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A Structure of This Document

This document gives some other necessary notations and preliminaries for our analysis in Sec. B.1 and provides auxiliary
lemmas in Sec. B.2. Then in Sec. C, we present the technical lemmas for proving our final results and their proofs. Next, in
Sec. D, we utilize these technical lemmas to prove our desired results. Finally, we give the proofs of other auxiliary lemmas
in Sec. E.

As for the results in manuscript, the proofs of Lemma 1 and Theorem 1 in Sec. 3.1 in the manuscript are respectively
provided in Sec. D.1 and Sec. D.2. As for the results in Sec. 4 in the manuscript, Sec. D.3 and D.4 present the proofs of
Theorem 2 and Corollary 1, respectively. Finally, we respectively introduce the proofs of Theorem 3 and Corollary 2 in
Sec. D.5 and D.6.

B Notations and Preliminary Tools

Beyond the notations introduced in the manuscript, we need some other notations used in this document. Then we introduce
several lemmas that will be used later.

B.1 Notations

Throughout this document, we use (-, -) to denote the inner product and use ® to denote the convolution operation with
stride 1. A ® C denotes the Kronecker product between A and C. Note that A and C in A ® C can be matrices or vectors.

For a matrix A € R™*"2, weuse [|[Allp =1/, A?j to denote its Frobenius norm, where A;; is the (i, j)-th entry of

A. We use ||Al[op = max; |A;(A)] to denote the operation norm of a matrix A € R™**"1, where \;(A) denotes the i-th
eigenvalue of the matrix A. For a 3-way tensor A € R***X4_its operation norm is computed as

Allop = sup (A", A) =S A, N,
| ||op \IM|2S1< > Z Jk Nk

ig.k

where A, 5, denotes the (4, j, k)-th entry of A.

For brevity, in this document we use f(w, D) to denote f(g(w; D), y) in the manuscript. Let w;) = ('w(li); e w(d;)) €
RFi*di-adi (; = 1 ... |]) be the parameter of the i-th layer where w(;) = vec (W("z)) € RF:*di-1 is the vectorization
of W(’j). Similarly, let w4 1) = vec (W41)) € R€ddi1 Then, we further define w = (w1, -+ , Wy, wit1)) €

L o . . . . . . .
Rricididiyi+3iy ki*di-1ds which contains all the parameter in the network. Here we use W(’j) to denote the k-th kernel in

the i-th convolutional layer. For brevity, let W(kl)] denotes the j-th slice of W(’j), ie. W(]Bj = W(’j) (5,5 7).

For a matrix M € R5*?, M denotes the matrix which is obtained by rotating the matrix M by 180 degrees. Then we use
d,; to denote the gradient of f(w, D) w.rt. X;):

6i:vX(i)f(w,D)eRriXCiXdi, (1217 7l)7
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Based on §,, we further define g € RFi-1—kit)x(Cimai—ki+1)xdiEach slice 6’“ 1 can be computed as follows. Firstly, let
5f+1 = &F " 1. Then, we pad zeros of s; — 1 rows between the neighboring rows in 61 ", 1 and similarly we pad zeros of s; — 1
columns between the neighboring columns in &% i+1- Accordingly, the size of 6f+1 is (si(ri — 1)+ 1) x (s;(c; — 1) + 1).
Finally, we pad zeros of width k; — 1 around 5Z+1 to obtain new 8% k€ ROilrimD)+2ki=1)x(si(ei=D+2ki=1)  Note that

since ;41 = (75 — kiv1)/Sit1 + Land 1341 = (7 — kig1)/Si41 + 1, we have s;(r; — 1) +2k; — 1 =7;_1 — k; + 1 and
Si(Ci — ].) + 2]{5@ —1= 51',1 — kl + 1.

Then we define four operators G (-), Q(+), up (-) and vec(-), which are useful for explaining the following analysis.

Operation G (-): It maps an arbitrary vector z € R? into a diagonal matrix G (z) € R%*? with its 4-th diagonal entry
equal to 01(2;)(1 — 01(2;)) in which z; denotes the i-th entry of z.
Operation Q (-): it maps a vector z € R into a matrix of size d?> x d whose ((i — 1)d +14,i) (i = 1,--- ,d) entry
equal to o1 (2;)(1 — 01(2;))(1 — 201(2;)) and rest entries are all 0.

Operation up (-): up (M) represents conducting upsampling on M € R***9, Let N = up (M) € Rps*ptxaq,
Specifically, for each slice N (:, :, ) (¢=1,---,q), we have N (:,:,4) = up (M (:,:,4)). It actually upsamples each
entry M (g, h, 1) into a matrix of p? same entrles pl Mg, h,1).

Operation vec(-): For a matrix A € R**!, vec(A) is defined as vec(A) = (A(:,1);---; A(:,t)) € R that
vectorizes A € R**" along its columns. If A € R**5*? s a 3-way tensor, vec(A) = [VeC(A( ,1));vec(A(,:
,2)),--- ,vec(A(:,:,q))] € R,

B.2 Auxiliary Lemmas

We first introduce Lemmas 2 and 3 which are respectively used for bounding the ¢2-norm of a vector and the operation norm
of a matrix. Then we introduce Lemmas 4 and 5 which discuss the topology of functions. In Lemma 6, we introduce the
Hoeftding’s inequality which provides an upper bound on the probability that the sum of independent random variables
deviates from its expected value. In Lemma 7, we provide the covering number of an e-net for a low-rank matrix. Finally,
several commonly used inequalities are presented in Lemma 8 for our analysis.

Lemma 2. (Vershynin, 2012) For any vector x € R, its {3-norm can be bounded as

1
[EZPIS sup (A, x) .
— € e

where Ae = {1, ..., A, } be an e-covering net of BY(1).
Lemma 3. (Vershynin, 2012) For any symmetric matrix X € R*? its operator norm can be bounded as

1
X < A, XA).
1 Xllop < 7= sup [\ XN
where Ae = {1, ..., A, } be an e-covering net of B4(1).
Lemma 4. (Mei et al., 2017) Let D C R? be a compact set with a C? boundary 0D, and f,g : A — R be C? functions
defined on an open set A, with D C A. Assume that for all w € 0D and allt € [0,1], tV f(w) + (1 — ¢)Vg(w) # 0.
Finally, assume that the Hessian V? f (w) is non-degenerate and has index equal to r for all w € D. Then the following
properties hold:

(1) If g has no critical point in D, then f has no critical point in D.

(2) If g has a unique critical point w in D that is non-degenerate with an index of r, then f also has a unique critical
point w' in D with the index equal to 7.
Lemma 5. (Mei et al., 2017) Suppose that F(w) : © — R is a C? function where w € ©. Assume that {wy), ..., W)}
is its non-degenerate critical points and let D = {w € © : |VF(w)||, < € and inf; ’/\ (V2F(w))| > ¢} Then D can
be decomposed into (at most) countably components, with each component containing either exactly one critical point, or
no critical point. Concretely, there exist disjoint open sets { Dy} ken, with Dy, possibly empty for k > m + 1, such that

D = Ul?;le .

Furthermore, w(r) € Dy for 1 < k < mand each D;, k > m + 1 contains no stationary points.
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Lemma 6. (Hoeffding, 1963) Let x1,- - - , x,, be independent random variables where x; is bounded by the interval [a;, b;).

Suppose s, = + Z?:l x;, then the following properties hold:

T n

2n2¢?
i=1\V1 i

where t is an arbitrary positive value.

Lemma 7. (Candes & Plan, 2009) Let S, = {X € R™*"2 : rank(X) < r,|| X || = b}. Then there exists an e-net S,
for the Frobenius norm obeying

N 9 r(ni+n2+1)

®A§(6> .

Then we give a lemma to summarize the properties of G (+), Q () and up (-) defined in Section B.1, the convolutional
operation ® defined in manuscript.

Lemma 8. For G(-), Q(+) and up (-) defined in Section B.1, the convolutional operation ® defined in manuscript, we have
the following properties:

(1) For arbitrary vector z, and arbitrary matrices M and IN of proper sizes, we have

1 1
IG(M|F < 5 IMIF and NG (2)lIF < 5 INIF-

(2) For arbitrary vector z, and arbitrary matrices M and IN of proper sizes, we have

26

lQ@MIE < |

26
|M|f% and [[NQ(2)|% < 3*8||N||%~
(3) For any tensor M € R****4 e have

1
lup (M)|7 < EIIMII%.

(4) For any kernel W € RF*<kixdi qpq §, | € R(Fim1 =kt )x(eica=kit )xdi dofined in Sec. B.1, then we have
18; 1 @W [ < (ki — 55 + 1)* W[ E10:41 117

(5) For softmax activation function o2, we can bound the norm of difference between output v and its corresponding
ont-hot label as

0<fo—yl;<2
It should be pointed out that we defer the proof of Lemma 8 to Sec. E.

C Technical Lemmas and Their Proofs

Here we present the key lemmas and theorems for proving our desired results. For brevity, in this document we use f(w, D)
to denote f(g(w; D), vy) in the manuscript.

Lemma 9. Suppose that the activation function o1 is sigmoid and o+ is softmax, and the loss function f(w, D) is squared
loss. Then the gradient of f(w, D) with respect to w;y can be written as

vW(I,+1)f(w7 D) :S(’U - y)z(j;) € Rdl+1x;léldl7
VW(k’)Jf(w7D) :Z(jlfl)égf € Rkiina (] = ]-7' o 7di71; k= 17' o 7d27 i= 17' o 71)7
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where 8F is the k-slice (i.e. §,(:,:,k)) of 8, which is defined as
8, =Vx, f(w,D) e R>¥xd  (j=1...1),
and further satisfies

L+1

i _Up Z 6z+1® (z-‘rl) QUi(X(Z)) eERM* (j=1,- disi=1,-,1-1),

where the matrix W( T

Vuf(w, D) = S(v—y) € R+, Ve f(w, D) = (Wi 1)"S(v - y) € RN,

€ RFEi+1xFit1 i obtained by rotating W( j_l) with 180 degrees. Also, §, is computed as follows:

L 0 D
Vz, f{w, D) =reshape (V. f(w, D)) € R*<4, 60 () o p ( L2 ) ¢ e
@)

where S = G (u).

Proof. We use chain rule to compute the gradient of f(w, D) with respect to Z ;). We first compute several basis gradient.
According to the relationship between X ;), Y(;), Z(;) and f (w, D), we have

Vuf(w, D) = S(’U _ y) c RdH»l’
Vz(l)f(UJ, D) = (W(l+1))TS(’U _ y) c Rﬁéld17
Vzq, f(w, D) = reshape (V. f(w, D)) € R*@xd,

oYy 0Zyy 0f(w,D) <
=07 (X ®u
Xy Yy 0Z) 1(X@) ©up

0f (w, D)
aZ(l)

Vx, f(w,D) = ) 2§, e RIxeixdi,

Then we can further obtain

dit1

—Up Zéz+1®w(77-&]-1) ®01(X(2)) € Rxe, (]:17 sdizi=1,-- 71_1)'

by 180 degrees to

where ﬁ\/k’j denotes the j-th slice ﬁ\/(lz)( 5 j)of 1/7[7(’;) Note, we clockwise rotate the matrix W( h1)

obtain W( ’il) Finally, we can compute the gradient w.r.t. W(;; ) and W@ (i=1,--- 1)

vW(L+1)f(waD) :S( - )Z(T;) € RdH—lXﬁEZdla
VW(k>7f(waD) X] 1)@36’C Rk Kk (jzl7ad1—17k:15adu?':lavl)

The proof is completed. O

Lemma 10. Suppose that the activation function o1 is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Then the gradient of f(w, D) with respect to w;y can be written as

9 dig1bis1 (kivt — Sip1 + 1)2 2 Obs1? o dsbs? (ks — 55+ 1)2
2 2 2 1+1Yi41 i+1 i+1 1+1 sUs s s
||6lHF S FprI“Fl ’ ||67,||F S 16p2 H iJrlHF’ ||6Z||F - 16p2 Sg_l 16p2 ’
where 9 = 1/8.
Proof. We first bound §,. By Lemma 9, we have

of(w,D)\|* @ 1 |8f(w,D)|? 1 ||of(w,D)|?

I8, = | (X o up (XL PNy | 2 L flofw. DY L o7 tw. D)
8Z(l) 16]9 6Z(l) F 16p 8,2([) 9

1 2® ¢
= 16p? |(Wien) " S(w =), < F]ﬂbl+12a
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where @ holds since the values of the entries in the tensor o} (X)) € R"*¢* belong to [0, 1/4], and the up (-) operation

does repeat one entry into p? entries but the entry value becomes 1/p? of the original entry value. @ holds since we have
|S(v —y)||3 < 1/8 in Lemma 8.

Also by Lemma 9, we can further bound ||87 |2, as follows:

d; d; 2 1 d; dit1 2
, e~k
LAEEDS ’ =Y |up Z S EW | 00l(X))| < 1652 > S ®Wiih)
j=1 j=1 - j=1 || k=1 »
i dit1 o di dit1
dit1 ST H dit1(kit1 — sip1 +1) 5 H2 Hﬁ\/k,j H2
< H—l +1) = 2 i+l (i+1)
16p o F 16p o ot F F
o dit1(kig1 — sip1 +1)? & 2 dip1bipr (kig1 — sig1 +1)?
= 62 meﬁmmus o2 [

where W( il) denotes the j-th slice W(z +1)( ,1,7) of the tensor W(’; +1)° @ holds since we rotate the matrix W(’zﬁl)

by 180 degrees to obtain W(’g_H), indicating ||W(’zj_1) % = ||W(]jj_1) |2 and Zj'zl HW(’;]_D H HWz+1) H < b’

Accordingly, the above inequality gives

l 2 2
2 dz lbi 12(k1 1~ Sit1 + 2 dsbs (ks — Ss + 1)
o <t Wheet Zon FOT 52 < ] e

2
16p s=i+1 P

2 1 2 . 2
<'l9bl+1 H dsbs (ks Ss + 1) )
— 16p2 et 16p2

The proof is completed. O

Lemma 11. Suppose that the activation function o1 is sigmoid and o4 is softmax, and the loss function f(w, D) is squared
loss. Then the gradient of f(w, D) with respect to W 1) and w can be respectively bounded as follows:

HVW(Hl)f(va)Hiﬂ < 9red,  and ||wa(waD)||§ < 52a

1/2
_ s [ga = I b 2diy I dab(ka—sa+1)
where 9 = 1/8 and § = {ﬁrlcldl +> i Wriflciflns:iT .

Proof. By utilizing Lemma 10, we can bound

l d; di—1 1 d; di—

SIPWERTFSS 95 9 of LIRS 9 op ol EEE

: (1) :
i=1 i=1 k=1 j=1 i=1 k=1 j=

® 1 dy di1

=D D) D) BRI P (1
i=1 k=1 j=1
d; di—1

<ZZZTZ 1CL1]€—S +1 HékHF

i=1 k=1 j=1

< Zfifléifldifl(ki — 5+ 1)? H@llfw
i=1

- ~ b 2 ! dsbs2 ks —ss+1 ’
< E Fi1@iadii (ki — s+ 1)° 1(?2;; H ( 16p )
2 s—it1

l 2 2
Ibo12d; dsbs” (ks — 1
_ 141 e Sl i— 1 i 1Cio1 s0s ( : Ss + ) 7
Z p2b;2d; SI:IZ. 16p?
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where @ holds since H Z{Fl)@)dl"“
belong to [0, 1].

2 .
R < (kj—s;+1) HZ(Z D H Héf Hi,, and @ holds since the values of entries in ZfH)

On the other hand, we can bound
||VW<Z+1>f(w D), = HS v - Z(z)H < UG d;.

So we can bound the /5 norm of the gradient as follows:
2« 2
2
[V f(w, D) || = ||VW<1+1>f(w7w)||F+Z [V, £ (w, D),

Iy 2d;— dsbg?
<’L97’lCldl+Z l—;; 2d ! Ti—1Ci— 1H ) .

The proof is completed. O

Lemma 12. Suppose that the activation function o is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Then for both cases, the gradient of (i) with respect to w;y can be bounded as follows:

2

ovec (X , ) oz, .. |2 i 2 2
(1) () ~ ~ 2 dsbs (ks — S5+ 1)
_ 7 = || ——=% < d;ric;Ti_16i_1di_1(k; —s; +1
a’l,U(J) Haw(J) F = et 1( ’ K i ) S:EE»I 16p2
and
0 X ’ 2
vec( Si) o, b2k — s 4 1)2
max 87() = max A S Ticifj—léj—ldj—l(kj — Sj + 1)2 H 5 ( 51‘6 255 ) .
s W) . s Wil g s=it1 j2
<9X(ki>(s,t)

Proof. For brevity, let X(ki) (s, t) denotes the (s, t)-th entry in the matrix X(ki) € R" % Wealsolet g, .\ = X

RrmXem*dm Sq gimilar to Lemma 9, we have

d7n+1

?i,m) =up Z ¢I(€i7m+1)®W(m+1) © o (lem)) c erxcm, (q =1,--- )dm)7
=1

where the matrix W(I:;Lqﬂ) € RFm+1xkm+1 i5 obtained by rotating W( o

1) with 180 degrees. Then according to the
relationship between X ) and W( j)» We can compute

8X(ki)(s, t)

aW(g.’)h - ®¢(1J) € Rijkj7 (h=1,-- dj1;9=1,-- ’dj)'
J

Therefore, we can further obtain

2 g 2 4 d; dj_y
B Kl Bl s DR
X" _ 24 Zo5n bon®el,|
Owgj) =1 et 6W<9J>L Foo9=1h=1 aW(Z) Foo9=Llh=l i
d; dj_
<Y =+ 072l o], < - s+ 02|26 |60
g=1 h=1
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On the other hand, by Lemma 9, we can further bound [|¢; [|% as follows:

2
1n ’m+1
[ *Z [t =30 Jop | 22 B <m+1>) ©oi(X
q: F
2
m m+1 dm m
_16p2 Z Z d)(l m+1)® (m+1) = Z Z (m+1)HF
g=1 = F q=1 k=1
dm+1(km+1 — Sm+1 + 1 Im TR
= Y Z B [P

T ZW I e b
- 7,m—+1 m—+1
’ F F

16p?
<dm+1bm+12(km+1 - 5m+1 2
— 16p2 ¢ 7 erl)
where @ holds since [ Wi, |3 = ||W(’ﬁ;f+1)|| . It further yields
2 2 db (ks —ss+ 1) @ o debs (ks — s+ 1)2
Hqs(z m) < H(b(i,i) H 2 = H 2 .
F F o 16p s 16p
OXE (s,t) 2
where @ holds since we have Hd)(i’i) 3()1(7)“ =1.
Therefore, we have
9k, 2 ri o |lgxk (5,1) 2 i C
(@) H\>
G| (O &_1d;_1 (k; s+1H¢ H
I j—16j—1045-1 J 7
owg) |, ;; owg) |, 821; )

2

=riciTj-16j-1dj-1(k; — s; +1)? H¢(i,j)HF

ST‘iCifjfléj,ldjfl(kj — S5 + ].)2 H
s=j+1

dsbs® (ks — 554 1)2
16p2

It further gives

g

O O dobs? (ks — 55+ 1)2
() (O} sbs” (ks —ss +1)
= < d;ric; d;i—1(k; 1 .
H 8w(J) F o os=1 8'w F rieitit ! Sy ) —JHH 16p?
The proof is completed. O

Lemma 13. Suppose that the activation function o1 is sigmoid and o4 is softmax, and the loss function f(w, D) is squared
loss. Then the gradient of §; with respect to w;y can be bounded as follows:

l

08 |I°_ Obyys? 2 o dsbs® (ks — 55 +1)?
< W Hd 1&adioa(ky — s+ 1% ]
Hﬁw(j) o 16p2 H -+ || g ITICITj—1C5—10;5 1( i — S; + ) A 16p2
and
8(51 2 ’l§bl+14 - ~ 2 l dsbs2(ks — Ss + 1)2
< d _1Ci_1di_1(k; —s; +1
Hawm e riema&oadially =017 ] 162

s=j+1

where 0 = 3.
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Proof. Assume that W(l+1) = [W(11+1)v W(21+1)7 e W(l+1)] where Wl+1) € Ré+1X71% js a submatrix in W;.1y. Then

we have v = 05(3% 1 W( ; +1)z(l)) For brevity, we further define a matrix G/, as follows:

G(k):[(f’l (m(k)) 7a"l (;p(k)) e 70/1 (33(19))} c RTkadeTka’

T CE columns

Then we have

0 0 ,D s s
0z ( fg:sl )> = {(U - y)T ® (W(z+1))T] Q(u)Wgy) + (W(z+1))TG (w)G (w)Wiiy1),

where Q () is a matrix of size d | x dj41 whose (s, (s — 1)di41 + s) entry equal to o1 (u,)(1 — o1 (u,))(1 — 207 (us))
and rest entries are all 0. Accordingly, we have

821) (afé:%)D)) H =2 (H [(v -y @ (W(7+1))T} Q (U)VV(ZH)HTD + H(W(éiﬂ))TG (u)G (U)W(lJrl)"i)

26 2 s 2 2 1 s 2 2
<2 (55 o = ylls [ Wit | W I3+ 162 | Wen | 1Wasn 17

® /97
£ (g,

_64bl+1 HWHUH

where we have [|v — yIva < 2 by Lemma 8. Then by similar way, we can have

08 |7 o (of(w,D)\ dzq oy, dza 3 o llees |12 || 2@
0 ~ o 0z By ) 0 S Gax 162 ! HWUH)H B
Wil g 2(1) 220 Y1 0y OW(j) * 10p FllOW3 ) [l g
l 2 2
3 AT o ) dyb? (ks — s + 1)
Smblﬂ HW(GzH)HFdlrlc”"j—lcj—ldj—l(kj_547“"1) 1T 1652

s=j+1

Therefore, we can further obtain:

diy1 2 l 9
08, |I? 067 3 dsbs? (ks — 55+ 1)2
= < b dl’l’lClT Ci_1d; k —si+1 .
6w(j) r o a’w(j) P 64 * 16p2 + Jm15 1% i J ) El 16p2
The proof is completed. O

Lemma 14. Suppose that the activation function o1 is sigmoid and o4 is softmax, and the loss function f(w, D) is squared
loss. Then the Hessian of f(w, x) with respect to w can be bounded as follows:

Ve (w. D) <0 ().

1/2
2
Vb4 12d 2(fy— 2 . . .
where v = (blt‘ld"’ 01272¢2 [Hls:1 dsb, gi;?pszsi) ] ) . With the same condition, we can bound the operation norm of

V3, f(w, D). That is, there exists a universal constant v such that || V3, f (w, D) HOp <v

Proof. From Lemma 9, we can further compute the Hessian matrix V2, f(w, D). Recall that wﬁ.) € Rk:*diz (k =

1,---,d;) is the vectorization of W(’z) € RFexkixdio1 o w@.) = {vec (W(li)(:,: 1)) s :ovec (Wg;(:, :,di_l))}.
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Let we) = [w(lz)7 R ’w?zl) c Rk,:2d,;—1 xd; (Z =1,

matrix W, 1y. Thenif 1 <4, j < {, we can have

J1). Also, w4q) € RM@ddi+1 s the vectorization of the weight

[ _9°f(w,D) [ o(vec(2(;_,,@8F)) T
dw () dwey T owg,
0*f(w,D) d(vec(Z2_,,®8F))
82f(w D) _ Bw(j)aw?{f o dw ;)
Owis) Owsy 5 :
2 di1 =%k
*f(w D) _ o (vec( 2z~ @8"))
Ow(jydw ;) " | L dwj) J (4)
1) 2(vee(Zi-y))) ( )‘9("“(5 )T
" () ey D] e
5k o(vec(Z(;_y, ( 2 )6 vec(d
_ P1 (6Z> w(j) +P2 Z(Z ) dwgy € REi*dim1xk;?d;jd;
~ a(vec(dejl)) ds a(vec(gk))
k (i-1) i :
_Pl (51) ow(j) +P2 (Z(i—i)> owgy

d7,1
(i—1)

the vectorization of (Sf)T at the right position and the remaining entries are Os, and each row in P» (Z (Z.fi)) is the

where P, (gf) € RF*XFi-1@i-1di-1 gpq P, ( ) € RFX (Fihit1)(&i—kit1) satisfy: each row in Py (5"3) contains

submatrix in Z Ei;_‘ll) that need to conduct inner product with gf in turn. Note that there are s; — 1 rows and columns between

each neighboring nonzero entries in [N which is decided by the definition of gi 11 in Sec. B.1. Accordingly, we have

2 o »
o (Sf) o) (vezguz(;: 1))) < (ki — 50+ 12|35 )% 9 <V62£UZ(;;1))) (ke — s 12|65 9 (vec;EUZ(;l)»
r F
and
oF ’ &k 2
P (ZZZ;))W < (ki — s+ 12020 |3 8(\/;;((51)) — (ki — s+ D2 251 2 WH
F
Then in order to bound
2 1+1 1+1 ) 2
V3% f(w, D)|[7 = Z}; aw(J)aw()

we try to bound each term separately. So we consider the following five cases: [ > ¢ > j,i: < <L I+1=17> j,
l+1=j>dandl+1=1=3].

Casel: [ >i>j
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In the following, we first consider the first case, i.e. ¢ > 7, and bound

2
vec 6’“ (vec (6%)) ’ ) H, i
_ vec |up &L EWT | ool (XE)
dw) 3’%) H dw() ; T v -
2
) dit1 ! k 2
® 92 diy —.k +1 =k BUI(X(z))
<— vec (up 8 W +2jup 8 W - ye—
16 || w,) ; (i+1) i ; Ty 9w
9 6 dit1 k 111% dit1 * 2 aVGC (Ol(ml(cl))) aw’({:) ’
- vec 5 WS 8 BW :
16p? || dwj Z Wi Z Wiy Oz Owg)
1lF F F
® 2 ) [diss 117 o6 ||%it2 axk |?
s,k s s,k (7)
S16;02 8w(j)vec 267+1®W(1+1) 26,+1®W(1+1) w(j)
4 IIF
diga s |12 dit1 5
2,41 S 968 2. 26 ok X,
< 167 (kix1—8i+1+1) Z ||W(7+1)||F (“)w+-1 + 352 dit1 (ki1 —sip1+1)? Z HW(7+1)H ’ ’HH aw(-)
o) || g = ) || g
d; dit1 2
@ 2d;i 11 ~ 085, || 229 2 aX(Z)
:Tp?(klﬂ sip1+1) Z W, +1)||F Dwy,) F+ 35,2 dit1(kiv1—sit1+1) ; H +1)H ||6z+1| dw;)
)

@ holds since X (ki) is independent on w ;) and the values of entries in o7 (X (kz)) is not larger than 1/4 since for any constant

a,o'(a) = o(a)(1 — o(a)) < 1/4. @ holds since for arbitrary tensor M, we have |[up (M)||% < || M % /p? in Lemma 8,
and we also have

ovec (a’(m%)) ‘%1&) ( ) )aw 26 350'&-) ’ ‘9Xé) i
Ol Owg || W) ow) F19wo) | )

® holds since we can just adopt similar strategy in Eqn. (4) to separate ﬁ\/(s’k 1 and the conclusion in Lemma 8; @ holds

since the difference between &° 711 and &7, is that we pad 0 around §; ; to obtain éfﬂ, indicating ||65, (|3 = H51+1 [|%.

Accordingly, we can further bound

~ 2 2
98, 7(1"2‘:1 0 (vec (6F))
8'[,0(] 1 811)(] s
di—1 dit1 2 di—1 dit1 2
2d; 11 . ok 063, 226 2 X
<——— 1672 (kix1—Sit1+1) Z Z ||WlJrl % 8'w -l- 35,2 dit1(kig1—8i41+1) Z ‘ +1)H H52+1HF Jw, )
k=1 s=1 k=1 s=1
d1+1 2 k
2d; 41 98¢, 2.26 ) 2 8X<1-)
<20 (e — 5541 +1) w, : disy (kis1—sip1+1 |Wen ||
- 16p2( 1St +1) ;H zJrl)”F + 35p2 (ki1 —sip1+1)* | Z+1HFmaX (i+1) || , A w |
2
© 2d;41 86, |> 226 2 OX(;
< 15;2 (kig1—Si41+1)%big 673 i 3Tp2di+1(ki+1_5i+1+1)2bi+12H‘si-i-lHFm,?‘X aw((j;
®2d; 1, 2y 2|08 ||P | Obia®diy l—ld oby? s§+1)
< kit1—si 1)%b; o TiC ;
> 16p2( i+1—Sip1+1)"big1 dw;) F+ 302, zd iCilj—1Cj—1
2 x5 |12
where @ holds since we have W )[lr < ru; @ holds due to the bounds of 1611 HF and aw(@; in Lemma 10
J
F

and 12.
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Then, we can use the above recursion inequality to further obtain

8w(j) F
i+1 2 l 2 2
2ds 2d; 42 2 8(5-+2 19bl+1 di_q b (ks—ss—i—l)
< (ks_ss+1)2bs2‘| 22 (kiva—siya+1)2bits . L 1Ci 1Tt 1Ci
LHH(S}P 16p2 (911)(]') P 3p2bj2dj 31]]: 16p2
Obyr2dj Ldgb,? (ks — s+ 1)2
3p2bj2dj R 1H 16p?
l 2 l 2 2 i+1
2d ol Vb 1°d; 1 dsbs“ (ks — 55+ 1) 2d 9, 2
< (ks—ss+1)%b,? ! i 1cj-1 TiCi + Ti41Cit1 —— (ks—s55+1)7bs
32116792 wi)llp  3p2bPd; T 1 16p> Szll 16p?
i+2 I
2d 2d,
+7i12Ci+2 [ H T6p — (ks—ss +1)%3% | + -+ 1 H 16p — (ks—ss +1)2b, H .
s=i+1 s=i+1
By Lemma 13, we have
06, || dbqd, deby? (ks — 55+ 1)2
H(‘? LIl < P ey 11-[ “( - ) 7
wi)llp — p?b7d; P

where ¥ = 2. Thus, we can establish

08, ||° _Obisid;y T L dyb2 (ks — 55+ 1)2 | 1y doby2(ks — 55 + 1)2
4 < J reo1Ci *+b QdTC sYs S s sUs s s )
Haw(j) s p2bld; TTTH|3 M 1”52111 16p2 EIJ 16p2
where 7 = r;¢; +Ti+1ci+1[ iEH%(ks—sﬁ—l)gbsz} +- g {Hiziﬂ %(ks—ss—i—lﬁbsz}. It further gives the
2
bound of H fﬂ# H as follows:
w ;) Owe) || g
2
2 ) ) S
92 f(w, D) ||? 02 f(w, D) L& i 3(Vec (X@ 1))) d (vec (6%))
Bw ;)0 - - PL(O))——5 P2 (Xfi—n) 9
w(;)Ow) || dw ;) Owp;, Pt w(j) W)
di-1 d; 8(vec (X )) k
(i—1) vec 6
<2 P1 i)'f P2 (i—
kzls; (&) w;) ( 1) 31%)
a0l (x1) : Jowee (e
SRS Sl [ COM IATPOIN  liaia)
k=1 s—1 w(j) - F owj)
a( X ’
VGC( i—1 )) 2 119 (vec (8.))||?
<2(k;—si+1)% [ [16,]% el /b Y %
W(j) . W(j) F
03y iy li[dsbf(ks—ssﬂ)? e a2 vec @)
= bizbjzdidj 1—16i—175-1C5 IS:H_I 16p2 1—16;—-105—-1 811](7) -

l 2 2 l 2 2
@ | Obyi’di1d;y dsbs® (ks — 55+ 1) 2dbs* (ks — 55 + 1)
o bindeidj AR 16p 16p?

s=j s=¢
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where @ holds because of Lemma 12, while @ holds due to 13.
Case2:: < j <l

T
Since M is symmetrical, we have é‘? J(w, X )) = <§:f(lg£))) (1 <4, <1). Thus, it yields
WG i

8*f(w, D) 0*f(w, D)
8’(17(7;)8117(]-) F 8w 811)()

Case3:l+1=i>

In the following, we first consider the first case, i.e. cross entropy and softmax activation, and bound

2
82f Z(l 8z(l (95(3 oz ov 82(1) 8m(l)
= (|Ir,g4 @ (v—1y zy ® I
“6w(])aw(l+l || aw(J) - [ 71 crdy ( )] 8w(l aw j) [ (l) dl+1} 8z(l 833 l) 8’LU(J) h
; ’ 833 U
Up ([ F1¢d; Y ('U - y)] + [z(l) ® Idz+1] dlag (02(u>) W(l+1 ) ® G aw( )
J
where G ;) is defined as
G(l):[gll (m(l)) 70-3 (5'3(1)) o ’0—/1 (a:(l))} c Rmczdzxrlcz.
r1c; columns
Thus, we can further obtain
82f('w D) 2 8:1:(l)
: 71 - I dia W,
Haw(j)aw(l+1) - 16p2 H ady @ ('U y)] [ ) & d1+1] 9(0'2( )) (141 HF 8w(j) -
ox 1
~16p2 (HITLCLdl ('vi ”F+ ||[ ®Idz+1] dlag (02( )) W(H-l)H Hawi ))
J
® 9 2 o, 2
Sl pz (HIfzézdl ® (U - y)”F + Hz(l) by [dlag (02(u)) (141) H 311)( )
l
2 1 o dybs> (ks — sy +1)?
Sgp i (2 + 16bl+1 ) R SZJHH 16p?

l

de_1 1 2 dsbs2(ks — 85+ 1)2
:p4bj2djrl cidiri_1ci_y (2+mbl+1 g 162

where @ holds since for an arbitrary vector u € R* and an arbitrary matrix M € R¥*k we have (uRIy) M =u® M,
@® holds since we use Lemma 12 and the assumption that |[W{; 1 [|% < bi41°.

Now we consider the least square loss and softmax activation function. In such a case, we can further obtain:

2
P*f(w, D) |* _ || —y)G(u)z(
Ow(j) 0w || p ) h
&0 390(1) dvec (G (u)) du 9z Oz Ov 0zq) Oz

= Ired @ (v —1y)]

+ [z(l) ® Idl+1}

+ [z @ (w-y] —,

8.’17([ 6’11) 62([) 6$(l) 6’11)(3) 82([ 838 l) 8w(J)
— 8:13 )
= |up (Traa @ (v = y)] + [20) @ (v = y)| Q(W)Wya) + [20) @ La,y, ] Q(w)G (w)Wipr)) © Gy Dwg,
F
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Thus, we can further obtain

2

H O*f(w, D)
Ow(j 0wty ||
1 ox
< | ® (0 — 9] + [20) ® (0 — )] Q) Wiis1) + [20) ® Ly, ] Q ()G (W) Wiy || || e
16p Qwj) ||
3 2 || 9z ()
< 16p2 (HIﬁézdz ® (v - y)”?«* + H [z(l) ® (v— y)] Q (u) W) HF + H [ Z(1) ® Idz+1] Q (u)G (u) W) HF) ‘311)(]») -

li[ dybs? (ks — 85 + 1)2
16

® 3 3
Slﬁ 2T[Cldl ( ﬁlerl ) le‘lCﬂ“] 1CJ 1dj 1(k‘ s+ 1)

2

s=j+1 P

l 2 2

3d; L 2\ 1y debs2(ks — sy + 1)
iy, e (2 bl“ T 16530 gj 1692 ’

where @ holds since we use Lemma 12 and the fact that || W, 1|7 < bisi?
Cased:i<j=1+1

Similar to the Case 2, we also can have

0% f(w, ) 0*f(w, D)
Bw 8w ng)aw(i) h
2
So in this case, we can just directly use the bound in case 3 to bound éiué(ilgqf:))
J

Case5:i=j5=101+1
In the following, we first consider the first case, i.e. ¢ = [ + 1, and bound

2

ov
Ow(41)

[z(l) ® Idl+1]

2
H 2f(w,D) |* |ow-y)zf)
Ow(i41) 0w 41y ||

Qwainy ||, F

2
= [z(l) ® Idl+1] G (u) [z(l) ® Idl+1]THF

@ 17T)?
= [Zm (z) ® G (u)) }
F
1
<[lzwlHIG @[5 < @ i,

where @ holds since for an arbitrary vector u € R and an arbitrary matrix M € R¥** we have (u @ I},) M = u ® M.

2 (w,D) ||?
Now we can bound || Z-£:D) 1™ 4q follows:
Owow F

2 2

H 9 f(w, D)

| PP f(w,
owow ||,

ow l+1)aw(l+1

l
Z +2Z
=1 Jj=1i=j

l2 bl+1 r 2 201-2 1 .
< o w
<0 o,z et () Ik

aw J)Gw(lﬂ aw(z

s=1
2

<o [P’ B 5 li[dsbf(ks —5e+1)2
Py b14d% 00 o 8\@])2
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On the other hand, if the activation functions oy and o4 are respectively sigmoid function and softmax function, f(w, D) is
infinitely differentiable. Also o(a), o/(a), ¢”’(a) and 0"”'(a) are all bounded. This means that V3, f(w, D) exists. Also
since input D and the parameter w are bounded, we can always find a universal constant v such that

IVeof(w. D)lop = sup (X" V3, f(w. D) = 37(V3 (w0, DA ide < v < +ox.

ik
The proof is completed. O

Lemma 15. Suppose that the activation function o is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Suppose Assumption 1 on the input data D holds. Then for any t > 0, the objective f(w,x) obeys

P(ii(f(’w, D(i))*E(f(’w, D(i)))) >t> < 2exp ( 2222) |

i=1

where o = 1.

Proof. Since the input D (i = 1,--- ,n) are independent from each other, then the output f(w, D®) (i = 1,--- ,n)
are also independent. Meanwhile, when the loss is the square loss, we can easily bound 0 < f(w, D) = $|lv —y||3 <1,
since the value of entries in v belongs to [0, 1] and y is a one-hot vector label of v.

Besides, for arbitrary random variable z, |x — Ex| < |z|. So by Hoeffding’s inequality in Lemma 6, we have

P(ii(f(w, D(i))—E(f(w, D(i)») >t) < exp <_ 225) |

=1

where o = 1. This means that 23°" | (f(w, DY) —E(f(w, D"))) has exponential tails. O

Lemma 16. Suppose that the activation function o1 is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Suppose Assumption 1 on the input data D holds. Then for any t > 0 and arbitrary unit vector X € S the gradient
Vf(w,x) obeys

1< 1_ i .
P(n ; <<A,wa(w,D( )Y —EppVef(w, D' ))>> >t> < exp (_;152) .

i U Obia2ds I dab2(ke—s.+1)2 12 . :
where 3 & {ﬁmcldg +> i %ri,lci,ﬂ_{s:i%} in which 9 = 1/8.
Proof. Since the input D (i = 1,--- ,n) are independent from each other, then the output V., f(w, D®) (i = 1,--- ,n)
are also independent. Furthermore, for arbitrary vector @, || — Ex||3 < |||3. Hence, for an arbitrary unit vector A € S*~!

where d = 7¢;dydy11 + 22:1 k;%d;_1d;, we have

AV f(w, DY) ~Ep.pVuf(w, DY) <[IA||2]| Ve f(w, D) ~ Ep~pVuwf(w, DY)
. ©)
<A2Va f(w, DD < 5,

where @ holds since |[Alz = 1 (A € S?7!) and by Lemma 11, we have |V, f(w, D®D)|| < 3 where § 2

1/2
. U 9bypr’di— l dsbs®(ks—ss+1)> . .
|:'l9’rlCldl =+ E i=1 %n;lci,lns:i% mn Wthh 19 = 1/8

Thus, we can use Hoeffding’s inequality in Lemma 6 to bound
Ly 0 0 nt”
P> (<>\ Veof (w, DD) “Ep Ve f(w, D )>) >t ) <exp( 5 )

i=1

The proof is completed. O
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Lemma 17. Suppose that the activation function o1 is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Suppose that Assumption 1 on the input data D and the parameter w holds. Then for any t > 0 and arbitrary unit
vector X € S*71, the Hessian V? f (w, D) obeys

n

P <:LZ (A (V2 f(w. DY) ~ Epp V2 flw, DV)A)) > t) - (‘%) |

=1
1/2
bia?d 12 I dub2(ke—s.+1)%]2
wherey = ( =g rg {HmW} '

Proof. Since the input D (i = 1,--- ,n) are independent from each other, then the output Va f (w DY) (i=1,---,n)
are also independent. On the other hand, for arbitrary random matrix X, || X — EX||% < || X||%. Thus, for an arbitrary

unit vector A € S~ where d = e didi1 + 22:1 k;2d;_1d;, we have

A (V2 f(w,DV) —Ep.pV2 f(w,DD))A) <[|A2]|(VEf(w, D?) —Ep.pV2, f(w, D)X
<|IVe, f(w D()) Ep~pVZf(w, DD)|op| Al
<|V% f(w, DY) —Ep.pV2, f(w,DD)| ¢
<||V2, f(w D())”F
[©}
<7,

where @ holds since A = 1 (A € S?7') and by Lemma 14, we have ||V f(w, D®)|| < ~ where v =
s 212\ /2
(Zebrgay [T, 222 mes?) )

Thus, we can use Hoeffding’s inequality in Lemma 6 to bound

P (;zﬂ: (<A (V2 f(w, DD) —EDNDVif(w,D“)))A» N t) “ e <—ni>

i=1 2y
The proof is completed. O

Lemma 18. Suppose that the activation function o is sigmoid and o9 is softmax, and the loss function f(w, D) is squared
loss. Suppose that Assumption 1 on the input data D and the parameter w holds. Then the empirical Hessian converges
uniformly to the population Hessian in operator norm. Specifically, there exit two universal constants ¢, and c, such that if

2 2 _s 27-1 . e
n > Cyr d:)? Hlszl %} , then with probability at least 1 — €

2d 4 6o + log (%)
2n ’

sup HVQQn(’w)—VQQ(’w)HOp < cvfy\/

weN

holds with probability at least 1 — ¢, where d = Tr¢;didj+1 + Zl Lkifdiadi, 0 = ap (i + FGd —
2a;41 + 1) + Zézl ai(ki*d; + diy — 2a; + 1), 0 = Zi 110g<M) + log(biy1) + log (ﬁ) and

4p
o\ 1/2
I dolg U debs?(ks—ss+1)2
Y= by 4d2 Hs:l 8v/2p2 .
Proof. Recall that the weight of each kernel and the feature maps has magnitude bound separately, i.e. w@) €

Bkizdifl(rw) (i=1- k=1, ,d)andwg,, € BMédiditr (., ). Since ﬁvf(i) = [vec(W(li)),vec(Wé)), e
vec(W{f;*l)] € RF{dixdiz1 we have Weiyllr < dib;.
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So here we assume W(i’e) is the d;b;e/(bj41 + Zﬁzl d;b;)-covering net of the matrix ﬁ//(i) which is the set of all parameters
in the ¢-th layer. Then by Lemma 7, we have the covering number

Ne > )
€

ai(ki?di+di—1—2a;+1)
i < <9(bl+1 + Zizl dﬂh’))

since the rank of ﬁvf(i) obeys rank(ﬁf(i)) < a; for 1 <4 <. For the last layer, we also can construct an b; 1€/ (bj41 +
Zé:l d;b;)-covering net for the weight matrix W, ;). Here we have

bl

n < (9(bl+1 + 22:1 dib;)

ai+1(dip1+78di—2a;41+1)
6 )

since the rank of W,y obeys rank(W;;.1)) < a;41. Finally, we arrange them together to construct a set © and claim
that there is always an e-covering net w, in © for any parameter w. Accordingly, we have

141 al+1(dl+1+ﬁézdl—2a1+1+1)+2é= ai(kizdi"!‘di—l—zai"rl) 0
s 9I(brs1 + Yoiy dibi) ' ~(9(biga + X dibs)
] < Hne = = )

€ €

where 0 = a;11(djr1 + TG dp — 2a09 + 1) + 22:1 ai(kfdi +d;—1 — 2a; + 1) which is the total freedom degree of the
network. So we can always find a vector wy,,, € © such that ||w — wy, ||2 < . Now we use the decomposition strategy to
bound our goal:

V2Qu(w) - V?QUw) |

% Z V2 f(w, DY) —Ep.p(V?f(w, D))

op

:‘ % ; (sz(w, D) - v?f(wkw,Dm)) + % >V f(wg,,, DY) — E(V? f(wy,,, D))

i=1

+Ep~p(V?f(wh,, D)) — Ep.p(V?f(w, D))

op

n

%Z (V2f(w, DD) = V2 f(wy,,, DY)

i=1

<

ZV2 wy,,,, DY) — Epop(V2f(wy,, D))

op op

+ |Ep~p (V3 f(wi,,, D)) — Epp(V?f(w, D))

op

Here we also define four events Ey, E, E; and E5 as

Bo = { sup [ V2@ (w VzQ(“’)HOPEt}v

weR
E, ={ sup Z (2)) — V2f(’wkw,D(Z))) > 3(°
weN i—1 op
) t
E, = supe - sz(’wkw,D(Z)) —Ep~p(V?f(wg,,D))|| > 3(
Wiy, € op

E; = {Sup |Ep~n(V?f(wy,,, D)) — ED~’D(v2f(w’D))H0p = 21;} '
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Accordingly, we have
P(Eo) <P(E1)+P(E2) +P(E;s).

So we can respectively bound P (E), P (E2) and P (E3) to bound P (Ey).
Step 1. Bound P (E; ): We first bound PP (E) as follows:
t
>
1)
2

n

%Z (VQf(w,D“)) —~ VQf(wkw,D(i)))
i=1

P(E,) =P (sup

weN

©3 - ,
EDND <S}§S)2 Zl ( (w,D z)) V2f(wkw,D(2))) 2)
S%ED <sup ||v2 (w, D) — D)| )
1 v2 D( _ v2 ,D(z)
<§ED~’D sup H i= 1 w ) f(wkw )) H2 sup ”w _ wkaZ
t wEeN [w — w5 weN
@ 3re
<77
-t

Then we can bound P(E ):

Step 2. Bound P (E5): By Lemma 3, we know that for any matrix X € R%*?, its operator norm can be computed as

1
Xllop < sup (A, XA
1Xllop < 37— ;gfﬁK s XA

where Ac = {\1,..., A, } be an e-covering net of B4(1).
Let Ay /4 be the f-covering net of Bd(l), where d = 7;¢;d;d+1 + Zi:l kiQdi,ldi. Recall that we use O to denote the e-net

, g\ ?
of wy,, and we have [0] < [[}7] n. = (M) . Then we can bound P (E3) as follows:

t

>

1)
2
<P sup  2[( A, 1 > V?f(wy,, DY) —Ep.p (Vf(wr,, D)) | X )| > !
Wiy EOXEL /4 n = 3

l o n
<121 (3(’”“ i ‘W) P03 (A (T DY)~ Epen (Vi) )A) |2
n 6

€ Wiy €O,AEN] /4

0
® 3(b Lodb, t2
2194 (b1 + Dy dibi) gexp [~
€ 7272

where @ holds since by Lemma 17, we have

’ (i > (A (Va5 DY)~ Ep ¥, DO)A)) > ’*) <o (-5 )

=1

P(Ey) =P ( sup

Wy, €O

% Z VQf(wkwaD(i)) - EDN’D(VQf(wkw7D))
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1/2
2

9b d, I dibs?(ks—ss+1)2

where 7 = (,j*;dwl? [T, et et ) .

Thus, if we set

7242 (dlog(lz) +0log (M) +log (g))
t> ’
n

then we have
P(Ey) <

Step 3. Bound P (E5): We first bound P (E3) as follows:
t
P (Es) =P (su% [Ep~o(V*f(wh,, D)) — Ep~p(V*f(w, D)), > 3)
we

B

1\ 2 (i) _ 2

. (Vef(w,D V< f(wg t

<p (sup L Zim (V00 D) =2 0 DO 1y — ay >
wEeN H - kw||2 weN 3

® t
SP(V62>7
3

where @ holds because of Lemma 14. We set € enough small such that ve < t/3 always holds. Then it yields P (E3) = 0.

w\w

<P (Em sup [[(V2 (.. D) — ¥ (w, D), >
we

1
. ) . _36(bipi+E L diby) I dib?(ke—s.+1)2]" 2
Step 4. Final result: To ensure P(Ej) < &, we just set € = R T —— {Hs:lW . Note that

6“’ > 3ev. Thus we can obtain

7242 (dlog(l?) + 0log (3(bz+1+2632:1 dibi)> 1 log (g))

n

-1
. V2 1 debs?(ks—ss+1)? . . .
Thus, if n > ¢, Jos? Hs:l 3&3\/—2;)2 where ¢, is a constant, there exists a universal constant ¢,, such that

o 901t <o 0 () ot (i)

we op n

2d + 0o + log (2
:C”V +og (2

holds with probability at least 1 — &, where d = 7 &didi1 + 2221 ki2d;_1d;, 0 = aj41(dip1 + 7Gd; —
2al+1 + ].) + Ziﬁ:l al(kfdl + di71 - 2&1' + 1), 0 = Zizllog(W) + IOg(lerl) + IOg (ﬁ)’ and

o 1/2
v = (%lfdzdolz & Hls:1—dsbdzé%is+l)2} ) . The proof is completed. n

D Proofs of Main Theorems

D.1 Proof of Lemma 1

Proof. Recall that the weight of each kernel and the feature maps has magnitude bound separately, i.e. w@) €

Bkizdifl(rw) (i=1- k=1, ,d)andwg,, € BMédiditr (., ). Since ﬁvf(i) = [vec(W} ),vec(W(Qi)), e

(4)
vec(W{f;*l)] € RF{dixdiz1 we have Weiyllr < dib;.
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So here we assume W(i’e) is the d;b;e/(bj41 + Zﬁzl d;b;)-covering net of the matrix I/)[v/(i) which is the set of all parameters
in the ¢-th layer. Then by Lemma 7, we have the covering number

)

i o <9(bl+1 30 diby)

ai(ki?di+di—1—2a;+1)
Ne <
€

since the rank of ﬁ}(i) obeys rank(ﬁvfm) < a; for 1 < i <. For the last layer, we also can construct an b;1€/(bj41 +

22:1 d;b;)-covering net for the weight matrix W, 1). Here we have

)

l
n < (9(bl+1 + D iy dibi)

aj41(dip1+76di—2a;41+1)
6 >

since the rank of W(; 1y obeys rank(W(;;.1)) < a;41. Finally, we arrange them together to construct a set © and claim
that there is always an e-covering net w, in © for any parameter w. Accordingly, we have

1+1
|®‘<Hne _( bl+1+21 1 )

€

arp1(dip1+m&di—2ai41+1) 4+ aq(ki?di+di—1—2a;+1)

0
by + 3, dz-bn)

where 0 = a;11(dj+1 + 716d; — 2a541 + 1) + 2221 ai(kfdi + d;—1 — 2a; + 1) which is the total freedom degree of the
network. So we can always find a vector wy,, € © such that ||w — wy ||2 < e. Now we use the decomposition strategy to
bound our goal:

Qulw) - Q(w)‘=|i2f(w7D(”) —ED~D<f<w,D>>|

=1
— Tlli_l(f(’w,D(i))_f(’wkw7D(i)))—&—ii_zlf(wkw,D(i))_Ef(wkw,D)+ED~Df('wkw7D)—EDN’Df(w,D)
1 — A 13 A
< n;(f(w,D(”)f(wkw,D@)) + n;f(wkw,D@)EDNDf(wkw,D)’

+

Ep~op f(wk,,, D)—Ep~p f(w, D)|~
Then, we define four events Ey, F, E> and E3 as

B0 = { sup [@u(w) —Q(w)\ >},

we

sup ('w, D(i)) - f(wkww(i)))

weR

==z
oief o 13
=)

TL

g > flwy,,, DY) ~Ep.p(f(w,, D))

sup |Ep~p(f(wk,, D))—Ep~p(f(w,D))|>

weN

W =+
——

Accordingly, we have
P(Ey)) <P(E))+P(E;)+P(E;).

So we can respectively bound P (E), P (E2) and P (E3) to bound P (Ey).
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Step 1. Bound P (E;): We first bound P (E}) as follows:

sup ||lw — wg
weN ”w 7wk'w||2 weQH WI2>

( 125" (f(w, D) — f(wy,, DD))]

3 _
<ZEp.p (Sup Hin(waD)H ) ,
we 2

where @ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable x, then

Plx >1t) < @

Now we only need to bound Ep..p (supweg HV@n(w, D) H ) Therefore, by Lemma 11, we have
2

£ 39D

Epp <sup [v@Q.(w, D>H2) —Epp <sup ) <Ep.p (sgnwm, D)||2> <B.

weN weN

2. _ 172 .
where 3 £ [19f151dl + 22:1 Mm—wi—ﬂ_ﬁ:iw} in which 9 = 1/8. Therefore, we have

p2b;2d; 16p2
P(E,) < ?
We further let
6¢el
t> —.
€
Then we can bound P(E ):
P(E,) < %

Step 2. Bound P (E,): Recall that we use © to denote the index of wy, and we have |©] < [[.Z, n' =

(M> . We can bound P (E5) as follows:

€

Zf wy,,; DY) = Epp(f(wy,. D))

t
>
1)

<9<bl+l+zi_1di ) . ]}D(‘Zf wy,. DY) ~ Epp(f(wi,. D))| >

€ W, €o

6
9([)[.;,.1 + 22:1 dibi) exp [ — 2nt?
€ a? )’

where @ holds because in Lemma 15, we have

P(:LG:(f(’w, D(i))—E(f('w, D(i)») >t> < exp (_ 22;2) |

i=1

P(E;) =P ( sup
Wiy, €O

IN

LW =+
N——

e
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where o« = 1. Thus, if we set

o? (9 log (—9(bl+1+252:1 dibi)) + log (g))

- 2n

)

then we have
P(E,) <

Step 3. Bound P (E5): We first bound P (E3) as follows:

P (B2) =P (sup [Ep-(/(wi,.. D)) ~ Epep(f(w. D)), > §
we)

]E ~ C 7D - 7D
]P’( IEp~p (f(wg,,, D) — f(w,D)||,) sup [lw — wy, ||, > t)
weQ lw — wyg, |5 wenN 3
t
<b (- 510 [VQu(w. D), > ¢
@
s

where @ holds since we utilize Lemma 11. We set € enough small such that e < t/3 always holds. Then it yields
P(E5) = 0.

=

2 1 ™. 201 27— 3
Step 4. Final result: To ensure P(Ey) < &, we just set ¢ = -2 (blgézb%i:l dibi) {Hi:l%} *. Note that

@ > 3¢3 due to £ < 1. Thus we can obtain

6ep | 02 (0log (Ltia t00) 4 jog (4))

t > max
- 2n

l2(bl+1+22:1 d,,b,;)2 max; /7iCq

By comparing the values of o, we can observe thatif n > cy/ 702

exists such a universal constant cy such that

where cy/ is a constant, there

9 (22:1 log (W) + log(bi+1)+1log (128p )) +log (%)  [8o+1og (%)
2n B 2n

sup | @, (w) ~Q(w) | <a
we

holds with probability at least 1 — €, where 0 = a;1(dj41 + 7&d; — 24541 + 1) + 22:1 ai(k:fdi +di—1 —2a;+ 1),
0= Zi \log (W) + log(bj4+1) + log (ﬁ), and o = 1. The proof is completed. O

D.2 Proof of Theorem 1

Proof. By Lemma 1 in the manuscript, we know that if n > ¢/ 1%(b41 + Zi:l dib;)? max; \/ric;/(0pe?) where ¢y is a
universal constant, then with probability at least 1 — ¢, we have

4
‘ - Gg—i—log(g)7
2n

sup |Qn(w) — Q(w)

weR

where the total freedom degree 6 of the network is 0 = a;y1(dj41 + 7Gd; + 1) + Z,lizl ai(kfdi_l +d; + 1) and
0=Y"_log (W) + log(bi4+1) + log (ﬁ).
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Thus based on such a result, we can derive the following generalization bound:

Ewp [BA(Q@) - (@) < Ea (510 |@(w) - Qu)] ) < 515 |@u(w) - Qw)| < fot o5 (),

weN wes)

Thus, the conclusion holds. The proof is completed. O

D.3 Proof of Theorem 2

Proof. Recall that the weight of each kernel and the feature maps has magnitude bound separately, i.e. 'wéfi) €
BF di-1(r,) (i = 1,--- ,l;k = 1,--- ,d;) and W,y € BMOhd (b ). Since W) = [vec(W(,)), vec(WE)), -+,

(i
vec(W ()] € RFidi-1xd:i we have [ Wi, || p < dib;.

So here we assume f/‘vf(u) is the d;b;e/(bj41 + Zé:l d;b;)-covering net of the matrix ﬁ;(i) which is the set of all parameters
in the ¢-th layer. Then by Lemma 7, we have the covering number

)

i < <9(bl+1 30 diby)
€

) a;(ki’di_14+d;—2a;+1)

since the rank of ﬁ;(i) obeys rank(W(i)) < a; for 1 < i < [. For the last layer, we also can construct an b;1€/(b;11 +
22:1 d;b;)-covering net for the weight matrix W, ;). Here we have

i
€

!
nHL < <g(bl+1 + > i1 dibi)

) aj41(dip1+76di—2a;41+1)

since the rank of W, ;) obeys rank(W(;;1)) < a;41. Finally, we arrange them together to construct a set © and claim
that there is always an e-covering net w, in © for any parameter w. Accordingly, we have

I+1 !
I (b1 + Dy dibi)
|®‘ S nez: ( =
=1

€

arp1(dip1+m&di—2ai101+ 1)+ ai(ki®di—1+di—2a;+1)

0
b1 + 3, dz-b»)

where 0 = a;11(dj41 + 71éd; — 2a;41 + 1) + Zé:l ai(kizdi,l + d; — 2a; + 1) which is the total freedom degree of
the network. So we can always find a vector wy,, € © such that ||w — wy, |2 < e. Accordingly, we can decompose

HV@n(w) - VQ(w)H2 as
VQu(w) - VQ(w)|,

L3V, DY) - Epp(V(w, D))

=1

2

=| U5 (Vw0 D) = Y aw,, D)) 4 13V f(awn,,, DV) ~ Epp(V(wi,, D))
i=1 i=1

+Ep~p(Vf(wk,, D)) — Ep~p(Vf(w, D))

2
< %Z(Vf(w,pun—Vf<wkw,p<">>) + %ZVf(wkw,Dw)—EDw(Vf(wka))
i=1 2 i=1 2
+ |Ep~n(V/(wk,, D)) — Ep~p(Vf(w, D))
2
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Here we also define four events Ey, E, E-5 and FE35 as

By = {sup |9, (w) - Q) > t} ,

weN

Wl =+

sup EDND(Vf(wkw 5 D)) - EDN‘D (Vf(w, D))

wel

1 & ) , t
E = - D)y — DY) > <
1 {Zté% n;(%‘(w, ) — Vf(wg,, )) T
1 n ) t
B, =3 swp |~ Vf(w, DY) = Epp(Vf(w, D) >3 ¢
why, €0 || i 2 3

-3

Accordingly, we have

n

2 2 (Vi D) - V(. D))

Wl =+

P(E,) =P (sup

P(Ey) <P (Ey) +P(E,) +P(E;).
weN

So we can respectively bound P (E;), P (E2) and P (Es3) to bound P (Ey).
Step 1. Bound P (E;): We first bound P (E}) as follows:
Z >
2
! (@ (0
=3 (V#(w, DY) = V(wy,, D))
i=1 2

15w @)y _ ()
SéEDN’D sup || n Zz:l (vf(w7 D ) vf(wkw"D )) ||2
t weR |w — wy,, ||,

@3
<-Ep~p | sup
t weN

sup [lw — wkwllrz)
weN

IN

3 ~
jEDN'D (SUP Hv2Qn(w7D)H ) B
t weR 2

where @ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable x, then P(z > t) <

t

Now we only need to bound Ep..p (supwEQ HVZQn(w, D) H ) Here we utilize Lemma 14 to achieve this goal:
2

Ep~p (sup Hvzén(w,D)H ) <Ep~p (sup Hv2f(waD) - V2f(’LU*7D)H2> <7
weN 2 we

1/2

2

Obigr2d2 U dbo®(ks—s,+1)°

where v = (’“Oﬁrgcg [H daba (ke —sat1) . Therefore, we have

bitd} s=1 8v/2p?
3
P(E;) < Te
We further let
6ve
t> —
€
Then we can bound P(E ):
P(E,) < %

Step 2. Bound P (E5): By Lemma 2, we know that for any vector & € R, its £-norm can be computed as

1
@2 < - sup (A,@).
— € e
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where A. = {\1,..., A, } be an e-covering net of B4(1).

Let X be the %—covering net of Bd(l), where d = 7;¢;d;dj+1 + 2221 kizdi,ldi. Recall that we use O to denote the index of

wy,, so that ||w — wy,, || < e. Besides,

. . 1 2N 0
0| < Hi; ne = (M) . Then we can bound IP (E5) as follows:

t
> _
1)
2

=P ( sup 2 <A, % ;Vf(wkw,D(i)) —Epp (Vf(wkw,D))> > ;)

n

LSV (why DO) ~ Epp(V f(wy,, D))
=1

P(Ey) =P ( sup
Wi, €O

Wy €O,AEA] /2

3~
| =+

l o n
§6d <9(bl+1 + Zi:l dzbz)> sup P( Z <)\7 Vf(wkuﬂD(l)) _ ]EDN’D (Vf(wkw;D)) > > )

€ W, €O,AEN] /2 i=1

l 6
2661 <9(bl+1 + i dﬂ%)) 2exp<— nt? ) 7

€

where @ holds since by Lemma 16, we have

P(:L zn: <<>" Vo f(w, DY) —Ep.pVa f(w, D(i))>> >t> < exp (_;1;22) .

i=1

o I Obiyq2ds ! Z(ko—s.41)2 142, .
where 3 £ [WzCldz + e %riflciflns:i%} in which J = 1/8.

Thus, if we set

725 (dlog(6) + flog (Xrtiiati)) 4 1o (1))

)

t>
n

then we have
P(E;) <
Step 3. Bound P (E5): We first bound P (E5) as follows:

P(B2) =P ( sup [E(Vf (w1, 2)) ~ Epen(V(w.))l, > )

weN
Ep~p (V ,x)—V , t
_p (Sup |Ep~p (Vf(wi,,x) — Vf(w,x)|,) sup [[w — wi ||, > )
weN Hw - wkaQ weN 3

weN

t
<P >—.
o (o2 )

We set e enough small such that ye < ¢/3 always holds. Then it yields P (Es3) = 0.

~ t
<P (fEDN‘D sup Hszn('ww'B)HQ > 3>

Step 4. Final result: Note that 67& > 3fe. Finally, to ensure P(E;) < &, we just set ¢ =

18p° (b1 +321_; dibs) IT dsbs?(ks—ss+1)2] ™
92nbi4q s=1 16p2

N

6ye 72032 (dlog(6) + 0log (w) +log (%))

)

t > max
n
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b2 (bipri+350 . dibi)?(rocodo)?
d%blg(d log(6)+00)e? max;(ric;)

By comparing the values of 5 and vy, we have if n > ¢
then there exists a universal constant ¢, such that

where ¢y is a universal constant,

A+ o [ (Shoy Tos (VLG40 ) flog(by 1) +og 15 ) ) +los (2)]

sup vaén(w)—va(w)HQS%ﬂ

we
d+ 100+ Llog (2
chﬁ\/ 2 Qn2 Og(s)

n

)

holds with probability at least 1 — ¢, where d = 7Gdidi+1 + 22:1 kildi_1d;, 60 = ajr1(dip1 + 7éd +

) + S aik’dio + di + 1), 0 = Zé:llog(W) + log(bi41) + log (ﬁ), and g =
1/2
[ﬂﬁéldz + Zi’:l %ﬁqaqﬂizi%ﬁswq in which 99 = 1/8. The proof is completed. O

D.4 Proof of Corollary 1

Y

Proof. By Theorem 2, we know that there exist universal constants c, and ¢, such that if n

2oy 12 (bip1+30_ dibs)? (rocodo)*

g’ d3b18(dlog(6)+00)e? max;(ric;)  then

2d + 0o + log (%)
2n

sup | Vs Qu(w) ~ VuQw) |, < cg/a\/

weN

holds with probability at least 1 — ¢, where p is provided in Lemma 1. Here $ and d are defined as § =
d I bia®dis Iodby2(ky—s;41)2 ]2
[7Tl8;)lzl+zi:1 ézzlbiizd: Tiflci—lnj:i = (17%;02@ ) }

So based on such a result, we can derive that if n > ¢2(2d + 0o + log(4/¢)) 3% /(2€), then we have

and d = 7¢dydyy 1 + 2221 ki*d;_1d;, respectively.

2d + 0o+ log (%)
2n

< 24/e.

IVQU@), < |[VuQu(@)||, + | Voo @u () - VuQ(@)||, < v+ cgﬁ\/

Thus, we have | VQ(w) Hg < 4e¢, which means that w is a 4e-approximate stationary point in population risk with probability
at least 1 — €. The proof is completed. O
D.5 Proof of Theorem 3

Proof. Suppose that {w 1), w(2), -+ , W)} are the non-degenerate critical points of Q(w). So for any w/y;), it obeys
i X} (V2Q(uwgo)| 2 ¢

where \¥ (VQQ(w(k))) denotes the i-th eigenvalue of the Hessian VQQ(w(k)) and ( is a constant. We further define a
set D = {w € R?[[|[VQ(w)]|2 < eand inf; |A; (V2Q(w(y))) | = ¢}. According to Lemma 5, D = U2, Dj, where each
Dy, is a disjoint component with w(y € Dy, for k& < m and Dy, does not contain any critical point of Q(w) for k > m + 1.
On the other hand, by the continuity of VQ(w), it yields ||[VQ(w)||2 = € for w € 0Dy, Notice, we set the value of € blow
which is actually a function related to n.

Then by utilizing Theorem 2, we let sample number n sufficient large such that

sup | V@ (w) -VQ(w) |, <

€
weN 2

holds with probability at least 1 — €, where € is defined as

dlog(6) + 6 (2221 log (W) +log(bi41) + log (ﬁ)) +log (%)

AN
=cC
of -

[N e
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This further gives that for arbitrary w € Dy, we have

tVQ,(w) + (1 — t)VQ(’w)H2 = inf

we Dy,

inf
weDy,

¢ (V@n(w) - VQ(’w)) + VQ(w)H2
> inf IVQ(w)l,— sup ¢ VQu(w) - VQw)|,

weDy,

>E > (6)

Similarly, by utilizing Lemma 18, let n be sufficient large such that

sup [ V2Qu(w) - v*Quw)| < 5

weN op

holds with probability at least 1 — €, where ( satisfies

4
ZCW\/d—H‘)Q—Hog(s).

DO [y

n

Assume that b € R? is a vector and satisfies b7'b = 1. In this case, we can bound \¥ (V2Qn(w)) for arbitrary w € Dy, as
follows:

inf
weDy,

AF (VQQ,L(w)N: inf min ‘bTVZQn(w)b‘

weDg bTb=1

= inf min ‘bT (V2én( - V2Q(w )b+bTV2Q w)b ‘

weDy bTb=1

T2 T 2 2
>w1é11f)kaTnb1n1‘b V?Q(w)b| — mm ‘b (v Q. (w) — V?Q(w )) b‘ o
> T2 - ‘ T (o2 2 ’
_wlg[fh brTnbln1 6" V?Q(w)b| max b (V Q. (w) — V2Q(w )) b

= inf inf X (V2f(wi), @) | - Hv O (w) — V2Q(w) H

we [ Op

<

2
This means that in each set Dy, VQQ”('w) has no zero eigenvalues. Then, combine this and Eqn. (6), by Lemma 4 we know
that if the population risk Q(w) has no critical point in Dy, then the empirical risk Q,, (w) has also no critical point in Dy;
otherwise it also holds.
Now we bound the distance between the corresponding critical points of Q(w) and @, (w). Assume that in Dy, Q(w) has
a unique critical point w(j and Q,, (w) also has a unique critical point w,& ) Then, there exists ¢ € [0, 1] such that for any
z € OB4(1), we have
¢ 2 VQ(w)|
= max (VQ(w), 2)

zTz=1

Jpax (VQ(w)), 2) + (V2 Q(wy + t(wl) — wiy)) (w) —wy), 2)

1/2

Ve

2 .
<(V2Q(w(k>)) (Wi —we), (wi) — W<k>)>
@
>l — w2,

where @ holds since VQ(w()) = 0 and @ holds since w ;) + t(wflk) — w(yy) is in Dy and for any w € Dj, we have
inf; [A; (V2Q(w)) | > ¢. Soif n > ¢; max (lzbl“z(b”ﬁz’lﬁl dibi)” (rocodo)” déeg) where ¢, is a constant, then

déblsdgsz max; (r;c;)

2,3 dlog(6) + ¢ (Zli:l log (W) + log(bi4+1) + log (#)) +log (2)
¢ n

Jwl) —wll2 <
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holds with probability at least 1 — €. O

D.6  Proof of Corollary 2

Proof. By Theorem 3, we know that the non-degenerate stationary point w gy in the m non-degenerate stationary points in

population risk, denoted by {w(1), w(z), " - , W(n)} uniquely corresponding to a non-degenerate stationary point w( )in

the empirical risk.

On the other hand, for any Wk, it obeys
inf A (V2Q(w))| = ¢,

where AF (V2Q(w(y))) denotes the i-th eigenvalue of the Hessian V2Q(wy)) and ¢ is a constant. We further define a
set D = {w € R?|[|[VQ(w)]|2 < eand inf; |A; (V2Q(w(1))) | = ¢}. According to Lemma 5, D = U2, Dj, where each
Dy, is a disjoint component with w () € Dy for k < m and Dy, does not contain any critical point of Q(w) fork >m+ 1.
Then w( ) also belong to the component Dy, due to the unique corresponding relation between wyy and w( ). Then from
Eqn. (6) and (7), we know that if the assumptions in Theorem 3 hold, then for arbitrary w € Dy, and t € (0, 1),

¢

X (V2Quw))| = 2.

inf
weDy,

tVQ,(w) + (1 — t)VQ(w)H > and inf

2 weDy

where € and ( are constants. This means that in each set Dy, V2@n(w) has no zero eigenvalues. Then, combine this and
Eqn. (6), we can obtain that in Dy, if Q(w) has a unique critical point w() with non-degenerate index s, then Q. (w) also
has a unique critical point 'w?k) in Dy, with the same non-degenerate index s;. Namely, the number of negative eigenvalues

of the Hessian matrices VQQ(w(k)) and VQQ(wg,,k)) are the same. This further gives that if one of the pair (w4, w%k)) is
a local minimum or saddle point, then another one is also a local minimum or a saddle point. The proof is completed. [J

E Proof of Auxiliary Lemmas

E.1 Proof of Lemma 8

Proof. (1) Since G (z) is a diagonal matrix and its diagonal values are upper bounded by o1 (z;)(1 — 01(2)) < 1/4 where
z; denotes the i-th entry of z;, we can conclude

1 1
IG ()M |7 < £ IM|F and NG (2)|7 < 1£lINIF

(2) The operator Q (-) maps a vector z € R? into a matrix of size d> x d whose ((i — 1)d +i,4) (i = 1,--- , d) entry equal
to 01(2;)(1 — 01(2;))(1 — 201(2;)) and rest entries are all 0. This gives

o1(zi)(1 = 01(2:))(1 — 201(2i)) 25(301(211))(1 —o1(2:))(1 = 201(2;))
<1 (301(zi) +1—01(z;) +1— 201(Zi))3

-3 3
23
S?-

This means the maximal value in Q (z) is at most 24 Consider the structure in Q (z), we can obtain
1Q (=) M]3 < 38||M||F and  [[NQ(2)]% < 38||N||F
(3) up (M) represents conducting upsampling on M € R**#*4, Let N = up (M) € RP$*Pt>4_ Specifically, for each

slice N (:,:,4) (i = 1,---,q), we have N (:,:,4) = up (M (:,:,4)). It actually upsamples each entry M (g, h,) into a
matrix of p? same entries pl M (g, h,i). So it is easy to obtain

1
lup (M) < EIIMII%-
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(4)Let M = W(:,:,i) and N = giﬂ(:,: i). Assume that H = M ® N € R™*™2 where m; = 7;_1 — 2k; + 2 and

mo = C;—1 — 2k; + 2. Then we have

m1 Mo m1 Mo mi1 M2
i=1 j=1 i=1 j=1 i=1 j=1

where Q; ; denotes the entry index of M for the (3, j)-th convolution operation (i.e. computing the H (3, j)).

Since for each convolution computing, each element in M is involved at most one time, we can claim that any element
in M in 377 3702 || Mg, || occurs at most (k; — s; 4 1) since there are s; — 1 rows and columns between each

neighboring nonzero entries in IN which is decided by the definition of gz 41 in Sec. B.1. Therefore, we have

mi ma

DD Moy 5 < (ki — si+ 1IM|3,

i=1 j=1
which further gives

[M®&N |3 < (ki — s; + 1)*|M||Z| N |7
Consider all the slices in gz 11, Wecan obtain

||62-+1C;)W||% < (ki —si+ 1)2||W||%‘H62+1”%“

(5) Since for softmax activation function o5, we have Zfl;ll v; = 1 (v; > 0) and there is only one nonzero entry (i.e. 1) in
Yy, we can obtain

0< [lo—yl3 = w3+ Iyl - 2(v.y) =2 - 2(v,y) < 2.

The proof is completed. O
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