − I ≤ b+ c

where, c =


2(1+log ε−1)

√
σ2
ÎNM
2N

1+
√

1−2(1+log ε−1)/N
, Robust

√
σ2
ÎNM

2Nε , Empirical

,

and σ2
ÎNM

= σ2(log p(y|x)
p̂(y;x) ) is the sample variance and

b = Ex[KL(p(y)||p̂(y;x))] the estimator bias.

With high probability, the deviation is bounded in the in-
terval [−c, c] that is then shifted by b. While the bias takes
identical form under both estimators, its value differs based
on the quality of the respective posterior predictive estimate
p̂(y;x). As M → ∞ this bias vanishes and the deviation
becomes symmetric about the true value of MI. We con-
clude by noting that Prop. (3) also assumes α =

√
2/Nσ2

and that tighter bounds are achievable by making α depend
on the confidence level ε.

Evaluating the true value of MI is useful for quantifying
reward and is complicated due to bias, but it is not the pri-
mary goal of planning. Indeed, the value of information
is secondary to the primary focus of choosing the correct
maximizing action, or more broadly the correct ordering of
actions. The latter goal can be accomplished in the pres-
ence of bias. In fact, the probability that the correct action
is selected can be expressed as follows:
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Proposition 4. Without loss of generality, let I1 ≥ I2 ≥
. . . ≥ IA. For N � 1,

P(a∗ = 1) ≈
∫ +∞

−∞
N (Î1; I1, σ

2
1)

A∏
a=2

Φ

(
Î1 − Ia
σa

)
dÎ1

where σ2
a = 1

N σ
2
(

log pa(y|x)
pa(y|Y)

)
and Φ(·) is the cumulative

distribution function of the standard normal distribution.

The probability in Prop. 4 is not observable but confirms an
intuitive trade-off between estimator quality and informa-
tion gain as illustrated in Fig. 1. The CDF factors indicate
that low quality estimates suffice when the actual informa-
tion of the ath action differs significantly from the optimal
estimate, for example where (Î1 − Ia)/σa is large. Yet,
when MI is similar across actions, (Î1 − Ia)/σa is small
and suboptimal decisions incur little penalty due to similar
information rewards across actions. It is in the intermediate
regime, where information rewards differ moderately, that
estimator quality translates to higher information gain.

Figure 1. Asymptotic Ranking. Left: Probability of correct rank-
ing according to Prop. 4. We vary I2 from I3 to I1 where
I1, I3, I4, I5 = 6, 3, 2, 1 respectively. As I2 approaches I1, the
probability of selecting the correct optimizer P(a∗ = 1), which
depends on

(
I1−I2
σ

)
, drops as there is increasing chance of select-

ing a∗ = 2. Right: Expected information gain. While the prob-
ability of selecting the correct maximizer decreases as I2 → I1,
these actions have increasingly similar IG and the net reduction in
expected IG for choosing the incorrect optimizer is small.

4. Sequential Inference and Planning
The algorithm described in Sec. 2 requires N posterior
samples at each stage t and for each action 1, . . . , A an
additional M posterior samples are needed. Sample com-
plexity is thus O(TNAM). As a practical alternative we
propose a sequential importance sampling approach that
encourages sample reuse thereby reducing computation.

Our sequential algorithm is depicted in Fig. 2 and is mo-
tivated by sequential importance sampling (IS) for static
models introduced by Chopin (2002); a special case
of resample-and-move for dynamical systems (Gilks &
Berzuini, 2001). Drovandi et al. (2014) propose a simi-
lar approach for experimental design in model selection,
though they only consider discrete observations and rely
on the standard IS estimate of the model evidence.

M-Estimator The estimator presented in Sec. 2.3 can be
extended to importance weighted samples {θi, wi}Ni=1 by
observing the importance weighted expectation is E[θ] ≈
(1/N)

∑
iNw

iθi. The importance weighted M-estimator
is then given by the root equation:

θ̂ ⇔
N∑
i=1

ψ(α(Nwiθi − θ̂)) = 0. (9)

Eqn. (9) reduces to the unweighted M-estimator for sam-
ples drawn from the posterior, and uniform weights.

Algorithm Summary At time t given samples {xi, wi}Ni=1

we begin by sampling measurements for each hypothesized
action a = 1, . . . , A:

{yit}Ni=1 ∼ pat(· | xi). (10)

As before we assume the measurement likelihood is easily
sampled. Next, estimate the posterior predictive distribu-
tion using an independent set of M importance weighted
samples {xj , wj}Mj=1. For each measurement sample
i = 1, . . . , N the posterior predictive estimate is

p̂iat ⇔
M∑
j=1

ψ
(
α(Mwjpat(y

i
t | xj)− p̂iat

)
= 0. (11)

The plug-in p̂iat ≈ pat(y
i
t | Yt−1) value is used to estimate

mutual information at each hypothesized action:

Îa ⇔
N∑
i=1

ψ

(
α

(
Nwi log

pat(y
i
t | xi)
p̂iat

− Îa
))

= 0. (12)

Next, select the maximally informative action
a∗t = arg maxa Îa and observe the corresponding
model yt ∼ pat(y | x). Update importance weights as:

w̃i = wipa∗t (yt | xi), wi =
w̃i∑
k w̃

k
. (13)

Compute the effective sample size (ESS) as the reciprocal
sum of squared weights E = 1/

∑
i(w

i)2. If E ≥ τ , for
some fixed tolerance τ , then samples remain fixed, result-
ing in computational savings. Conversely, if E < τ then
posterior samples are moved via an MCMC kernel with the
posterior target distribution and set wi = 1/N .

Our implementation maintains separate weights and per-
forms resampling independently for both sets of posterior
samples: those used for estimating the predictive distribu-
tion {xj , wj}Mj=1 and for MI {xi, wi}Ni=1. We find that this
approach avoids frequent resampling of the entire particle
set when only a subset of weights become degenerate.
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Figure 2. Sequential Algorithm Our algorithm performs closed-loop greedy planning by alternating inference and planning stages.
Planning: samples yi ∼ pa are drawn for each potential action a = 1, . . . , A, followed by robust importance-weighted MI estimates.
Note that planning estimates can be computed in parallel for all actions. Inference: After selecting action a∗ = argmaxa Îa an
observation is drawn from the corresponding model y ∼ pa∗(y | x). Importance weights are then updated and new posterior samples
are drawn if the effective sample size (ESS) drops below the threshold τ . Numbers reference corresponding equations in the main text.

5. Experimental Results
We analyze the performance of the proposed algorithm in
two scenarios, beginning with a tree-structured Gaussian
MRF. Posterior inference can be performed exactly and ef-
ficiently under this model, allowing us to validate our the-
oretical claims from Sec. 3. We further demonstrate that
robust planning exhibits superior quality plans in the se-
quential setting, where deviation bounds do not explicitly
hold. Finally, we consider sequential experiment design
for gene regulatory network inference. Here, we demon-
strate superior estimation of regulatory network structure
prediction, with fewer interventions, compared to previous
work (Cho et al., 2016). The supplementary material also
contains a comparison to a related method for model selec-
tion (Drovandi et al., 2014).

5.1. Gaussian MRF Measurement Selection

Consider a tree-structured Gaussian MRF G = (E ,V) with
edges E , nodes V , and joint probability,∏
s∈V
N (ys | Casxs, σ2)

∏
(s,t)∈E

N
(
(xs, xt)

T | mst, Vst
)
.

Latent nodes xs are 2D Gaussian random variables and
observations ys are scalar. The likelihood model at each
node is defined over a set of random linear projections with
parameters {Ca}Aa=1. At each stage of information plan-
ning the algorithm must choose the projection maximiz-
ing Ia(Xs;Ys) at the current node in a predetermined se-
quence. The node sequence is chosen a priori and only the
current node in the sequence is revealed to the planner.

In our experiments we generate random trees with |V| = 30
nodes, each node having A = 15 randomly generated can-
didate projection operators. We draw a random sequence

of T = 25 nodes to be observed, thus not all nodes receive
measurements and the set of available projections varies
with each stage. We compare performance of the sequential
robust algorithm against an empirical estimator and naive
random selection. Our results are summarized in Fig. 3.

Robust planning yields higher information gain. Com-
pared to empirical estimation, robust planning consistently
shows higher median information gain (IG). Fig. 3 (left)
shows median and quartile IG over 100 random trials
with M,N = 50 particles. By the final planning epoch,
quartiles of cumulative information gain are nearly non-
overlapping for the two estimation methods. Overall, ap-
proximate information planning incurs a penalty of roughly
10% in realized IG under this model. Unsurprisingly, ran-
dom planning incurs a much higher penalty. Moreover, the
observed improvement remains as we vary sample size,
Fig. 3 (center). The Gaussian joint distribution is light
tailed and entropy integrals are low-dimensional (2D); that
our approach leads to more accurate information estimates
in this simple setting is encouraging for more complex
models, such as that in Sec. 5.2. In the latter case, we ob-
serve the larger benefits expected.

Less resampling yields more improvement. The accu-
racy of empirical planning degrades more rapidly than ro-
bust planning as the resampling threshold τ is reduced,
resulting in lower realized IG, Fig. 3 (right). By setting
α =

√
2/(Nσ2) in terms of the sample variance σ2 the

M-estimator better modulates the impact of outliers as im-
portance weights degrade.

Validation of deviation bound. The deviation bound in
Prop. 3 is guaranteed to hold with probability at least 1−2ε
only for the Robust estimator with i.i.d. samples from the
posterior. We verify this bound empirically for the sequen-
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Figure 3. Gaussian Sequential Planning. Analysis of cumulative information gain (relative to optimal) for each planning algorithm.
Left: Median and quartiles (shaded) of cumulative IG for 100 random trials with 50 particles. The performance difference between
Robust and Empirical concentrates over iterations with nearly non-overlapping quartiles by the final iteration. Middle: Cumulative IG
at iteration 25 for various particle counts (limits are quartiles, whiskers extremal points, and + outliers). Both estimators yield higher
IG with additional particles yet improvements from using robust estimation persists across sample sizes. Right: Various resampling
thresholds τ . IG in the non-robust estimator degrades more rapidly as the frequency of resampling decreases.
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Figure 4. Gaussian Estimator Deviations. Left-Top: Deviation
counts from 100K trials and M,N = 50 samples. Devia-
tion bounds are evaluated for a fixed MRF at confidence level
ε = 10−2 (Prop. 3) using 50M samples. Both estimators ex-
ceed the bounds at a rate less than 2ε, though empirical estimation
does so more often than robust. Left-Bottom: Distribution of ESS
at each iteration. Particles are resampled when ESS falls below
threshold (black line). Notably, the deviation bound is never vi-
olated in instances of frequent resampling (iterations 1 and 15).
Right: Empirical probability of deviations greater than the bound
in Prop. 3. When the ESS is high (iteration 1), both algorithms
perform similarly but when the ESS is low (iteration 5), Seq. Ro-
bust has lower probability of exceeding a specified deviation.

tial algorithm by evaluating the proportion of samples that
exceed it at confidence level ε = 10−2. We estimate the
bound using 50M independent posterior samples and find
the bias component b ∼ 0.01 is much less than the devi-
ation component c ∼ 0.6 of the bound. Both algorithms
violate the bound less frequently than 1 − 2ε suggesting
Prop. 3 is conservative. Results are summarized in Fig. 4.

Empirical violates deviation bounds more frequently.
Our empirical results suggest that Prop. 3 is a conserva-
tive bound, however we see that empirical estimation con-
sistently violates the deviation bound more frequently than
M-estimator based planning, Fig. 4 (top-left). Moreover,

low ESS values trigger resampling, leading to less frequent
estimator deviations as Prop. 3 holds in this scenario. Fresh
posterior samples are always drawn on the first iteration
and we do not observe any bound violations over 100K
trials as a result, Fig. 4 (top-left). Weights typically de-
generate by iteration 15 causing most runs to draw new
samples, Fig. 4 (bottom-left), and the deviation bound is
never violated, Fig. 4 (top-left). Deviations of higher mag-
nitude have outsized probability under the empirical esti-
mator when samples are reused, but magnitudes are similar
when particles are freshly sampled, Fig. 4 (right). Despite
similar realized estimates in this particular model, Prop. 3
shows tighter deviation bounds are possible for robust esti-
mation at some confidence levels.

5.2. Causal Gene Regulatory Networks

We switch focus to sequential Bayesian experiment design
for estimating causal networks of gene interaction. In this
setting we observe expression levels of interacting genes
but do not know the causal structure of interaction. Using
only network observations the underlying graph structure is
only identifiable up to Markov equivalence classes (Pearl,
2003). To recover causal relationships we perform knock-
out interventions in which a gene is removed from the net-
work by clamping its value to zero. The number of inter-
ventions that can be performed is limited due to cell degra-
dation; this motivates the use of an approach which cor-
rectly identifies the important interventions in the fewest
planning stages.

Following (Cho et al., 2016) we model the expression level
of N genes, denoted X ∈ RN , as:

G ∼ Uniform-DAG,
θj | G ∼ Normal-Inv-Gamma(αj , βj , µj ,Λj)

xj | xPa(j), θj , G ∼ N (mj + wTj xPa(j), σ
2
j ),
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Figure 5. Regulatory network inference evaluation. Sequential Robust approach shows more rapid improvement in MSE of estimated
edge weights (left), edge prediction AUPRC (center-left) and ROC (center-right) compared to (Cho et al., 2016). Plots show median
(solid) and best/worst (dashed) runs out of 50 random trials. Sequential Robust frequently resamples graphs at early iterations when
obtaining good posterior samples is critical and saves computation at later stages when information gain is negligible (right).

where Pa(j) = {p1, . . . , pd} are the parents of node j and
the network parameters θj = {mj , wjp1 , . . . , wjpd , σ

2
j }

describe gene interactions. At stage t let I denote the
set of past interventions and similarly let X be the set of
past expression levels. An intervention I ∈ {∅, 1, . . . , N}
clamps node XI = 0 and has no effect for I = ∅. Given
an intervention, expression levels are simulated from the
distribution given by the product of all non-clamped node
likelihoods. We choose the intervention at stage t + 1 to
maximize mutual information,

It+1 = arg max
I

E
[
log

p(X | G,X ; I, I)

p(X | X ; I, I)

]
. (14)

Parameters θ can be explicitly marginalized out due to
the use of a conjugate prior, leaving a closed form for
the conditional likelihood p(X | G,X ; I, I). However,
the data evidence in the denominator of the MI objec-
tive (Eqn. 14) is intractable as it requires a marginalization
over graph structures, a super-exponential operation (Sira-
cusa & Fisher III, 2009; Friedman & Koller, 2003).

We compare our approach to (Cho et al., 2016), which im-
plements sequential IS and uses importance-weighted em-
pirical estimates of the MI objective. Fig. 5 shows that
we achieve significantly better performance in early itera-
tions on all three criteria - MSE, area under precision recall
curve (AUPRC), and area under receiver operating charac-
teristic curve (AUROC). With more iterations, all methods,
including random, perform comparably as all collect suffi-
ciently many varied interventions to arrive at similar graph
posteriors and additional interventions yield little perfor-
mance gain. The robust approach is especially compatible
with this setup as it naturally resamples graphs at initial it-
erations when good posterior samples are critical and the
posterior is changing rapidly between iterations then saves
computation at less critical later stages.

To develop some understanding about the selection process
for this particular application, we show the intervention
chosen by each algorithm under 50 trials over 20 iterations

and the true graph with edge weights in Fig. 6. We note a
strong dependence between the intervention sequence with
the magnitude of the mean of each node in Fig. 6; e.g. Ro-
bust tends to select node 6 first, followed by nodes 4, 1,
and 9. Intuitively, knocking out a normally highly expres-
sive gene induces large changes in expression levels of any
children nodes provided that there is a strong edge weight.
Similarly, nodes 2, 3, and 8 have means near zero and are
rarely selected since observations from clamping such a
node would be close to observations when no nodes are
clamped.

Comparing the selection differences between the two al-
gorithms, we observe that our method consistently chooses
the same initial interventions whereas the method of Cho et
al. exhibits much more variability across the 50 trials. Lit-
tle is known about the graph structure in the early stages
and choosing the optimal intervention can yield signifi-
cantly greater performance gains over others; this is seen
in the rightmost plot which shows average realized perfor-
mance gain of each candidate intervention in the first itera-
tion. Our method consistently selects I = 6, which yields
twice the performance gain of the next best choice whereas
Cho et al.’s method chooses I ∈ {1, 4, 9} and often waits
until t = 4 to clamp node 6. MSE drops significantly after
clamping node 6, seen in Fig. 5 for our method at t = 2
and for Cho et al. at t = 5.

The concentration of the graph posterior with increasing
interventions is further illustrated in Fig. 7. Edge probabil-
ities were calculated from 100 graph samples across 50 tri-
als; probabilities≤ 0.4 were filtered to declutter the graphs.
The edge threshold was set based on the edge probabilities
from the graph prior which take values ∼ 0.3; deviations
from that level reflect changes in the graph distribution.
The edge probabilities change drastically following the ini-
tial interventions while little change is seen from the last
10 interventions. Using the same number of interventions,
our method is able to fill in more of the graph structure.
In the regime where interventions are especially costly, our
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Figure 6. Regulatory network planning. The true network structure shows edges labeled by weights wij (left). The magnitude of the
node mean in true network in the absence of any intervention (center-left) correlates strongly with selection sequence by Robust (center)
since zeroing the expression level of a highly expressive gene is expected to induce large changes. Interventions chosen under Robust
and Cho et al(center-right) from 50 trials. At early iterations Robust selects interventions consistently across trials whereas Cho et al’s
method exhibits greater variability in the selection process. In both, greater variance is seen at later iterations when the optimal choice
diverges across trials due to differences in selection history and in realized observations. The average performance gain realized after
performing the specified intervention at t = 1 (right) indicates that clamping node 6 is by far the optimal choice.
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Figure 7. Edge probabilities. Top-Left: Edge structure of true graph. Bottom-Left: Graph prior. Top Row: Sequential Robust. Bottom
Row: Cho et al. Edge probabilities ≥ 0.4 indicated by arrow thickness were calculated from 100 graph samples across 50 trials.
Graph prior has no edge probabilities above the threshold. First five interventions identify many edges with strong weights; next five
interventions refine the graph posterior by identifying additional edges; last 10 interventions do little to update the graph posterior.

method would be able to achieve the same performance us-
ing much fewer interventions.

6. Conclusion
We have presented and analyzed a robust sample-based ap-
proach to information based planning. In our analysis we
have characterized both asymptotic and finite-sample be-
havior, thereby providing assurances of estimator quality
and, consequently, guarantees on the correctness of action
choices for sequential planning. Our extension to sequen-
tial importance sampling not only reduces sample complex-
ity, but is motivated by our analysis of the robust estimator.
Indeed, as importance samples degrade they tend to fail in
the tails of the target distribution, where we expect the ro-
bust estimator to outperform the empirical.

On tractable Gaussian MRF models we observe consistent
benefits of robust planning over empirical. Moreover, ro-
bust planning is more resilient to reduced sampling rates.
On the more challenging problem of estimating gene inter-
actions, our approach outperforms that of (Cho et al., 2016)
when optimizing identical MI reward. This finding is de-
spite the previous method being targeted to the application
in question. The performance difference is greatest at early
iterations which is when the benefits of planning are often
greatest.
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