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Abstract. We provide missing proofs and necessary auxiliary results in this
appendix.

1. Auxiliary Results

We state two useful auxiliary results that will be used later. The first one is
from Bubeck et al. (2015):

Lemma 1.1. Let X be a compact and convex subset of Rd. Then for any x ∈
X , y ∈ Rd:

〈projX (y)− x,projX (y)− y〉 ≤ 0. (1.1)

The second result we use is an Lp-bounded martingale convergence theorem:

Lemma 1.2 (Hall & Heyde, 1980). Let Sn be a martingale adapted to the filtration
Sn. If for some p ≥ 1, supt≥0 E[|Sn|p] < ∞, then Sn converges almost surely to a
random variable S∞ with E[|S∞|p] <∞.

Remark 1.1. Note that E[|S∞|p] <∞ obviously implies S∞ is finite almost surely.

2. Problem Setup

For convenience, we restate here our blanket assumptions:

Assumption 1. F satisfies the following:
(1) F (x;ω) is differentiable in x for P-almost all ω ∈ Ω.1

(2) ∇F (x;ω) has bounded second moment, that is, E[‖∇F (x;ω)‖22] < ∞ for
all x ∈ X .2

(3) ∇F (x;ω) is Lipschitz continuous in the mean: E[∇F (x;ω)] is Lipschitz on
X .

Assumption 2. The optimization problem is variationally coherent in the mean,
i.e.,

E[〈∇F (x;ω), x− x∗〉] > 0, (VC)
for all x∗ ∈ X ∗ and all x /∈ X ∗.

1The results in this paper can be generalized to non-smooth objectives by using subgradient
devices instead of gradients. For ease of exposition, we stick with smooth objectives to avoid
cumbersome notation needed to deal with subgradients.

2It is understood here that the gradient∇F (x;ω) is only taken with respect to x: no differential
structure is assumed on Ω.
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2 DISTRIBUTED OPTIMIZATION UNDER UNBOUNDED DELAYS

Assumption 3. The gradient delay process dn and the step-size sequence αn of
satisfy one of the following conditions:

(1) Bounded delays: supn dn <∞ and
∑∞
n=1 α

2
n <∞,

∑∞
n=1 αn =∞.

(2) Linearly growing delays: dn = O(n) and αn ∝ 1/(n log n) for large n.
(3) Polynomially growing delays: dn = O(nq) for some q ≥ 1 and αn ∝

1/(n log n log log n) for large n.

We also define the following constants that will be handy later in the proofs:

(1) C1 = supx∈X E[‖∇F (x;ω)‖2].
(2) C2 = supx∈X E[‖∇F (x;ω)‖22].
(3) C3 is the Lipschitz constant for ∇ f(x)(= E[∇F (x;ω)]) :

‖∇ f(x)−∇ f(x′)‖2 ≤ C3‖x− x′‖2. (2.1)

(4) C4 = supx,x′∈X ‖x− x′‖2.
Since ∇F (x, ω) has bounded second moment, it must also have bounded first

moment. Consequently, since X is compact and E[∇F (x;ω)] is continuous, C1 <
∞, C2 <∞.

3. Deterministic Convergence Analysis

We begin with the deterministic case, i.e., the distributed asynchronous gradient
descent (DAGD) scheme with perfect gradient information.

3.1. Energy Function. Recall the energy function defined in the main text:

E(y) = ‖x‖22 − ‖projX (y)‖22 + 2〈y,projX (y)− x〉, (3.1)

where x is a fixed base point in X . Here we emphasize explicitly its dependence on
x and write E(x, y) instead: even though it’s more cumbersome notation compared
to before, it would also make clear the role played by the specific choice of x later.

Lemma 3.1. Pick any x ∈ X , y ∈ Rd. We have:

(1) E(x, y) ≥ 0 with equality if and only if projX (y) = x.
(2) Let {yn}∞n=1 be a sequence. Then for any x ∈ X , E(x, yn)→ 0 if and only

if projX (yn)→ x.

Proof. Per the definition of the energy function, we have:

E(x, y)− ‖projX (y)− x‖22 = ‖x‖22 − ‖projX (y)‖22 + 2〈y,projX (y)− x〉 −
{
‖projX (y)‖22 − 2〈projX (y), x〉+ ‖x‖22

}
= −2‖projX (y)‖22 + 2〈y − projX (y),projX (y)− x〉
+ 2〈projX (y),projX (y)− x〉+ 2〈projX (y), x〉
= 2〈y − projX (y),projX (y)− x〉 ≥ 0, (3.2)

where the last inequality follows from Lemma 1.1. Consequently, E(x, y)−‖projX (y)−
x‖22 = 0. And if E(x, y) = 0, we must have ‖projX (y) − x‖22, therefore implying
projX (y) = x. Similarly, if E(x, yn) → 0, then ‖projX (yn) − x‖22 → 0, thereby
implying projX (yn)→ x. �
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3.2. Main Convergence Result.

Proposition 3.2. Under Assumptions 1–3, DAGD admits a subsequence xnk that
converges to X ∗ as k →∞.

Proof. We provide the details for all the steps.

(1) Defining bn = ∇ f(xs(n))−∇ f(xn), we can rewrite the gradient update in
DAGD as:

yn+1 = yn − αn+1∇ f(xs(n))

= yn − αn+1∇ f(xn)− αn+1{∇ f(xs(n))−∇ f(xn)}
= yn − αn+1(∇ f(xn) + bn). (3.3)

Recall here once again that s(n) denotes the previous iteration count whose
gradient becomes available only at the current iteration n. By bounding
bn’s magnitude using the delay sequence through a careful analysis, we
establish that under each one of the three conditions, limn→∞ ‖bn‖2 = 0.
The analysis here, particularly the one for the last two conditions, reveals
the following pattern: as the magnitude of the delays gets larger and larger
in the order of growth, one needs to use a more and more mild step-size
in order to mitigate the damage done by the stale gradient information.
Intuitively, smaller step-size is more helpful in larger delays because it has
a better “averaging" effect, such that it is more tolerant of the delays.

To see this, we start by expanding bn as follows:

‖bn‖2 = ‖∇ f(xs(n))−∇ f(xn)‖2 ≤ L‖xs(n) − xn‖2
= C3‖projX (ys(n))− projX (yn)‖2 ≤ L‖ys(n) − yn‖2

≤ C3

{
‖ys(n) − ys(n)+1‖2 + ‖ys(n)+1 − ys(n)+2‖2 + · · ·+ ‖yn−1 − yn‖2

}
= C3

n−1∑
r=s(n)

‖αr+1∇ f(xs(r))‖2 ≤ C3 sup
x∈X
‖∇ f(x)‖2

n−1∑
r=s(n)

αr+1 = C3Vmax

n−1∑
r=s(n)

αr+1.

(3.4)

We now consider two cases, depending on whether the delays are bounded
or not.
(a) If {αn}∞n=1 and dn ≤ D,∀n satisfy Assumption 3, then ds(n) = n −

s(n) ≤ D. Consequently,

0 <

n−1∑
r=s(n)

αr+1 =

n∑
r=s(n)+1

αr ≤
n∑

r=n−D
αr ≤ D max

r∈{n−D,...,n}
αr → 0 as n→∞,

(3.5)
where the limit approaching 0 follows from limn→∞ αn = 0, which it-
self is a consequence of Assumption 3. This implies limn→∞ C3Vmax

∑n−1
r=s(n) αr+1 =

0 and consequently, limn→∞ ‖bn‖2 = 0.
(b) We consider each of the two conditions in turn. When αn−1 = 1

n logn

and dn = O(n), it is easy to verify (by integration) that this particular
choice of sequence satisfies

∑∞
n=1 α

2
n <∞,

∑∞
n=1 αn =∞. Since dn =

O(n), we have n − s(n) ≤ Ks(n) for some universal constant K > 0,
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which means n ≤ s(n) +Ks(n). Consequently, we have:

0 <

n−1∑
r=s(n)

αr+1 =

s(n)+Ks(n)∑
r=s(n)

αr ≤
∫ s(n)+Ks(n)

s(n)

1

r log r
dr

= log
log(s(n) +Ks(n))

log s(n)
= log

log(K + 1) + log s(n)

log s(n)
→ 0 as n→∞, (3.6)

where the last limit follows from s(n) → ∞ as n → ∞ because n ≤
s(n) +Ks(n).
Next, When αn−1 = 1

n logn log logn and dn = O(na), a > 1, it is again
easy to verify (by integration) that this particular choice of sequence
satisfies Assumption 3. Since dn = O(na), we have n− s(n) ≤ Ks(n)a

for some universal constant K > 0, which means n ≤ s(n) + Ks(n)a.
Consequently, we have:

0 <

n−1∑
r=s(n)

αr+1 =

s(n)+Ks(n)a∑
r=s(n)

αr ≤
∫ s(n)+Ks(n)a

s(n)

1

r log r log log r
dr

= log
log log(s(n) +Ks(n)a)

log log s(n)
≤ log

log log(s(n)a +Ks(n)a)

log log s(n)

= log
log(log(K + 1) + a log s(n))

log log s(n)
< log

log((K + 1) log s(n) + a log s(n))

log log s(n)

= log
log(K + 1 + a) + log log s(n)

log log s(n)
→ 0, as n→∞,

(3.7)

where the last limit follows from s(n)→∞ as n→∞, again because
n ≤ s(n) +Ks(n)a.

(2) With the defintion of bn, DAGD can be written as:

xn = projX (yn),

yn+1 = yn − αn+1(∇ f(xn) + bn).
(3.8)

We then use the energy function to study the behavior of yn and xn. More
specifically, we look at the quantity E(X ∗, Yn+1) − E(X ∗, Yn) and bound
this one-step change using the step size αn, the bn sequence and the defining
quantity 〈∇ f(xn), xn − x∗〉 of a variationally coherent function (as well
as another term that will prove inconsequential). We then telescope on
E(X ∗, Yn+1) − E(X ∗, Yn) to obtain an upper bound for E(X ∗, Yn+1) −
E(X ∗, Y0). Since the energy function is always non-negative (Lemma 3.1),
E(X ∗, Yn+1) − E(X ∗, Y0) is at least −E(X ∗, Y0) for every n. However,
utilizing the fact that bn converges to 0 and that 〈∇ f(xn), xn − x∗〉 is
always positive (unless the iterate is exactly an optimal solution), we show
that the upper bound will approach−∞ ifXn only entersN (X ∗, ε), an open
ε-neighborhood of X ∗, a finite number of times (for an arbitrary ε > 0).
This generates an immediate contradiction, and thereby establishes that
Xn will get arbitrarily close to X ∗ for an infinite number of times. This
then implies that there exists a subsequence of the DAGD iterates that
converges to the set of global optima: xnk → X ∗, as k →∞.

To prove the claim, for simplicity and without loss of generality, we
assume X ∗ = {x∗}. If X ∗ contains more than one point, the analysis is
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identical provided we change all the point-to-point distance to point-to-set
distance. We now bound the energy change in one step as follows:

E(x∗, yn+1)− E(x∗, yn) = ‖x∗‖22 − ‖projX (yn+1)‖22 + 2〈yn+1,projX (yn+1)− x∗〉

−
{
‖x∗‖22 − ‖projX (yn)‖22 + 2〈yn,projX (yn)− x∗〉

}
= ‖projX (yn)‖22 − ‖projX (yn+1)‖22 − 2〈yn,projX (yn)− x∗〉
+ 2〈yn − αn+1(∇ f(xn) + bn),projX (yn+1)− x∗〉
= ‖projX (yn)‖22 − ‖projX (yn+1)‖22 + 2〈yn,projX (yn+1)− projX (yn)〉
− 2〈αn+1(∇ f(xn) + bn),projX (yn)− x∗ + projX (yn+1)− projX (yn)〉
= −2〈αn+1(∇ f(xn) + bn),projX (yn)− x∗〉+ 2〈yn+1,projX (yn+1)− projX (yn)〉
+ ‖projX (yn)‖22 − ‖projX (yn+1)‖22
= −2〈αn+1(∇ f(xn) + bn), xn − x∗〉+ ‖projX (yn)− yn+1‖22 − ‖projX (yn+1)− yn+1‖22
≤ −2〈αn+1(∇ f(xn) + bn), xn − x∗〉+ ‖yn − yn+1‖22

(3.9)

where the last equality follows from completing the squares and the last
inequality follows from projection onto convex sets.

Now telescoping yields:

E(x∗, yn+1)− E(x∗, y0) =

n∑
r=0

{E(x∗, yr+1)− E(x∗, yr)}

≤
n∑
r=0

{−2αr+1〈∇ f(xr) + br, xr − x∗〉+ α2
r+1‖∇ f(xr) + br‖22}

≤ −2

n∑
r=0

αr+1{〈∇ f(xr), xr − x∗〉 − ‖br‖2‖xr − x∗‖2}+ 2

n∑
r=0

α2
r+1{‖∇ f(xr)‖22 + ‖br‖22}

≤ −2

n∑
r=0

αr+1{〈∇ f(xr), xr − x∗〉 − C4‖br‖2}+ 2

n∑
r=0

α2
r+1{C2 +B},

(3.10)

where the last inequality follows from the fact that bn’s must be bounded
(since limn→∞ ‖bn‖2 = 0) and hence let B , supn ‖bn‖2. By Assump-
tion 3, we have 2

∑n
r=0 α

2
r+1{C2 + B} = B < ∞. Now fix any positive

number ε. Assume for contradiction purposes xn only enters N (x∗, ε) a
finite number of times and let t1 be the last time this occurs. This means
that for all r > t1, xr is outside the open set N (x∗, ε). Therefore, since
a continuous function always achieves its minimum on a compact set, we
have: 〈∇ f(xr), xr−x∗〉 ≥ minx∈X−N (x∗,ε)〈∇ f(x), x−x∗〉 , a > 0,∀r > t1
(note that a depends on ε). Further, since br → 0 as r → ∞, pick t2 such
that ‖br‖2 < a

2C4
,∀r ≥ t2. Denoting t = max(t1, t2), we continue the chain



6 DISTRIBUTED OPTIMIZATION UNDER UNBOUNDED DELAYS

of inequalities in Equation (3.10) below:

− E(x∗, y0) ≤ E(x∗, yn+1)− E(x∗, y0) ≤ −2

t∑
r=0

αr+1{〈∇ f(xr), xr − x∗〉 − C4‖br‖2}

− 2

n∑
r=t+1

αr+1{〈∇ f(xr), xr − x∗〉 − C4‖br‖2}+ 2

n∑
r=0

α2
r+1{C2 +B}

≤ −2

t∑
r=0

αr+1{〈∇ f(xr), xr − x∗〉 − C4‖br‖2} − 2

n∑
r=t+1

αr+1{a− C4‖br‖2}+B

≤ 2C4

t∑
r=0

αr+1|br‖2 +B − 2

n∑
r=t+1

αr+1{a−
a

2
}

= B − a
n∑

r=t+1

αr+1 → −∞, as n→∞

(3.11)

where the first inequality follows from the energy function always being
positive (Lemma 3.1), the second-to-last inequality follows from variational
coherence and the limit on the last line follows from Assumption 3 and that
B , 2C4

∑t
r=0 αr+1|br‖2 + B is just some finite constant. This yields an

immediate contradiction and the claim is therefore established.

�

We are now in a position to prove our main convergence result for DAGD:

Theorem 3.3. Under Assumptions 1–3, the global state variable xn of DAGD
converges to X ∗.

Proof. Fix a given δ > 0. Since αn → 0, bn → 0 as n → ∞, for any a > 0, we can
pick an N large enough (depending on δ and a) such that ∀n ≥ N , the following
three statements all hold true:

2BC4αn+1 + 2α2
n+1(C2 +B2) ≤ δ

2
,

C4‖bn‖2 ≤
a

2
,

αn+1(C2 +B2) <
a

2
.

(3.12)

We show that under either of the (exhaustive) following possibilities, if E(x∗, yn)
is less than δ, E(x∗, yn+1) is less than δ as well, where n ≥ N .

(1) Case 1: E(x∗, yn) < δ
2 .

(2) Case 2: δ
2 ≤ E(x∗, yn) < δ.
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Under Case 1, it follows from Equation (3.9):

E(x∗, yn+1)− E(x∗, yn) ≤ −2αn+1〈∇ f(xn) + bn, xn − x∗〉+ α2
n+1‖∇ f(xn) + bn‖22

≤ −2αn+1〈bn, xn − x∗〉+ α2
n+1‖∇ f(xn) + bn‖22

≤ 2αn+1‖bn‖2‖xn − x∗‖2 + 2α2
n+1(C2 +B2)

≤ 2BC4αn+1 + 2α2
n+1(C2 +B2)

≤ δ

2
,

(3.13)

where the second inequality follows from variational coherence. This then implies
that E(x∗, yn+1) ≤ E(x∗, yn) + δ

2 < δ.
Under Case 2, Eq. (3.9) readily yields:

E(x∗, yn+1)− E(x∗, yn) ≤ −2αn+1〈∇ f(xn) + bn, xn − x∗〉+ α2
n+1‖∇ f(xn) + bn‖22

= −2αn+1〈∇ f(xn), xn − x∗〉 − 2αn+1〈bn, xn − x∗〉+ α2
n+1‖∇ f(xn) + bn‖22

≤ −2αn+1a+ 2αn+1‖bn‖2‖xn − x∗‖2 + 2α2
n+1(C2 +B2)

≤ −2αn+1

{
a− C4‖bn‖2 − αn+1(C2 +B2)

}
≤ −2αn+1

{
a− a

2
− αn+1(C2 +B2)

}
= −2αn+1

{a
2
− αn+1(C2 +B2)

}
< 0,

(3.14)

where the second inequality follows from 〈∇ f(xn), xn − x∗〉 ≥ a under Case 23.
Consequently, E(x∗, yn+1) < E(x∗, yn) < δ. �

4. Stochastic Convergence Analysis

4.1. Recurrence of DASGD.

Proposition 4.1. Under Assumptions 1–3, DAGD admits a subsequence Xnk that
converges to X ∗ almost surely; concretely, Xnk → X ∗ with probability 1 as k →∞.

Proof. For streamlining purposes, we break up the proof in two distinct steps below.
(1) We rewrite the gradient update in distributed asynchronous stochastic gra-

dient descent (DASGD) as:
Yn+1 = Yn − αn+1∇F (Xs(n), ωs(n)+1)

= Yn − αn+1

{
∇ f(Xn) +∇ f(Xs(n))−∇ f(Xn)

+∇F (Xs(n), ωs(n)+1)−∇ f(Xs(n))
}
.

(4.1)

By defining Bn = ∇ f(Xs(n))−∇ f(Xn) and Un+1 = ∇F (Xs(n), ωs(n)+1)−
∇ f(Xs(n)), we can rewrite DASGD as:

Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (4.2)

3Here a is a constant that only depends on δ: if E(x∗, y) ≥ δ
2
, then by part 2 of Lemma 3.1,

projX (y) must be outside an ε-neighborhood of x∗, for some ε > 0. On this neighborhood, the
strictly positive continuous function 〈∇ f(x), x− x∗〉 must achieve a minimum value a > 0.
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We then establish the following two facts in this step. First, we verify
that

∑n
r=0 Un+1 is a martingale adapted to Y1, Y2 . . . , Yn+1. Second, we

show that limn→∞ ‖Bn‖2 = 0, a.s..
The second claim is done by first giving an upper bound on ‖Bn‖2 by

writing ∇ f(Xs(n))−∇ f(Xn) as a sum of one-step changes (∇ f(Xs(n))−
∇ f(Xs(n)+1) +∇ f(Xs(n)+1)− · · ·+∇ f(Xn−1)−∇ f(Xn)) and analyzing
each such successive change. We then break that upper bound into two
parts, one deterministic and one stochastic. For the deterministic part,
the same analysis in the proof to Proposition 3.2 yields convergence to 0.
The stochastic part turns out to be the tail of a martingale. By leveraging
the property of the step-size and a crucial property of martingale differ-
ences (two martingale differences at different time steps are uncorrelated),
we establish that the martingale is L2-bounded. Therefore we can apply
some variant of Doob’s martingale convergence theorem to establish that
the martingale converges almost surely to a limiting random variable that
has finite second moment (and hence almost surely finite). Consequently,
writing the tail as a difference between two terms (each of which converges
to the same limiting random almost surely), we know the tail converges to
0 almost surely.

To see that
∑n
r=0 Un+1 is a martingale adapted to Y0, Y1 . . . , Yn+1, first

note that, by defintion, Bn is adapted to Y0, Y1 . . . , Yn (since Xn is a de-
terministic function of Yn) and Yn+1, Yn, Bn together determine Un+1. We
then check that their first moments are bounded:

E[‖
n∑
r=0

‖Ur+1‖2] ≤
n∑
r=0

E[‖Ur+1‖2] =

n∑
r=0

E[‖∇F (Xs(r), ωs(r)+1)−∇ f(Xs(r))‖2]

≤
n∑
r=0

{
E[‖∇F (Xs(r), ωs(r)+1)‖2] + E[‖∇ f(Xs(r))‖2]

}
≤

n∑
r=0

{
sup
x∈X

E[‖∇F (x, ω)‖2] + sup
x∈X
‖∇ f(x)‖2

}
=

n∑
r=0

{
sup
x∈X

E[‖∇F (x, ω)‖2] + sup
x∈X
‖E[∇F (x, ω)]‖2

}
≤

n∑
r=0

2 sup
x∈X

E[‖∇F (x, ω)‖2] =

n∑
r=0

2C1 = 2(n+ 1)C1 <∞,

(4.3)

where the last inequality follows from Jensen’s inequality (since ‖ · ‖2
is a convex function). Finally, the martingale property holds because:
E[
∑n
r=0 Ur+1 | Y1, . . . , Yn+1] = E[∇F (Xs(n), ωs(n)+1)−∇ f(Xs(n)) | Y1, . . . , Yn]+∑n−1

r=0 Ur+1 =
∑n−1
r=0 Ur+1.

Therefore,
∑n
r=0 Ur+1 is a martingale, and Un+1 is a martingale differ-

ence sequence adapted to Y0, Y1 . . . , Yn+1.
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Next, we show that limn→∞ ‖Bn‖2 = 0, a.s.. By definition, we can ex-
pand Bn as follows:

‖Bn‖2 = ‖∇ f(Xs(n))−∇ f(Xn)‖2 ≤ C3‖Xs(n) −Xn‖2 = C3‖projX (Ys(n))− projX (Yn)‖2

≤ C3‖Ys(n) − Yn‖2 = C3

∥∥∥Ys(n) − Ys(n)+1 + Ys(n)+1 − Ys(n)+2 + · · ·+ Yn−1 − Yn
∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1

{
Yr − Yr+1

}∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1∇F (Xs(r), ωs(r)+1)
∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1

{
∇ f(Xs(r)) +∇F (Xs(r), ωs(r)+1)−∇ f(Xs(r))

}∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1∇ f(Xs(r)) +

n−1∑
r=s(n)

αr+1Ur+1

∥∥∥
2

≤ C3

n−1∑
r=s(n)

αr+1‖∇ f(Xs(r))‖2 + C3

∥∥∥ n−1∑
r=s(n)

αr+1Ur+1

∥∥∥
2

≤ C3C1

n−1∑
r=s(n)

αr+1 + C3‖
n−1∑
r=s(n)

αr+1Ur+1‖2

= C3C1

n−1∑
r=s(n)

αr+1 + C3‖
n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1‖2, (4.4)

where the first inequality follows from ∇ f being Liptichz-continuous (As-
sumption 3) and the second inequality follows from projX is a non-expansive
map.

By the same analysis as in the deterministic case, the first part of the last
line of Equation (4.4) converges to 0 (under each one of the three conditions
on step-size and delays):

lim
n→∞

C3C1

n−1∑
r=s(n)

αr+1 = 0. (4.5)

We then analyze the limit of ‖
∑n−1
r=0 αr+1Ur+1 −

∑s(n)−1
r=0 αr+1Ur+1‖2.

Define:

Mn =

n−1∑
r=0

αr+1Ur+1.

Since Ur+1’s are martingale differences, Mn is a martingale. Further, in
each of the three conditions,

∑∞
n=1 α

2
n < ∞. This implies that Mn is an
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L2-bounded martingale because:

sup
n

E[‖Mn‖22] = sup
n

E[
∥∥∥ n−1∑
r=0

αr+1Ur+1

∥∥∥2
2
] = sup

n
E[〈

n−1∑
r=0

αr+1Ur+1,

n−1∑
r=0

αr+1Ur+1〉]

= sup
n

E[
∑
i,j

〈αi+1Ui+1, αj+1Uj+1〉] = sup
n

n−1∑
r=0

E[〈αr+1Ur+1, αr+1Ur+1〉]

= sup
n

n−1∑
r=0

α2
r+1 E[‖Ur+1‖22] ≤ sup

n
4C2

n−1∑
r=0

α2
r+1 ≤ 4C2

∞∑
r=0

α2
r+1 <∞,

(4.6)

where the last inequality in the second line follows from the martingale
property as follows:

E[〈αi+1Ui+1, αj+1Uj+1〉] = αi+1αj+1 E[〈Ui+1, Uj+1〉]
= αi+1αj+1 E[E[〈Ui+1, Uj+1〉 | Y0, Y1, . . . , Yi+1]]

= αi+1αj+1 E[〈Ui+1,E[Uj+1 | Y0, Y1, . . . , Yi+1]〉] = αi+1αj+1 E[〈Ui+1, 0〉] = 0,

(4.7)

where the second equality follows from the tower property (and without loss
of generality, we have assumed i < j, the third equality follows from Ui+1

is adapted to Y0, Y1, . . . , Yi+1 and the second-to-last equality follows from
Un+1 is a martingale difference. Consequently, all the cross terms in the
second line of Equation (4.6) are 0. Therefore, by Lemma 1.2, by taking p =
2 limn→∞Mn = M∞, a.s., where M∞ has finite second-moment. Further,
since in all three cases s(n) → ∞ as n → ∞ (because there is at most a
polynomial lag between s(n) and n), we have limn→∞Ms(n) = M∞, a.s..
Therefore

lim
n→∞

{ n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1

}
= lim
n→∞

{
Mn −Ms(n)

}
= 0, a.s.,

thereby implying:

lim
n→∞

C3

∥∥∥ n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1

∥∥∥
2

= 0. (4.8)

Combining Equation (4.5) and Equation (4.8) yields limn→∞ ‖Bn‖2 =
0, a.s..

(2) The full DASGD update is then:

Xn = projX (Yn) (4.9)
Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (4.10)

Similar to the deterministic case before, we again bound the one-step change
of the energy function E(X ∗, Yn+1)−E(X ∗, Yn) and then telescope the dif-
ferences. The two distinctions from the determinstic case are: 1) Everything
is now a random variable. 2) We have three terms: in addition to Bn, we
also have a martingale term Un+1. Since Bn converges to 0 almost surely
(as shown in the previous step), its effect is the same as bn in the determin-
istic case. Futher, the analysis utilizes law of large numbers for martingale
as well as Doob’s martingale convergence theorem to bound the effect of the
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various martingale terms and to establish that the final dominating term is
still the same term as in the deterministic case: a term that converges to
−∞ (which generates a contradiction since the energy function is always
positive) unless a subsequence Xnk converges almost surely to X ∗.

Similar to Equation (3.9), we now have:

E(x∗, Yn+1)− E(x∗, Yn) ≤ −2αn+1〈∇ f(Xn) +Bn + Un+1, Xn − x∗〉+ ‖Yn − Yn+1‖22
= −2αn+1〈∇ f(Xn) +Bn + Un+1, Xn − x∗〉+ α2

n+1‖∇ f(Xn) +Bn + Un+1‖22

≤ −2αn+1〈∇ f(Xn) +Bn + Un+1, Xn − x∗〉+ 3α2
n+1

{
‖∇ f(Xn)‖22 + ‖Bn‖22 + ‖Un+1‖22

}
≤ −2αn+1〈∇ f(Xn) +Bn + Un+1, Xn − x∗〉+ 3α2

n+1

{
C2 + ‖Bn‖22 + ‖Un+1‖22

}
.

(4.11)

For contradiction purposes assume Xn enters N (x∗, ε) only a finite num-
ber of times with positive probability. By starting the sequence at a later in-
dex if necessary, we can without loss of generality Xn never enters N (x∗, ε)
with positive probability. Then on this event (of Xn never enters N (x∗, ε)),
we have 〈∇ f(Xn), Xn−x∗〉 ≥ a > 0 as before. Telescoping Equation (4.11)
then yields:

−∞ < −E(x∗, Y0) ≤ E(x∗, Yn+1)− E(x∗, Y0) =

n∑
r=0

{E(x∗, Yr+1)− E(x∗, Yr)}

≤ −2

n∑
r=0

αn+1〈∇ f(Xn) +Bn + Un+1, Xn − x∗〉+ 3

n∑
r=0

α2
n+1

{
C2 + ‖Bn‖22 + ‖Un+1‖22

}
≤ −2

n∑
r=0

αn+1

{
a+ 〈Bn + Un+1, Xn − x∗〉

}
+ 3

n∑
r=0

α2
n+1

{
C2 + ‖Bn‖22 + ‖Un+1‖22

}
→ −∞ a.s. as n→∞.

(4.12)

We justify the last-line limit of Equation (4.12) by looking at each of its
components in turn:
(a) Since

∑n
r=0 α

2
n+1 <∞, and limn→∞ ‖Bn‖22 = 0, a.s., we have 3

∑∞
r=0 α

2
n+1

{
C2+

‖Bn‖22
}

= C, a.s., for some constant C <∞.
(b)

∑n
r=0 α

2
n+1‖Un+1‖22 is submartingale that is L1 bounded since:

sup
n

E[

n∑
r=0

α2
n+1‖Un+1‖22] ≤ sup

n

n∑
r=0

α2
n+1 E[‖Un+1‖22] ≤ sup

n

n∑
r=0

α2
n+1 E[‖Un+1‖22]

≤ 2 sup
n

n∑
r=0

α2
n+1

{
E[‖∇ f(Xn)‖22] + E[‖∇F (Xn, ωn+1)‖22]

}
≤ 2 sup

n

n∑
r=0

2C2α
2
n+1 <∞.

(4.13)

Consequently, by martingale convergence theorem (Lemma 1.2 by tak-
ing p = 1), 3

∑n
r=0 α

2
n+1‖Un+1‖22 → R, a.s., for some random variable

R that is almost surely finite (in fact E[|R|] <∞).
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(c) Since ‖Bn‖2 converges to 0 almost surely, its average also converges
to 0 almost surely:

∞∑
n=0

αn+1‖Bn‖2∑n
r=1 αr+1

= 0, a.s.,

there by implying that
∞∑
n=0

αn+1〈Bn, Xn − x∗〉∑n
r=1 αr+1

= 0, a.s.,

since |〈Bn, Xn − x∗〉| ≤ ‖Bn‖2‖Xn − x∗‖2 ≤ C4‖Bn‖2.
In addition, 〈Un+1, Xn − x∗〉 is a martingale difference that is L1

bounded (because E[‖〈Un+1, Xn − x∗〉‖22] ≤ E[‖Un+1‖22‖Xn − x∗‖22] ≤
C4 E[‖Un+1‖22] ≤ 4C4C2 <∞), law of large number therefore implies:∑∞
n=0

αn+1〈Un+1,Xn−x∗〉∑n
r=1 αr+1

= 0, a.s. Combining the above two limits, we
have

lim
n→∞

∑n
r=0 αn+1〈Bn + Un+1, Xn − x∗〉∑n

r=0 αr+1
= 0, a.s.

Consequently, −
∑n
r=0 αn+1

{
a+〈Bn+Un+1, Xn−x∗〉

}
= −{

∑n
r=0 αn+1}

{
a+∑n

r=0 αn+1〈Bn+Un+1,Xn−x∗〉∑n
r=0 αr+1

}
→ −∞, as n→ −∞.

�

4.2. ODE Approximation of DASGD.

Lemma 4.2. Fix any δ > 0.
(1) If projX (P (t, y)) /∈ X ∗, then E(X ∗, P (t, y)) is a strictly decreasing function

in t for every y ∈ Rd.
(2) There exists some time constant T (δ) > 0 such that supy∈Rd:E(x∗,y)> δ

2
E(x∗, P (t, y))−

E(x∗, y) < δ
2 , ∀t > T (δ).

Proof. The first claim follows by computing the derivative of the energy function
with respect to time (for notational simplicity, here we just use y(t) to denote
P (t, y)):
d

dt
E(x∗, y(t)) =

d

dt

{
‖x∗‖22 − ‖projX (y(t))‖22 + 2〈y(t),projX (y(t))− x∗〉

}
=

d

dt

{
− ‖projX (y(t))− y(t)‖22 + ‖y(t)‖22 + 2〈y(t),−x∗〉

}
= 2〈ẏ(t),projX (y(t))− y(t)〉+ 2〈y(t), ẏ(t)〉+ 2〈ẏ(t),−x∗〉

}
= −2〈∇ f(x(t)), x(t)− y(t)〉 − 2〈∇ f(x(t)), y(t)〉 − 2〈∇ f(x(t)),−x∗〉

}
= −〈∇ f(x(t)), x(t)− x∗〉 ≤ 0,

(4.14)

where the last inequality is strict unless projX (y(t)) = x(t) = x∗ (or x(t) ∈ X ∗
in the set case). Note that even though projX (y(t)) − y(t) is not differentiable,
‖projX (y(t))− y(t)‖22 is; and in computing its derivative, we applied the envelope
theorem.

For the second claim, consider any y that satisfies E(x∗, P (t, y)) > δ
2 . Then by

the monotonicity property in the first part of the lemma, it follows that E(x∗, P (s, y)) >
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δ
2 ,∀0 ≤ s ≤ t. This means that there exists some positive constant a(δ) such that
∀0 ≤ s ≤ t:

d

ds
E(x∗, P (s, y)) = −〈∇ f(x(s)), x(s)− x∗〉 ≤ −a(δ). (4.15)

Consequently, pick T (δ) = δ
2a(δ) , Equation (4.15) implies that for any t > T (δ):

E(x∗, P (t, y)) ≤ E(x∗, P (T (δ), y)) ≤ E(x∗, y)− T (δ)a(δ) ≤ E(x∗, y)− δ

2
. (4.16)

Since Equation 4.16 is true for any y, taking sup over y establishes the claim. �

4.3. Main Convergence Result. For convenience, we restate here the conver-
gence result we wish to prove:

Theorem 4.3. Under Assumptions 1–3, the global state variable Xn of DASGD
converges to X ∗ with probability 1.

Proof. We again give the outline of the main strategy of the proof. By Proposi-
tion 4.1, Yn will get arbitrarily close to X ∗ infinitely often. It then suffices to show
that, after long enough iterations, if Yn ever gets ε-close to X ∗, all the ensuing
iterates will be ε-close to X ∗ almost surely.

The way we show this “trapping" property is to use the energy function. Specif-
ically, we consider E(x∗, A(t)) and show that no matter how small ε is, for all suffi-
ciently large t, if E(x∗, A(t0)) is less than ε for some t0, then E(x∗, A(t)) < ε,∀t > t0.
This would then complete the proof because A(t) actually contains all the DASGD
iterates, and hence if E(x∗, A(t)) < ε,∀t > t0, then E(x∗, Yn) < ε for all sufficiently
large n. Furthermore, since A(t) contains all the iterates, the hypothesis that “ if
E(x∗, A(t0)) is less than ε for some t0" will be satisfied due to Proposition 4.1.

We expand on one more layer of detail and defer the rest into appendix. To
obtain control E(x∗, A(t)), we control two things: the energy on the ODE path
E(x∗, P (t, y)) and the discrepancy between E(x∗, P (t, y)) and E(x∗, A(t)). The
former can be made arbitrarily small as a result of Lemma 4.2 (we have a direct
handle on how the ODE path would behave). The latter can also be made arbi-
trarily small since A(t) is an asymptotic pseudotrajectory for P , the two paths are
close. Therefore, the discrepancy between E(x∗, P ) and E(x∗, A) should also be
vanishingly small. Consequently, since E(x∗, A(t)) = E(x∗, P (t, y))+{E(x∗, A(t))−
E(x∗, P (t, y))}, and both terms on the right can be made arbitrarily small, so can
E(x∗, A(t)) be made arbitrarily small.

We now flesh out more details of the proof. Fix any ε > 0. Since A(t) is an
asymptotic pseudotrajectory for P , we have:

lim
t→∞

sup
0≤h≤T

‖Y (t+ h)− P (h, Y (t))‖2 = 0. (4.17)

Consequently, for any δ > 0, there exists some τ(δ, T ) such that ‖Y (t + h) −
P (h, Y (t))‖2 < δ for all t ≥ τ and all h ∈ [0, T ]. We therefore have the following
chain of inequalities:

E(x∗, A(t+ h)) = E(x∗, P (h,A(t)) +A(t+ h)− P (h,A(t))) (4.18)

≤ E(x∗, P (h,A(t))) + 〈A(t+ h)− P (h,A(t)),projX (P (h,A(t)))− x∗〉+
1

2
‖A(t+ h)− P (h,A(t))‖22

≤ E(x∗, P (h,A(t))) + C4δ +
1

2
δ2 = E(x∗, P (h,A(t))) +

ε

2
, (4.19)
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where in the last step we have choosen δ small enough such that C4δ + 1
2δ

2 = ε
2 .

Now by Proposition 4.1, there exists some τ0 such that E(x∗, A(τ0)) < ε
2 . Our

goal is to establish that E(x∗, A(τ0 + h)) < ε for all h ∈ [0,∞). To that end,
partition the [0,∞) into disjoint time intervals of the form [(n−1)Tε, nTε) for some
appropriate Tε. By Lemma 4.2, we have:

E(x∗, P (h,A(τ0))) ≤ E(x∗, P (0, A(τ0))) = E(x∗, A(τ0)) <
ε

2
for all h ≥ 0.

(4.20)
Consequently:

E(x∗, A(τ0 + h)) < E(x∗, P (h,A(τ0))) +
ε

2
<
ε

2
+
ε

2
= ε, (4.21)

where the last inequality is a consequence of (4.20).
Now, assume inductively that Eq. (4.21) holds for all h ∈ [(n − 1)Tε, nTε) for

some n ≥ 1. Then, for all h ∈ [(n− 1)Tε, nTε), we have:

E(x∗, A(τ0 + Tε + h)) < E(x∗, P (Tε, A(τ0 + h))) +
ε

2
≤ max

{ε
2
, E(x∗, A(τ0 + h))− ε

2

}
+
ε

2

≤ ε

2
+
ε

2
= ε. (4.22)

Consequently, Eq. (4.21) holds for all h ∈ [nTε, (n + 1)Tε). This completes the
induction and our proof. �
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