
Supplementary Materials for
“A Simple Stochastic Variance Reduced Algorithm with Fast Convergence

Rates”

Notations. We use Eij to denote that the expectation is taken with respect to the jth sample in one epoch, while E means
taking expectation with respect to all randomness in one epoch. We use O(·) to denote computational complexity and O(·)
to denote oracle complexity. x∗ refers to the solution to Problem (1) (the proofs for Section 3) or Problem (4) (the proofs for
Section 4). S is the total number of epochs to be executed. Boldface number like 0 refers to a vector with all 0.

Note: In order to give a clean proof, we omit the superscripts for iterates in the same epoch s as xj instead of xsj unless
otherwise specified.

A. Useful Lemmas
Lemma 1. (Variance Bound) Suppose each component function fi is L-smooth, let ∇̃ = ∇fij (yj−1) − ∇fij (x̃s−1) +
∇f(x̃s−1), which is the approximate gradient used in MiG. Then the following inequality holds:

Eij
[
‖∇f(yj−1)− ∇̃‖2

]
≤ 2L

(
f(x̃s−1)− f(yj−1)− 〈∇f(yj−1), x̃s−1 − yj−1〉

)
.

Proof. This lemma is identical to Lemma 3.4 in (Allen-Zhu, 2017), which provides a tighter upper bound on the gradient
estimator variance than those in (Johnson & Zhang, 2013; Xiao & Zhang, 2014).

Lemma 2. (3-points property) Assume that z∗ is an optimal solution to the following problem,

min
x

τ

2
‖x− z0‖2 + ψ(x),

where τ > 0, and ψ(·) is a convex function (but possibly non-differentiable). Then for all z ∈ Rd, there exists a vector
G ∈ ∂ψ(z∗) with

〈G, z − z∗〉 =
τ

2
‖z∗ − z0‖2 −

τ

2
‖z − z0‖2 +

τ

2
‖z − z∗‖2,

where ∂ψ(z∗) denotes the sub-differential of ψ(·) at z∗. If ψ(·) is differentiable, we can simply replace G ∈ ∂ψ(·) with
G = ∇ψ(·).

Proof. By the optimality of z∗, there exists a vector G ∈ ∂ψ(z∗) (or G = ∇ψ(z∗) for differentiable ψ(·)) satisfying

τ(z∗ − z0) + G = 0.

Thus for all z ∈ Rd,
0 = 〈τ(z∗ − z0) + G, z∗ − z〉

= τ〈z∗ − z0, z
∗ − z〉+ 〈G, z∗ − z〉

(?)
=
τ

2
‖z∗ − z0‖2 −

τ

2
‖z − z0‖2 +

τ

2
‖z − z∗‖2 + 〈G, z∗ − z〉,

where (?) uses the fact that 〈a− b, a− c〉 = 1
2‖a− b‖

2 − 1
2‖b− c‖

2 + 1
2‖a− c‖

2.
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Lemma 3. If two vector xj , xj−1 ∈ Rd satisfy xj = arg minx{ 1
2η‖x− xj−1‖2 + 〈∇̃, x〉+ g(x)} with a constant vector

∇̃ and a general convex function g(·), then for all u ∈ Rd, we have

〈∇̃, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 −

1

2η
‖xj − u‖2 + g(u)− g(xj).

Moreover, if g(·) is σ-strongly convex, the above inequality becomes

〈∇̃, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
‖xj − u‖2 + g(u)− g(xj).

Proof. Applying Lemma 2 with z = u, z0 = xj−1, z∗ = xj , τ = 1
η , ψ(x) = 〈∇̃, x〉 + g(x), there exists a vector

G ∈ ∂g(xj) (or G = ∇g(xj) for differentiable g(·)) satisfying

〈∇̃, u− xj〉+ 〈G, u− xj〉 =
1

2η
‖xj−1 − xj‖2 −

1

2η
‖xj−1 − u‖2 +

1

2η
‖xj − u‖2.

Using the convexity of g(·), we get g(u)− g(xj) ≥ 〈G, u− xj〉 by definition. After rearranging, we conclude that

〈∇̃, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 −

1

2η
‖xj − u‖2 + g(u)− g(xj).

If g(·) is further σ-strongly convex, we have g(u)− g(xj) ≥ 〈G, u− xj〉+ σ
2 ‖xj − u‖

2 by (3). Similarly, we can write

〈∇̃, xj − u〉 ≤ −
1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
‖xj − u‖2 + g(u)− g(xj).

B. Proofs for Section 3
B.1. Proof of Theorem 1

First, we add the following constraint on the parameters η and θ, which is crucial in the proof of Theorem 1:

Lθ +
Lθ

1− θ
≤ 1

η
, or equivalently η ≤ 1− θ

Lθ(2− θ)
. (7)

We start with convexity of f(·) at yj−1. By definition, for any vector u ∈ Rd, we have

f(yj−1)− f(u) ≤ 〈∇f(yj−1), yj−1 − u〉
= 〈∇f(yj−1), yj−1 − xj−1〉+ 〈∇f(yj−1), xj−1 − u〉
(?)
=

1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+ 〈∇f(yj−1), xj−1 − u〉, (8)

where (?) follows from the fact that yj−1 = θxj−1 + (1− θ)x̃s−1.

Then we further expand 〈∇f(yj−1), xj−1 − u〉 as

〈∇f(yj−1), xj−1 − u〉 = 〈∇f(yj−1)− ∇̃, xj−1 − u〉+ 〈∇̃, xj−1 − xj〉+ 〈∇̃, xj − u〉. (9)

Using L-smooth (2) of f(·) at (yj , yj−1), we get

f(yj)− f(yj−1) ≤ 〈∇f(yj−1), yj − yj−1〉+
L

2
‖yj − yj−1‖2

(?)
= θ〈∇f(yj−1), xj − xj−1〉+

Lθ2

2
‖xj − xj−1‖2

= θ
[
〈∇f(yj−1)− ∇̃, xj − xj−1〉+ 〈∇̃, xj − xj−1〉

]
+
Lθ2

2
‖xj − xj−1‖2,

〈∇̃, xj−1 − xj〉 ≤
1

θ

(
f(yj−1)− f(yj)

)
+ 〈∇f(yj−1)− ∇̃, xj − xj−1〉+

Lθ

2
‖xj − xj−1‖2,
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where (?) uses the definition of yj−1.

After plugging in the constraint (7), we have

〈∇̃, xj−1−xj〉 ≤
1

θ

(
f(yj−1)−f(yj)

)
+〈∇f(yj−1)−∇̃, xj−xj−1〉+

1

2η
‖xj−xj−1‖2−

Lθ

2(1− θ)
‖xj−xj−1‖2. (10)

Then we are ready to combine (8), (9), (10), as well as Lemma 3 (here g(x) is σ-strongly convex by Assumption 1), which
gives

f(yj−1)− f(u) ≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+ 〈∇f(yj−1)− ∇̃, xj − u〉+

1

θ
(f(yj−1)− f(yj))

− Lθ

2(1− θ)
‖xj − xj−1‖2 +

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
‖xj − u‖2 + g(u)− g(xj).

After taking expectation with respect to the sample ij , we obtain

f(yj−1)− f(u)
(a)

≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+ Eij

[
〈∇f(yj−1)− ∇̃, xj − xj−1〉

]
+

1

θ
(f(yj−1)− Eij

[
f(yj)

]
)

− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
Eij
[
‖xj − u‖2

]
+ g(u)− Eij

[
g(xj)

]
(b)

≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+

1

2β
Eij
[
‖∇f(yj−1)− ∇̃‖2

]
+
β

2
Eij
[
‖xj − xj−1‖2

]
+

1

θ
(f(yj−1)− Eij

[
f(yj)

]
)− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − u‖2

− 1 + ησ

2η
Eij
[
‖xj − u‖2

]
+ g(u)− Eij

[
g(xj)

]
,

where (a) holds due to the unbiasedness of the gradient estimator Eij
[
∇f(yj−1) − ∇̃

]
= 0, and (b) uses the Young’s

inequality to expand Eij
[
〈∇f(yj−1)− ∇̃, xj − xj−1〉

]
with the parameter β > 0.

Applying Lemma 1 to bound the variance term Eij
[
‖∇f(yj−1)− ∇̃‖2

]
, we get

f(yj−1)− f(u) ≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+

L

β

(
f(x̃s−1)− f(yj−1)− 〈∇f(yj−1), x̃s−1 − yj−1〉

)
+
β

2
Eij
[
‖xj − xj−1‖2

]
+

1

θ
(f(yj−1)− Eij

[
f(yj)

]
)− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − u‖2

− 1 + ησ

2η
Eij
[
‖xj − u‖2

]
+ g(u)− Eij

[
g(xj)

]
.

Let β = Lθ
1−θ > 0, by rearranging the above inequality, we obtain

0 ≤ 1− θ
θ

f(x̃s−1)− 1

θ
Eij
[
f(yj)

]
+ F (u)− Eij

[
g(xj)

]
+

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
Eij
[
‖xj − u‖2

]
(?)

≤ 1− θ
θ

F (x̃s−1)− 1

θ
Eij
[
F (yj)

]
+ F (u) +

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
Eij
[
‖xj − u‖2

]
,

1

θ

(
Eij
[
F (yj)

]
− F (u)

)
≤ 1− θ

θ

(
F (x̃s−1)− F (u)

)
+

1

2η
‖xj−1 − u‖2 −

1 + ησ

2η
Eij
[
‖xj − u‖2

]
, (11)

where (?) follows from the Jensen’s inequality and the definition of yj−1, which leads to −g(xj) ≤ 1−θ
θ g(x̃s−1)− 1

θg(yj).

Let u = x∗, using our choice of ω = 1 + ησ to sum (11) over j = 1 . . .m with increasing weight ωj−1. After taking
expectation with respect to all randomness in this epoch, we have

1

θ

m−1∑
j=0

ωj
(
E
[
F (yj+1)

]
− F (x∗)

)
+
ωm

2η
E
[
‖xm − x∗‖2

]
≤ 1− θ

θ

m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖x0 − x∗‖2.
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Using the Jensen’s inequality and x̃s = θ
(∑m−1

j=0 ωj
)−1∑m−1

j=0 ωjxj+1 + (1− θ)x̃s−1 = (
∑m−1
j=0 ωj)−1

∑m−1
j=0 ωjyj+1,

we have

1

θ

m−1∑
j=0

ωj
(
E
[
F (x̃s)

]
− F (x∗)

)
+
ωm

2η
E
[
‖xm − x∗‖2

]
≤ 1− θ

θ

m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖x0 − x∗‖2. (12)

(I) Consider the first case in Theorem 1 with m
κ ≤

3
4 , we set η =

√
1

3σmL , θ =
√

m
3κ ≤

1
2 , and m = Θ(n).

First, we evaluate the crucial constraint (7). By substituting in our parameter settings, the constraint becomes

Lθ +
Lθ

1− θ
≤ 1

η
→
√
m

κ
≤
√

3

2
.

Thus the constraint is satisfied by meeting the case assumption.

Then we focus on (1− θ)ωm, observed that

(1− θ)ωm = (1−
√
m

3κ
) · (1 +

√
1

3mκ
)m.

Let ζ =
√

m
κ , ζ ∈ (0,

√
3

2 ], we can denote

φ(ζ) = (1−
√

3

3
ζ) · (1 +

√
3

3
· ζ
m

)m

as a function of ζ.

By taking derivative with respect to ζ , we find that φ(ζ) is monotonically decreasing on [0,
√

3
2 ] for any m > 0, which means

(1− θ)ωm ≤ max
ζ∈(0,

√
3

2 ]

φ(ζ) ≤ φ(0) = 1.

Thus we have 1
θ ≥

1−θ
θ ωm. By using this inequality in (12), we get

1− θ
θ

m−1∑
j=0

ωj
(
E
[
F (x̃s)

]
− F (x∗)

)
+

1

2η
E
[
‖xm − x∗‖2

]
≤ ω−m ·

(1− θ
θ

m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖x0 − x∗‖2

)
.

Dividing both sides of the above inequality by 1−θ
θ

∑m−1
j=0 ωj , we get

(
E
[
F (x̃s)

]
− F (x∗)

)
+

θ

2η(1− θ)
∑m−1
j=0 ωj

E
[
‖xm − x∗‖2

]
≤ ω−m ·

((
F (x̃s−1)− F (x∗)

)
+

θ

2η(1− θ)
∑m−1
j=0 ωj

‖x0 − x∗‖2
)
.

Summing the above inequality over s = 1 . . .S, we get(
E
[
F (x̃S)

]
− F (x∗)

)
+

θ

2η(1− θ)
∑m−1
j=0 ωj

E
[
‖xSm − x∗‖2

]
≤ ω−Sm ·

((
F (x̃0)− F (x∗)

)
+

θ

2η(1− θ)
∑m−1
j=0 ωj

‖x1
0 − x∗‖2

)
.

Notice that in order to prevent confusion, we mark iterates with epoch number, such as xSm represent the last iterate in epoch
S.
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Using the fact that
∑m−1
j=0 ωj ≥ m, we have(
E
[
F (x̃S)

]
− F (x∗)

)
≤ ω−Sm ·

((
F (x̃0)− F (x∗)

)
+

θ

2η(1− θ)m
‖x1

0 − x∗‖2
)
.

Using the σ-strongly convexity of F (·) to bound ‖x1
0 − x∗‖2, which is ‖x1

0 − x∗‖2 ≤ 2
σ

(
F (x1

0)− F (x∗)
)
, we obtain

E
[
F (x̃S)− F (x∗)

]
≤ (1 + ησ)−Sm ·

(
1 +

θ

η(1− θ)mσ

)
·
(
F (x̃0)− F (x∗)

)
.

Note that x̃0 = x1
0 = x0.

By substituting with our parameters setting, we get

E
[
F (x̃S)− F (x∗)

] (?)

≤
(
O(1 +

√
1

3nκ
)
)−Sm ·O(1 + 2θ

√
κ

n

)
·
(
F (x̃0)− F (x∗)

)
≤
(
O(1 +

√
1

3nκ
)
)−Sm ·O(F (x̃0)− F (x∗)

)
,

where (?) holds due to the fact that θ ≤ 1
2 .

The above result implies that the oracle complexity in the case m
κ ≤ 3

4 to achieve an ε-additive error is

O
(√

κn log F (x̃0)−F (x∗)
ε

)
.

(II) For another case with m
κ > 3

4 , we set η = 2
3L , θ = 1

2 , and m = Θ(n).

Again, we evaluate the constraint (7) first. By substituting the parameter setting, the constraint becomes

Lθ +
Lθ

1− θ
≤ 1

η
→ η ≤ 2

3L
.

Thus the constraint is satisfied by our parameter choice.

Substituting the parameter setting into (12), we get

2

m−1∑
j=0

ωj
(
E
[
F (x̃s)

]
− F (x∗)

)
+

3Lωm

4
E
[
‖xm − x∗‖2

]
≤
m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

3L

4
‖x0 − x∗‖2.

Notice that based on the Bernoulli’s inequality, ωm = (1 + 2
3κ )m ≥ 1 + 2m

3κ ≥
3
2 , which leads to

3

2

m−1∑
j=0

ωj
(
E
[
F (x̃s)

]
− F (x∗)

)
+

9L

8
E
[
‖xm − x∗‖2

]
≤
m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

3L

4
‖x0 − x∗‖2,

m−1∑
j=0

ωj
(
E
[
F (x̃s)

]
− F (x∗)

)
+

3L

4
E
[
‖xm − x∗‖2

]
≤ 2

3
·
(m−1∑
j=0

ωj
(
F (x̃s−1)− F (x∗)

)
+

3L

4
‖x0 − x∗‖2

)
.

Again, by telescoping the above inequality from s = 1 . . .S , we get

m−1∑
j=0

ωj
(
E
[
F (x̃S)

]
− F (x∗)

)
+

3L

4
E
[
‖xSm − x∗‖2

]
≤
(2

3

)S · (m−1∑
j=0

ωj
(
F (x̃0)− F (x∗)

)
+

3L

4
‖x1

0 − x∗‖2
)
.

Since
∑m−1
j=0 ωj ≥ m, the above inequality can be rewritten as follows:

(
E
[
F (x̃S)

]
− F (x∗)

) (?)

≤
(2

3

)S · (1 +
3κ

2m

)
·
(
F (x̃0)− F (x∗)

)
≤
(2

3

)S ·O(F (x̃0)− F (x∗)
)
,

where (?) uses the σ-strongly convexity of F (·), that is, ‖x1
0 − x∗‖2 ≤ 2

σ

(
F (x1

0)− F (x∗)
)
.

This result implies that the oracle complexity in this case is O
(
n log F (x̃0)−F (x∗)

ε

)
.
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B.1.1. DETAILED COMPARISON BETWEEN MIG AND KATYUSHA

As mentioned in Section 3.1.1, MiG is a special case of Katyusha. However, it is a non-trivial special case and there are
some significant differences from the theoretical perspective between them for the ill-conditioned problems:

The intuition of Katyusha is that Katyusha Momentum is used to further reduce the variance of the iterates so as to make
Nesterov’s Momentum effective, which can be clearly seen from the parameter choice: the author fixed Katyusha Momentum
(for x̃, in the notation of original work) as τ2 = 1/2, and chose Nesterov’s Momentum (for y and z) with (1/2− τ1, τ1).
This idea is similar to Acc-Prox-SVRG (Nitanda, 2014), which uses sufficiently large mini-batch to make the Nesterov’s
Momentum effective. Thus, the acceleration comes from Nesterov’s Momentum, which is common in previous work (e.g.
Catalyst).

In contrast, MiG uses only Katyusha Momentum (negative momentum) to achieve acceleration (i.e., choosing τ2 in a
dynamic way), which is somehow counter-intuitive. To the best of our knowledge, this is the first work to yield an
acceleration without using Nesterov’s Momentum (which is at the heart of all existing accelerated first-order methods, as
stated in (Allen-Zhu, 2017)).

B.2. Proof of Theorem 2

Again, we first impose the following constraint on η and θ:

Lθ +
Lθ

1− θ
≤ 1

η
, or equivalently η ≤ 1− θ

Lθ(2− θ)
. (13)

We start with convexity of f(·) at yj−1. By definition, for any vector u ∈ Rd, we have

f(yj−1)− f(u) ≤ 〈∇f(yj−1), yj−1 − u〉
(?)
=

1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+ 〈∇f(yj−1), xj−1 − u〉,

(14)

where (?) follows from the fact that yj−1 = θxj−1 + (1− θ)x̃s−1.

Then we further expand 〈∇f(yj−1), xj−1 − u〉 as

〈∇f(yj−1), xj−1 − u〉 = 〈∇f(yj−1)− ∇̃, xj−1 − u〉+ 〈∇̃, xj−1 − xj〉+ 〈∇̃, xj − u〉. (15)

Using L-smooth (2) of f(·) at (yj , yj−1), we get

f(yj)− f(yj−1) ≤ 〈∇f(yj−1), yj − yj−1〉+
L

2
‖yj − yj−1‖2

= θ
[
〈∇f(yj−1)− ∇̃, xj − xj−1〉+ 〈∇̃, xj − xj−1〉

]
+
Lθ2

2
‖xj − xj−1‖2,

〈∇̃, xj−1 − xj〉 ≤
1

θ

(
f(yj−1)− f(yj)

)
+ 〈∇f(yj−1)− ∇̃, xj − xj−1〉+

Lθ

2
‖xj − xj−1‖2.

Using the constraint (13), we have

〈∇̃, xj−1−xj〉 ≤
1

θ

(
f(yj−1)−f(yj)

)
+〈∇f(yj−1)−∇̃, xj−xj−1〉+

1

2η
‖xj−xj−1‖2−

Lθ

2(1− θ)
‖xj−xj−1‖2. (16)

Then we can combine (14), (15), (16), as well as Lemma 3 (with g(x) convex), which leads to

f(yj−1)− f(u) ≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+ 〈∇f(yj−1)− ∇̃, xj − u〉+

1

θ
(f(yj−1)− f(yj))

− Lθ

2(1− θ)
‖xj − xj−1‖2 +

1

2η
‖xj−1 − u‖2 −

1

2η
‖xj − u‖2 + g(u)− g(xj).
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After taking expectation with respect to the sample ij , we get

f(yj−1)− f(u) ≤ 1− θ
θ
〈∇f(yj−1), x̃s−1 − yj−1〉+

1

2β
Eij
[
‖∇f(yj−1)− ∇̃‖2

]
+
β

2
Eij
[
‖xj − xj−1‖2

]
+

1

θ
(f(yj−1)− Eij

[
f(yj)

]
)− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − u‖2

− 1

2η
Eij
[
‖xj − u‖2

]
+ g(u)− Eij

[
g(xj)

]
,

which the inequality uses the unbiasedness of the gradient estimator and the Young’s inequality with the parameter β > 0.

Using Lemma 1 to bound the variance term and choosing β = Lθ
1−θ , the above inequality becomes

1

θ
Eij
[
f(yj)

]
− F (u) ≤ 1− θ

θ
f(x̃s−1) +

1

2η
‖xj−1 − u‖2 −

1

2η
Eij
[
‖xj − u‖2

]
− Eij

[
g(xj)

]
.

Let u = x∗ and using the fact that −g(xj) ≤ 1−θ
θ g(x̃s−1)− 1

θg(yj), we get

1

θ
Eij
[
F (yj)− F (x∗)

]
≤ 1− θ

θ

(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
.

Summing the above inequality over j = 1 . . .m and taking expectation with respect to all randomness in this epoch, we
obtain

1

θ
E
[ 1

m

m∑
j=1

F (yj)− F (x∗)
] (a)

≤ 1− θ
θ

(
F (x̃s−1)− F (x∗)

)
+

2θL

m
‖x0 − x∗‖2 −

2θL

m
E
[
‖xm − x∗‖2

]
,

1

θ2
E
[
F (x̃s)− F (x∗)

] (b)

≤ 1− θ
θ2

(
F (x̃s−1)− F (x∗)

)
+

2L

m
‖x0 − x∗‖2 −

2L

m
E
[
‖xm − x∗‖2

]
, (17)

where (a) follows from our parameter choice of η = 1
4Lθ , and (b) uses the Jensen’s inequality.

At this point, we first check the constraint (13),

η ≤ 1− θ
Lθ(2− θ)

→ θ ≤ 2

3
,

which is satisfied by the parameter setting θ = 2
s+4 ≤

1
2 .

Then by evaluating (17) with s = 1, we have

1

θ2
1

E
[
F (x̃1)− F (x∗)

]
+

2L

m
E
[
‖x1

m − x∗‖2
]
≤ 1− θ1

θ2
1

(
F (x̃0)− F (x∗)

)
+

2L

m
‖x1

0 − x∗‖2.

Notice that here we mark iterates and θ with epoch number to prevent confusion.

Since θs = 2
s+4 , one can easily verify that 1−θs+1

θ2s+1
≤ 1

θ2s
. Thus we can telescope the above inequality from s = 1 . . .S,

1

θ2
S
E
[
F (x̃S)− F (x∗)

]
+

2L

m
E
[
‖xSm − x∗‖2

]
≤ 1− θ1

θ2
1

(
F (x̃0)− F (x∗)

)
+

2L

m
‖x1

0 − x∗‖2,

E
[
F (x̃S)− F (x∗)

]
≤ 4(1− θ1)

(S + 4)2θ2
1

(
F (x̃0)− F (x∗)

)
+

8L

(S + 4)2m
‖x1

0 − x∗‖2.

In other words, by choosing m = Θ(n), the total oracle complexity is O
(
n
√

F (x̃0)−F (x∗)
ε +

√
nL‖x1

0−x∗‖2
ε

)
.

C. Proofs for Section 4
Lemma 4 (Sparse Variance Bound 1). If Assumption 3 holds, for any y, x̃ ∈ Rd and the sample ij , denote ∇̃ =

∇fij (y)−∇fij (x̃) +Dij∇F (x̃), where Dij is defined in Section 4.1, we can bound the variance Eij
[
‖∇̃‖2

]
as

Eij
[
‖∇̃‖2

]
≤ 4L

(
F (y)− F (x∗)

)
+ 4L

(
F (x̃)− F (x∗)

)
.
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Proof. From Lemma 10 in (Mania et al., 2017), we have

Eij
[
‖∇̃‖2

]
≤ 2Eij

[
‖∇fij (y)−∇fij (x∗)‖2

]
+ 2Eij

[
‖∇fij (x̃)−∇fij (x∗)‖2

]
, (18)

which provides an upper bound for the variance of the sparse stochastic variance reduced gradient estimator.

From Theorem 2.1.5 in (Nesterov, 2004), we have

‖∇fij (y)−∇fij (x∗)‖2 ≤ 2L
(
fij (y)− fij (x∗)− 〈∇fij (x∗), y − x∗〉

)
.

Taking expectation with the sample ij , the above inequality becomes

Eij
[
‖∇fij (y)−∇fij (x∗)‖2

]
≤ 2L

(
F (y)− F (x∗)

)
.

Similarly, we have
Eij
[
‖∇fij (x̃)−∇fij (x∗)‖2

]
≤ 2L

(
F (x̃)− F (x∗)

)
.

Substituting the above inequalities into (18) yields the desired result.

Lemma 5 (Sparse Variance Bound 2). If Assumption 3 holds, using same notations as in Algorithm 3, we can bound the
variance as

Eij
[
‖∇F (yj−1)− ∇̃S‖2

]
≤ 2L

(
F (x̃s−1)− F (yj−1)− 〈∇F (yj−1), x̃s−1 − yj−1〉

)
+ 2L(D2

m −Dm) ·
(
F (x̃s−1)− F (x∗)

)
,

where Dm = maxk=1...d
1
pk

, i.e., the inverse probability of the most sparse coordinates.

Proof. First, we expand the variance term as

Eij
[
‖∇F (yj−1)− ∇̃S‖2

]
= Eij

[∥∥(∇fij (yj−1)−∇fij (x̃s−1)
)
−
(
∇F (yj−1)−Dij∇F (x̃s−1)

)∥∥2
]

= Eij
[
‖∇fij (yj−1)−∇fij (x̃s−1)‖2

]
− 2Eij

[
〈∇fij (yj−1)−∇fij (x̃s−1),∇F (yj−1)−Dij∇F (x̃s−1)〉

]
(19)

+ Eij
[
‖∇F (yj−1)−Dij∇F (x̃s−1)‖2

]
.

Then we focus on the last two terms in (19),

Eij
[
‖∇F (yj−1)−Dij∇F (x̃s−1)‖2

]
= ‖∇F (yj−1)‖2 − 2Eij

[
〈∇F (yj−1), Dij∇F (x̃s−1)〉

]
+ Eij

[
‖Dij∇F (x̃s−1)‖2

]
(?)
= ‖∇F (yj−1)‖2 − 2〈∇F (yj−1),∇F (x̃s−1)〉+ 〈∇F (x̃s−1), D∇F (x̃s−1)〉, (20)

where (?) uses the fact that Pij = Pij · Pij and the unbiased sparse estimator Eij
[
Dij∇F (x)

]
= ∇F (x).

Eij
[
〈∇fij (yj−1)−∇fij (x̃s−1),∇F (yj−1)−Dij∇F (x̃s−1)〉

]
= ‖∇F (yj−1)‖2 − 〈∇F (yj−1),∇F (x̃s−1)〉 − Eij

[
〈∇fij (yj−1), Dij∇F (x̃s−1)〉

]
+ Eij

[
〈∇fij (x̃s−1), Dij∇F (x̃s−1)〉

]
(?)
= ‖∇F (yj−1)‖2 − 〈∇F (yj−1),∇F (x̃s−1)〉 − 〈∇F (yj−1), D∇F (x̃s−1)〉+ 〈∇F (x̃s−1), D∇F (x̃s−1)〉, (21)

where (?) follows from 〈∇fij (yj−1), Dij∇F (x̃s−1)〉 = 〈∇fij (yj−1), D∇F (x̃s−1)〉, since ∇fij (yj−1) and Dij are both
supported on the sample ij .

By substituting (20) and (21) into (19), we get

Eij
[
‖∇F (yj−1)− ∇̃S‖2

]
= Eij

[
‖∇fij (yj−1)−∇fij (x̃s−1)‖2

]
− ‖∇F (yj−1)‖2 + 2〈∇F (yj−1), D∇F (x̃s−1)〉 − ‖D∇F (x̃s−1)‖2

+ 〈(D − I)∇F (x̃s−1), D∇F (x̃s−1)〉
= Eij

[
‖∇fij (yj−1)−∇fij (x̃s−1)‖2

]
− ‖∇F (yj−1)−D∇F (x̃s−1)‖2 + 〈(D − I)∇F (x̃s−1), D∇F (x̃s−1)〉

≤ Eij
[
‖∇fij (yj−1)−∇fij (x̃s−1)‖2

]
+ 〈(D − I)∇F (x̃s−1), D∇F (x̃s−1)〉. (22)
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From Theorem 2.1.5 in (Nesterov, 2004), we have

‖∇fij (yj−1)−∇fij (x̃s−1)‖2 ≤ 2L
(
fij (x̃s−1)− fij (yj−1)− 〈∇fij (yj−1), x̃s−1 − yj−1〉

)
. (23)

By substituting (23) into (22), we obtain

Eij
[
‖∇F (yj−1)− ∇̃S‖2

]
≤ 2L

(
F (x̃s−1)− F (yj−1)− 〈∇F (yj−1), x̃s−1 − yj−1〉

)
+ 〈(D − I)∇F (x̃s−1), D∇F (x̃s−1)〉.

Since Dm = maxk=1...d
1
pk

, we can bound the last term as follows:

〈(D − I)∇F (x̃s−1), D∇F (x̃s−1)〉

=

d∑
k=1

(
1

p2
k

− 1

pk
)[∇F (x̃s−1)]2k

≤ (D2
m −Dm)‖∇F (x̃s−1)−∇F (x∗)‖2

(?)

≤ 2L(D2
m −Dm) ·

(
F (x̃s−1)− F (x∗)

)
,

where (?) follows from applying Theorem 2.1.5 in (Nesterov, 2004).

C.1. Proof of Theorem 3

For the purpose of analyzing in the asynchronous setting, we need to analyze the convergence of MiG starting with iterate
difference.

We start with the iterate difference between yj and x∗. By expanding iterate difference and taking expectation with respect
to the sample ij , we get

Eij
[
‖yj − x∗‖2

] (a)
= Eij

[
‖θ(xj−1 − η · ∇̃S) + (1− θ)x̃s−1 − x∗‖2

]
= Eij

[
‖yj−1 − ηθ · ∇̃S − x∗‖2

]
(b)
= ‖yj−1 − x∗‖2 − 2ηθ〈∇F (yj−1), yj−1 − x∗〉+ η2θ2Eij

[
‖∇̃S‖2

]
, (24)

where (a) uses the definition of y, and (b) follows from the unbiasedness of the sparse gradient estimator Eij
[
∇̃S
]

=
∇F (yj−1).

Using σ-strongly convex, we get a bound for −〈∇F (yj−1), yj−1 − x∗〉 as

〈∇F (yj−1), yj−1 − x∗〉 ≥ F (yj−1)− F (x∗) +
σ

2
‖yj−1 − x∗‖2. (25)

Using Lemma 4, we have the following variance bound:

Eij
[
‖∇̃S‖2

]
≤ 4L

(
F (yj−1)− F (x∗)

)
+ 4L

(
F (x̃s−1)− F (x∗)

)
. (26)

By combining (24), (25) and (26), we get

Eij
[
‖yj − x∗‖2

]
≤ ‖yj−1 − x∗‖2 − ηθσ‖yj−1 − x∗‖2 − 2ηθ

(
F (yj−1)− F (x∗)

)
+ η2θ2Eij

[
‖∇̃S‖2

]
≤ (1− ηθσ) · ‖yj−1 − x∗‖2 + (4Lη2θ2 − 2ηθ) ·

(
F (yj−1)− F (x∗)

)
+ 4Lη2θ2

(
F (x̃s−1)− F (x∗)

)
,

(2ηθ − 4Lη2θ2) ·
(
F (yj−1)− F (x∗)

)
≤ ‖yj−1 − x∗‖2 − Eij

[
‖yj − x∗‖2

]
+ 4Lη2θ2

(
F (x̃s−1)− F (x∗)

)
.

Summing the above inequality over j = 1 . . .m and taking expectation with respect to all randomness in this epoch, we get

(2ηθ − 4Lη2θ2) · E
[ m∑
j=1

(
F (yj−1)− F (x∗)

)]
≤ ‖y0 − x∗‖2 − E

[
‖ym − x∗‖2

]
+ 4Lη2θ2m

(
F (x̃s−1)− F (x∗)

)
.
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Using Jensen’s inequality and x̃s = 1
m

∑m−1
j=0 yj , we obtain

(2ηθ − 4Lη2θ2)m · E
[(
F (x̃s)− F (x∗)

)]
≤ ‖y0 − x∗‖2 + 4Lη2θ2m

(
F (x̃s−1)− F (x∗)

)
,

E
[(
F (x̃s)− F (x∗)

)] (?)

≤
2
σ + 4Lη2θ2m

(2ηθ − 4Lη2θ2)m
·
(
F (x̃s−1)− F (x∗)

)
,

where (?) follows from the fact x0 = x̃s−1 = y0 and σ-strongly convexity of F (·).

By choosing m = 25κ, η = 1
L , θ = 1

10 , the above inequality becomes

E
[(
F (x̃s)− F (x∗)

)]
≤ 0.75 ·

(
F (x̃s−1)− F (x∗)

)
,

which means that the total oracle complexity is O
(
(n+ κ) log F (x̃0)−F (x∗)

ε

)
.

C.2. Proof of Theorem 4

Here we consider improving the convergence rate for the Serial Sparse MiG, referencing to Algorithm 3 with Option II. Our
analysis is based on function difference similar to the proofs in Appendix B, which make the parameter θ effective.

Similarly, we first add the following constraint:

Lθ +
Lθ

1− θ
≤ 1

η
. (27)

We start with the convexity of F (·) at yj−1 and x∗,

F (yj−1)− F (x∗) ≤ 〈∇F (yj−1), yj−1 − x∗〉

=
1− θ
θ
〈∇F (yj−1), x̃s−1 − yj−1〉+ 〈∇F (yj−1), xj−1 − x∗〉.

(28)

Then we further expand 〈∇F (yj−1), xj−1 − x∗〉 as

〈∇F (yj−1), xj−1 − x∗〉 = 〈∇F (yj−1)− ∇̃S , xj−1 − x∗〉+ 〈∇̃S , xj−1 − xj〉+ 〈∇̃S , xj − x∗〉. (29)

Using L-smooth (2) of F (·) at (yj , yj−1), we can bound 〈∇̃S , xj−1 − xj〉 as

F (yj)− F (yj−1) ≤ 〈∇F (yj−1), yj − yj−1〉+
L

2
‖yj − yj−1‖2

(?)
= θ
[
〈∇F (yj−1)− ∇̃S , xj − xj−1〉+ 〈∇̃S , xj − xj−1〉

]
+
Lθ2

2
‖xj − xj−1‖2,

〈∇̃S , xj−1 − xj〉 ≤
1

θ

(
F (yj−1)− F (yj)

)
+ 〈∇F (yj−1)− ∇̃S , xj − xj−1〉+

Lθ

2
‖xj − xj−1‖2,

where (?) uses the definition of y.

Using the constraint (27), we have

〈∇̃S , xj−1 − xj〉 ≤
1

θ

(
F (yj−1)− F (yj)

)
+ 〈∇F (yj−1)− ∇̃S , xj − xj−1〉+

1

2η
‖xj − xj−1‖2 (30)

− Lθ

2(1− θ)
‖xj − xj−1‖2.

Since we can write an equivalent update as xj = arg minx{ 1
2‖x−xj−1‖2 + η〈∇̃S , x〉}, by applying Lemma 2 with z = x∗,

z0 = xj−1, z∗ = xj , τ = 1
η , ψ(x) = 〈∇̃S , x〉, we have

〈∇̃S , xj − x∗〉 = − 1

2η
‖xj−1 − xj‖2 +

1

2η
‖xj−1 − x∗‖2 −

1

2η
‖xj − x∗‖2. (31)
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Combining (28), (29), (30) and (31), we get

F (yj−1)− F (x∗) ≤ 1− θ
θ
〈∇F (yj−1), x̃s−1 − yj−1〉+

1

θ

(
F (yj−1)− F (yj)

)
+ 〈∇F (yj−1)− ∇̃S , xj − x∗〉

− Lθ

2(1− θ)
‖xj − xj−1‖2 +

1

2η
‖xj−1 − x∗‖2 −

1

2η
‖xj − x∗‖2.

Taking expectation with respect to the sample ij , we obtain

F (yj−1)− F (x∗)
(a)

≤ 1− θ
θ
〈∇F (yj−1), x̃s−1 − yj−1〉+

1

θ

(
F (yj−1)− Eij

[
F (yj)

])
− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+ Eij

[
〈∇F (yj−1)− ∇̃S , xj − xj−1〉

]
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
(b)

≤ 1− θ
θ
〈∇F (yj−1), x̃s−1 − yj−1〉+

1

θ

(
F (yj−1)− Eij

[
F (yj)

])
− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+

1

2β
Eij
[
‖∇F (yj−1)− ∇̃S‖2

]
+
β

2
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
,

where (a) uses the unbiasedness of the sparse gradient estimator Eij
[
∇̃S
]

= ∇F (yj−1), and (b) uses the Young’s inequality
with the parameter β > 0.

Using Lemma 5 to bound the variance term, we get

F (yj−1)− F (x∗) ≤ 1− θ
θ
〈∇F (yj−1), x̃s−1 − yj−1〉+

1

θ

(
F (yj−1)− Eij

[
F (yj)

])
− Lθ

2(1− θ)
Eij
[
‖xj − xj−1‖2

]
+
L

β

(
F (x̃s−1)− F (yj−1)− 〈∇F (yj−1), x̃s−1 − yj−1〉

)
+
L(D2

m −Dm)

β

(
F (x̃s−1)− F (x∗)

)
+
β

2
Eij
[
‖xj − xj−1‖2

]
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
.

By choosing β = Lθ
1−θ > 0, the above inequality becomes

F (yj−1)− F (x∗) ≤ 1

θ

(
F (yj−1)− Eij

[
F (yj)

])
+

1− θ
θ

(
F (x̃s−1)− F (yj−1)

)
+

1− θ
θ

(D2
m −Dm) ·

(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
,

1

θ

(
Eij
[
F (yj)

]
− F (x∗)

)
≤ 1− θ

θ

(
F (x̃s−1)− F (x∗)

)
+

1− θ
θ

(D2
m −Dm) ·

(
F (x̃s−1)− F (x∗)

)
+

1

2η
‖xj−1 − x∗‖2 −

1

2η
Eij
[
‖xj − x∗‖2

]
.

Summing the above inequality over j = 1 . . .m and taking expectation with respect to all randomness in this epoch, we get

1

θ

( 1

m

m∑
j=1

E
[
F (yj)

]
− F (x∗)

)
≤ 1− θ

θ
(1 +D2

m −Dm) ·
(
F (x̃s−1)− F (x∗)

)
+

1

2ηm

(
‖x0 − x∗‖2 − E

[
‖xm − x∗‖2

])
.

Using Jensen’s inequality and x̃s = 1
m

∑m
j=1 yj in Option II, we have

1

θ
E
[
F (x̃s)− F (x∗)

]
≤ 1− θ

θ

(
1 +D2

m −Dm

)
·
(
F (x̃s−1)− F (x∗)

)
+

1

2ηm

(
‖x0 − x∗‖2 − E

[
‖xm − x∗‖2

])
.
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In order to give a clean proof, we set D̃s , F (x̃s) − F (x∗), P s0 , ‖xs0 − x∗‖2 and the terms that related to Dm as
ζ = D2

m −Dm. Then the inequality becomes

1

θ
E
[
D̃s

]
≤ 1− θ

θ
(1 + ζ) · D̃s−1 +

1

2ηm
E
[
P s0 − P sm

]
,

θ + θζ − ζ
θ

· E
[
D̃s

]
≤ 1− θ

θ
(1 + ζ) · E

[
D̃s−1 − D̃s

]
+

1

2ηm
E
[
P s0 − P sm

]
.

Suppose we run S epochs before a restart. By summing the above inequality over s = 1 . . .S, we get

θ + θζ − ζ
θ

·
S∑
s=1

E
[
D̃s

]
≤ 1− θ

θ
(1 + ζ) · E

[
D̃0 − D̃S

]
+

1

2ηm
E
[
P 1

0 − PSm
]
.

Choosing the initial vector for next S epochs as xnew0 = 1
S
∑S
s=1 x̃s, we have

S · θ + θζ − ζ
θ

· E
[
D̃new

0

]
≤ 1− θ

θ
(1 + ζ) · E

[
D̃0 − D̃S

]
+

1

2ηm
E
[
P 1

0 − PSm
]

(?)

≤
( (1− θ)(1 + ζ)

θ
+

1

ηmσ

)
· D̃0,

E
[
D̃new

0

]
≤

(1− θ) · (1 + ζ) + θ
ηmσ

S · (θ + ζθ − ζ)
D̃0,

where (?) uses the σ-strongly convexity of F (·) and x̃0 = x1
0, that is, P 1

0 ≤ 2
σ D̃0.

Setting S =
⌈
2 · (1−θ)·(1+ζ)+ θ

ηmσ

θ+ζθ−ζ

⌉
, we have that D̃0 decreases by a factor of at least 1

2 every S rounds of epochs. So in

order to achieve an ε-additive error, we need totally O(log D̃0

ε ) restarts of the above procedure.

C.2.1. PARAMETER SETTING FOR TWO CASES

(I) Consider the first case with m
κ ≤

3
4 , by choosing identical parameters settings η =

√
1

3σmL , θ =
√

m
3κ ≤

1
2 and

m = Θ(n) as in Section 3 (so the constraint (27) is satisfied), we have

S =

⌈
2 ·

2−
(
θ + ζ · (θ − 1)

)
θ + ζ · (θ − 1)

⌉
.

Imposing an additional constraint on the sparse variance: ζ ≤
√

m
4κ , we have S = O(

√
κ
n ), which means that the total

oracle complexity is

O

(
S ·O

(
log

D̃0

ε

)
· (m+ n)

)
= O

(√
κn log

F (x̃0)− F (x∗)

ε

)

(II) Consider another case with m
κ > 3

4 and ζ ≤ Cζ , let θ̂ , Cζ+0.5
Cζ+1 , by choosing θ = ζ+0.5

ζ+1 ∈ [0.5, θ̂], η = 1−θ̂
2mσθ̂

≤
1−θ

Lθ(2−θ) (the constraint (27) is satisfied) and m = Θ(n), we have S = O(1) (correlated with Cζ), the total oracle complexity

O
(
n log F (x̃0)−F (x∗)

ε

)
.

C.2.2. DISCUSSION ABOUT SPARSE VARIANCE BOUND (LEMMA 4 AND LEMMA 5)

In the dense update case (with Dm = 1), we see that Lemma 5 degenerates to Lemma 1, this bound is much tighter than the
bound in Lemma 4 (Lemma 4 is identical for both the sparse and dense cases).

However, in the sparse update case, Lemma 5 highly correlates with dataset sparsity (∝ D2
m), which could be much looser

than Lemma 4 in some extreme cases (imagine a dataset with some dimensions contain only one entry among the n samples,
so Dm = n). Unfortunately, our MiG algorithm (as well as Katyusha) relies on canceling the additional variance term to
yield a tight correlation inside one iteration:

F (x̃s−1)− F (yj−1)− 〈∇F (yj−1), x̃s−1 − yj−1〉 → canceled by coupling term (1− θ)x̃s
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If Dm is as large as n, the oracle complexity in Theorem 4 could be even worse than that in Theorem 3.

It is still an open problem whether we can have a tighter variance bound in the sparse update setting that is uncorrelated with
Dm.

C.3. Proof of Theorem 5

Here we analyze Algorithm 4 based on the “perturbed iterate analysis” framework (Mania et al., 2017).

To begin with, we need to specify the iterates labeling order, which is crucial in our asynchronous analysis.

Choice of labeling order. There are “Before Read” (Mania et al., 2017) and “After Read” (Leblond et al., 2017) labeling
schemes proposed in recent years which are reasonable in asynchronous analysis. Among these two schemes, “Before Read”
requires considering the updates from “future”, which leads to a complex analysis. “After Read” enjoys a simpler analysis
but requires changing the order of sampling step to ensure uniform distributed samples16. In order to give a clean proof, we
adopt the “After Read” labeling scheme and make the following assumptions:

Assumption C.1. The labeling order increases after the step (14) in Algorithm 4 finished, so the future perturbation is not
included in the effect of asynchrony in the current step.

Assumption C.2. We explicitly assume uniform distributed samples and the independence of the sample ij with x̂j−1.

In other words, we are analyzing the following procedure:

1. Inconsistent read the iterate x̂j−1.

2. Increase iterates counter j and sample a random index ij .

3. Compute an update −η · ∇̃(ŷj−1).

4. Atomic write the update to shared memory coordinately.

From (Leblond et al., 2017), we can model the effect of asynchrony as follows:

x̂j − xj = η

j−2∑
k=(j−1−τ)+

Sjk∇̃(ŷk), (32)

where Sjk is a diagonal matrix with entries in {0,+1}. This definition models the coordinate perturbation from the past
updates. Here τ represents the maximum number of overlaps between concurrent threads (Mania et al., 2017). We further
denote ∆ = maxk=1...d pk following (Leblond et al., 2017), which provides a measure of sparsity.

Then we start our analysis with the iterate difference between “fake” yj and x∗. By expanding the iterate difference and
taking expectation with respect to the sample ij , we get

Eij
[
‖yj − x∗‖2

]
= Eij

[
‖θ(xj−1 − η · ∇̃(ŷj−1)) + (1− θ)x̃s−1 − x∗‖2

]
= Eij

[
‖yj−1 − ηθ · ∇̃(ŷj−1)− x∗‖2

]
(?)
= ‖yj−1 − x∗‖2 − 2ηθ〈∇F (ŷj−1), ŷj−1 − x∗〉+ η2θ2Eij

[
‖∇̃(ŷj−1)‖2

]
(33)

+ 2ηθEij
[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
,

where (?) uses the unbiasedness Eij
[
∇̃(ŷj−1)

]
= ∇F (ŷj−1) and the independence Assumption C.2.

Using Lemma 4, we get the variance bound

Eij
[
‖∇̃(ŷj−1)‖2

]
≤ 4L

(
F (ŷj−1)− F (x∗)

)
+ 4L

(
F (x̃s−1)− F (x∗)

)
. (34)

16So there are always two versions (analyzed, implemented) of algorithms in the works with “After Read” scheme (Leblond et al.,
2017; Pedregosa et al., 2017)
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Using the σ-strongly convex of F (·), we can bound −〈∇F (ŷj−1), ŷj−1 − x∗〉 as follows:

〈∇F (ŷj−1), ŷj−1 − x∗〉 ≥ F (ŷj−1)− F (x∗) +
σ

2
‖ŷj−1 − x∗‖2

(?)

≥ F (ŷj−1)− F (x∗) +
σ

4
‖yj−1 − x∗‖2 −

σ

2
‖ŷj−1 − yj−1‖2, (35)

where (?) uses the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

Combining (33), (34) and (35), we get

Eij
[
‖yj − x∗‖2

]
≤ (1− ηθσ

2
)‖yj−1 − x∗‖2 + ηθσ‖ŷj−1 − yj−1‖2 + 2ηθEij

[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
(36)

+ (4Lη2θ2 − 2ηθ)
(
F (ŷj−1)− F (x∗)

)
+ 4Lη2θ2

(
F (x̃s−1)− F (x∗)

)
.

From Lemma 1 in (Leblond et al., 2017), we borrow the notations C1 = 1 +
√

∆τ , C2 =
√

∆ + ηθσC1 and bound the
asynchronous variance terms ‖ŷj−1 − yj−1‖2, Eij

[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
using (32) as

Eij
[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
≤ ηθ

√
∆

2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2 +
ηθ
√

∆τ

2
Eij
[
‖∇̃(ŷj−1)‖2

]
, (37)

‖ŷj−1 − yj−1‖2 ≤ η2θ2(1 +
√

∆τ)

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2. (38)

Upper bounding the asynchronous terms in (36) using (37) and (38), we get

Eij
[
‖yj − x∗‖2

]
≤ (1− ηθσ

2
)‖yj−1 − x∗‖2 + η2θ2(

√
∆ + ηθσ(1 +

√
∆τ))

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2

+ (4Lη2θ2(1 +
√

∆τ)− 2ηθ)
(
F (ŷj−1)− F (x∗)

)
+ 4Lη2θ2(1 +

√
∆τ)

(
F (x̃s−1)− F (x∗)

)
.

Defining aj , ‖yj − x∗‖2, D̂j−1 = F (ŷj−1)− F (x∗), D̃s−1 = F (x̃s−1)− F (x∗) for a clean proof and rearranging, we
obtain

Eij
[
aj
]
≤ (1− ηθσ

2
)aj−1 + η2θ2C2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2 + (4Lη2θ2C1 − 2ηθ)D̂j−1 + 4Lη2θ2C1D̃s−1,

(2ηθ−4Lη2θ2C1)D̂j−1

(?)

≤ (aj−1 − Eij
[
aj
]
) + η2θ2C2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2 + 4Lη2θ2C1D̃s−1, (39)

where (?) uses the fact that 1− ηθσ
2 ≤ 1.

Summing (39) over j = 1 . . .m and taking expectation with all randomness in this epoch, we get

(2ηθ − 4Lη2θ2C1)

m∑
j=1

E
[
D̂j−1

]
≤ (a0 − E

[
am
]
) + η2θ2C2

m∑
j=1

j−2∑
k=(j−1−τ)+

E
[
‖∇̃(ŷk)‖2

]
+ 4Lη2θ2C1mD̃s−1. (40)

Then we focus on upper bounding the second term on the right side of (40),

m∑
j=1

j−2∑
k=(j−1−τ)+

E
[
‖∇̃(ŷk)‖2

]
≤ τ

m−1∑
j=1

E
[
‖∇̃(ŷj−1)‖2

]
≤ τ

m∑
j=1

E
[
‖∇̃(ŷj−1)‖2

] (?)

≤ 4Lτ
( m∑
j=1

E
[
D̂j−1

]
+mD̃s−1

)
,

where (?) uses the variance bound (34).
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Substituting the above inequality into (40), we get

(2ηθ − 4Lη2θ2C1 − 4Lη2θ2C2τ)

m∑
j=1

E
[
D̂j−1

]
≤ a0 + (4Lη2θ2C1m+ 4Lη2θ2C2τm)D̃s−1,

D̃s

(?)

≤
2
σ + 4Lη2θ2C1m+ 4Lη2θ2C2τm

(2ηθ − 4Lη2θ2C1 − 4Lη2θ2C2τ)m
· D̃s−1,

where (?) uses the σ-strongly convex of F (·) and x̃0 = x0 = y0, x̃s = 1
m

∑m−1
j=0 ŷj .

By choosing m = 60κ, η = 1
5L , θ = 1

6 , we get

D̃s ≤
2 + 4

15 (C1 + C2τ)

4− 4
15 (C1 + C2τ)

· D̃s−1.

In order to ensure linear speed up, τ needs to satisfy the following constraint:

ρ ,
2 + 4

15 (C1 + C2τ)

4− 4
15 (C1 + C2τ)

≤ 1.

By simply setting τ ≤ min { 5
4
√

∆
, 2κ,

√
2κ√
∆
}, the above constraint is satisfied with ρ ≤ 0.979, which implies that the total

oracle complexity is O
(
(n+ κ) log F (x̃0)−F (x∗)

ε

)
.

D. Experimental Setup
All our algorithms were implemented in C++ and parameters were passed through MATLAB interface for fair comparison17.
Detailed settings are divided into the following cases.

D.1. In Serial Dense Case

In this case, we ran experiments on the HP Z440 machine with single Intel Xeon E5-1630v4 with 3.70GHz cores, 16GB
RAM, Ubuntu 16.04 LTS with GCC 4.9.0, MATLAB R2017b. We are optimizing the following binary problems with
ai ∈ Rd, bi ∈ {−1,+1}, i = 1 . . .m:

Logistic Regression:
1

n

n∑
i=1

log (1 + exp (−biaTi x)) +
λ

2
‖x‖2,

Ridge Regression:
1

n

n∑
i=1

(aTi x+ bi)
2 +

λ

2
‖x‖2,

LASSO:
1

n

n∑
i=1

(aTi x+ bi)
2 + λ‖x‖1,

(41)

where λ is the regularization parameter.

We used datasets from LibSVM website18, including a9a (32,561 samples, 123 features), covtype.binary (581,012 samples,
54 features), w8a (49,749 samples, 300 features), ijcnn1 (49,990 samples, 22 features). We added one dimension as bias to
all the datasets and then normalized all data vectors to 1 for the ease of experimental setup.

We mainly compared MiG with the following state-of-the-art algorithms:

• SVRG. For theoretical evaluation, we set the learning rate as 1
4L , which is a reasonable learning rate for SVRG in

theory. Otherwise in the strongly convex case, we tuned the learning rate. For non-smooth regularizers (e.g., LASSO),
we ran Prox-SVRG (Xiao & Zhang, 2014) instead.

17The code of our method can be downloaded from the anonymous link:
https://www.dropbox.com/s/1a5v1gvioqbjtv3/Async_Sparse_MiG.zip?dl=0.

18https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

https://www.dropbox.com/s/1a5v1gvioqbjtv3/Async_Sparse_MiG.zip?dl=0
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• SAGA. For theoretical evaluation, we set the learning rate as 1
2(σn+L) following (Defazio et al., 2014). Otherwise

(include the non-strongly convex case), we tuned the learning rate.

• Acc-Prox-SVRG. This algorithm is quite unstable if mini-batch size is set to 1, we set same learning rate as in SVRG
and tuned the momentum parameter β (Nitanda, 2014).

• Catalyst on SVRG. We set the same learning rate as in SVRG and carefully tuned the parameters α0 and κ (Lin et al.,
2015).

• Katyusha. As suggested by the author, we fixed τ2 = 1
2 (sometimes we tuned τ2 for a better performance), set η = 1

3τ1L

and tuned only τ1 (Allen-Zhu, 2017). For theoretical evaluation, we chose τ1 =
√

m
3κ . For Katyushans, we used

τ1 = 2
s+4 , α = 1

aτ1L
and tune a.

• MiG. Similarly, we set η = 1
3θL and tuned only θ. For theoretical evaluation, we chose θ =

√
m
3κ . For MiGNSC, we

chose θ = 2
s+4 , η = 1

aLθ and tuned a.

More theoretical evaluation results for `2-logistic regression and ridge regression problems are shown in Figures 1 and 2,
respectively, where the regularization parameter was set to some relatively small values, e.g., 10−6, 10−7, and 10−8.

More practical evaluation results (with parameter tuning for all the algorithms and for relatively large λ) are shown in
Figures 3 and 4.

We also compared the performance of MiGNSC with that of all the algorithms mentioned above, as shown in Figures 5 and 6,
where the results are for the non-strongly convex logistic regression (i.e., λ=0) and LASSO, respectively.
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Figure 1. Theoretical evaluations of MiG and other state-of-the-art algorithms for solving `2-logistic regression on covtype (λ = 10−7,
the first two figures) and a9a (λ = 10−7, the last two figures).
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Figure 2. Theoretical evaluations of MiG and other state-of-the-art algorithms for solving ridge regression on covtype (λ = 10−8, the
first two figures) and w8a (λ = 10−6, the last two figures).
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(a) covtype: λ = 10−5
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(b) ijcnn1: λ = 10−4
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(c) w8a: λ = 10−4
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(d) a9a: λ = 10−4

Figure 3. Practical evaluations of MiG and other state-of-the-art algorithms for solving `2-logistic regression on covtype (a), ijcnn1 (b),
w8a (c), and a9a (d).
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(a) covtype: λ = 10−4

0 20 40 60

Number of effective passes

10 -10

10 -5

O
b
je

c
ti
v
e
 m

in
u
s
 b

e
s
t

SAGA

SVRG

Catalyst-SVRG

Acc-Prox-SVRG

Katyusha

MiG

0 50 100 150 200 250

Running time(ms)

10 -10

10 -5

O
b
je

c
ti
v
e
 m

in
u
s
 b

e
s
t

SAGA

SVRG

Catalyst-SVRG

Acc-Prox-SVRG

Katyusha

MiG

(b) ijcnn1: λ = 10−4

0 10 20 30

Number of effective passes

10 -10

10 -5

O
b
je

c
ti
v
e
 m

in
u
s
 b

e
s
t

SAGA

SVRG

Catalyst-SVRG

Acc-Prox-SVRG

Katyusha

MiG

0 1000 2000 3000 4000 5000

Running time(ms)

10 -10

10 -5

O
b
je

c
ti
v
e
 m

in
u
s
 b

e
s
t

SAGA

SVRG

Catalyst-SVRG

Acc-Prox-SVRG

Katyusha

MiG

(c) covtype: λ = 10−5
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(d) w8a: λ = 10−4

Figure 4. Practical evaluations of MiG and other state-of-the-art algorithms for solving ridge regression on covtype (a), ijcnn1 (b),
covtype (c), and w8a (d).
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Figure 5. Comparison of MiGNSC and other state-of-the-art algorithms for solving non-strongly convex logistic regression without
regularizer (i.e., λ = 0) on a9a (the first two figures) and ijcnn1 (the last two figures).
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Figure 6. Comparison of MiGNSC and other state-of-the-art algorithms for solving the non-strongly convex problem (LASSO) on covtype
(λ = 10−6, the first two figures) and w8a (λ = 10−7, the last two figures).

D.2. In Asynchronous Sparse Case

Experiments in this setting were running on a server with 4 Intel Xeon E7-4820 v3 with 10 cores each 1.90GHz, 512 GB
RAM, CentOS 7.4.1708 with GCC 4.8.5, MATLAB R2017a. Multi-threads experiments were running on certain CPU cores
using numactl. We are optimizing the following smooth and strongly convex problem:

Logistic Regression:
1

n

n∑
i=1

log (1 + exp (−biaTi x)) +
λ

2
‖x‖2,

where λ is the regularization parameter. Notice that the `2 regularizer is dense with respect to the sample i, so we used the
following sparse and unbiased stochastic gradient as in (Leblond et al., 2017):

∇i(x) = ∇fi(x) + λDix.

We tuned learning rates for ASAGA and KroMagnon, learning rate and θ for MiG.

D.2.1. PARAMETER TUNING CRITERIA

For the relatively small RCV1 dataset, we carefully tuned the learning rate for ASAGA and KroMagnon to achieve best
performance. For MiG, following theoretical intuition in the dense case, we first chose a large learning rate and then
carefully tuned θ to achieve best performance (thus the effect of θ can be regard as stabilize iterates and allow for a larger
learning rate).

For the KDD2010 dataset, we first made 3 subsets with 19,000 samples, 190,000 samples and 1,900,000 samples (corresponds
to λ = 10−7, 10−8 and 10−9). Then we tuned parameters for them following the above criteria and finally used relatively
“safe” parameter settings for the entire dataset.

D.2.2. ON THE EFFECTIVENESS OF OUR ACCELERATION TRICK

In this part, we evaluated the effect of our acceleration trick in MiG. One can easily verify that when θ is set to 1, the
coupling term is neglected and the algorithm is quite similar to SVRG (different on the choice of the snapshot point). Based
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on the theoretical analysis in Section 3 and Section 4.1, we claim that the effect of θ is to stabilize the iterates to adopt a
larger learning rate. Thus, we designed an experiment to justify this claim.

We compared the best-tuned performance of MiG, MiG with θ= 1, and KroMagnon on RCV1 on a server with the 16
threads, as shown in Figure 7.
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Figure 7. Evaluation of the effectiveness of our acceleration trick of our algorithm for solving `2-logistic regression with λ = 10−9.

Based on the parameter choice in this experiment, MiG with θ=1 cannot use the same large learning rate as MiG does. When
the suitable parameter θ is chosen, MiG outperforms both algorithms as desired, which further indicates the effectiveness of
our acceleration trick.


