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Abstract

Recent years have witnessed exciting progress in
the study of stochastic variance reduced gradient
methods (e.g., SVRG, SAGA), their accelerated
variants (e.g, Katyusha) and their extensions in
many different settings (e.g., online, sparse, asyn-
chronous, distributed). Among them, accelerated
methods enjoy improved convergence rates but
have complex coupling structures, which makes
them hard to be extended to more settings (e.g.,
sparse and asynchronous) due to the existence of
perturbation. In this paper, we introduce a sim-
ple stochastic variance reduced algorithm (MiG),
which enjoys the best-known convergence rates
for both strongly convex and non-strongly convex
problems. Moreover, we also present its efficient
sparse and asynchronous variants, and theoreti-
cally analyze its convergence rates in these set-
tings. Finally, extensive experiments for various
machine learning problems such as logistic regres-
sion are given to illustrate the practical improve-
ment in both serial and asynchronous settings.

1. Introduction

In this paper, we consider the following convex optimization
problem with a finite-sum structure, which is prevalent in
machine learning and statistics such as regularized empirical
risk minimization (ERM):
min { F(z) 2 f(z) + g(2) } . (1)
z€R
where f(z)=13"" | f;(x) is a finite average of n smooth
convex function f;(z), and g(x) is a relatively simple (but
possibly non-differentiable) convex function.

For the strongly convex problem (1), traditional gradient
descent (GD) yields a linear convergence rate but with a
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high per-iteration cost. As an alternative, SGD (Robbins &
Monro, 1951) enjoys significantly lower per-iteration com-
plexity than GD, i.e., O(d) vs. O(nd). However, due to
the variance of random sampling, standard SGD usually
obtains slow convergence and poor performance (Johnson &
Zhang, 2013). Recently, many stochastic variance reduced
methods (e.g., SAG (Roux et al., 2012), SDCA (Shalev-
Shwartz & Zhang, 2013), SVRG (Johnson & Zhang, 2013),
SAGA (Defazio et al., 2014), and their proximal variants,
such as (Schmidt et al., 2017), (Shalev-Shwartz & Zhang,
2016), (Xiao & Zhang, 2014) and (Konec¢ny et al., 2016))
have been proposed to solve Problem (1). All these methods
enjoy low per-iteration complexities comparable with SGD,
but with the help of certain variance reduction techniques,
they obtain a linear convergence rate as GD. More accu-
rately, these methods achieve an improved oracle complex-
ity O((n+x)log(1/¢))!, compared with O(n+/k log(1/€))
for accelerated deterministic methods (e.g., Nesterov’s ac-
celerated gradient descent (Nesterov, 2004)). In summary,
these methods dramatically reduce the overall computational
cost compared with deterministic methods in theory.

More recently, researchers have proposed accelerated
stochastic variance reduced methods for Problem (1), which
include Acc-Prox-SVRG (Nitanda, 2014), APCG (Lin et al.,
2014), Catalyst (Lin et al., 2015), SPDC (Zhang & Xiao,
2015), point-SAGA (Defazio, 2016), and Katyusha (Allen-
Zhu, 2017). For strongly convex problems, both Acc-
Prox-SVRG (Nitanda, 2014) and Catalyst (Lin et al., 2015)
make good use of the “Nesterov’s momentum” in (Nes-
terov, 2004) and attain the corresponding oracle complexi-
ties O((n+b\/rk)log(1/¢€)) (with a sufficiently large mini-
batch size b) and O((n++/kn)log(k)log(1/€)). APCG,
SPDC, point-SAGA and Katyusha essentially achieve the
best-known oracle complexity O((n++/kn)log(1/e)).

Inspired by emerging multi-core computer architectures,
asynchronous variants of the above stochastic gradient meth-
ods have been proposed in recent years, e.g., Hogwild!
(Recht et al., 2011), Lock-Free SVRG (Reddi et al., 2015),
KroMagnon (Mania et al., 2017) and ASAGA (Leblond
et al., 2017). Among them, KroMagnon and ASAGA (as

the sparse and asynchronous variants of SVRG and SAGA)

"We denote x £ % throughout the paper, known as the condi-
tion number of an L-smooth and o-strongly convex function.
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enjoy a fast linear convergence rate for strongly convex ob-
jectives. However, there still lacks a variant of accelerated
algorithms in these settings.

The main issue for those accelerated algorithms is that most
of their algorithm designs (e.g., (Allen-Zhu, 2017) and (Hien
et al., 2017)) involve tracking at least two highly correlated
coupling vectors? (in the inner loop). This kind of algorithm
structure prevents us from deriving efficient (lock-free) asyn-
chronous sparse variants for those algorithms. More criti-
cally, when the number of concurrent threads is large (e.g.,
20 threads), the high perturbation (i.e., updates on shared
variables from concurrent threads) may even destroy their
convergence guarantees. This leads us to the key question
we study in this paper:

Can we design an accelerated algorithm that keeps
track of only one variable vector?

We answer this question by a simple stochastic variance
reduced algorithm (MiG), which has the following features:

e Simple. The algorithm construction of MiG requires
tracking only one variable vector in the inner loop,
which means its computational overhead and mem-
ory overhead are exactly the same as SVRG (or Prox-
SVRG (Xiao & Zhang, 2014)). This feature allows
MiG to be extended to more strict settings such as the
sparse and asynchronous settings. We theoretically
analyze its variants in Section 4.

e Theoretically Fast. MiG achieves the best-known ora-
cle complexity of O((n-+y/kn)log (1/€)) for strongly
convex problems. For non-strongly convex prob-
lems, MiG also achieves an optimal convergence rate
(9(1 / T2) , where T is the total number of stochastic
iterations. These rates keep up with those of Katyusha
and are consistently faster than non-accelerated algo-
rithms, e.g., SVRG and SAGA.

e Practically Fast. Due to its light-weighted algorithm
structure, our experiments verify that the running time
of MiG is shorter than its counterparts in the serial
dense setting. In the sparse and asynchronous settings,
MiG achieves significantly better performance than
KroMagnon and ASAGA in terms of both gradient
evaluations and running time.

e Implementable. Unlike many incremental gradient
methods (e.g., SAGA), MiG does not require an addi-
tional gradient table which is not practical for large-
scale problems. Our algorithm layout is similar to
SVRG, which means that most existing techniques de-
signed for SVRG (such as a distributed variant) can be
modified for MiG without much effort.

2Here we refer to the number of variable vectors involved in
one update.

Table 1. Comparison of different stochastic variance reduced algo-
rithms. (“Complexity” is for strongly-convex problems. “Memory”
is those used to store variables.“S&A” refers to efficient (lock-free)
Sparse & Asynchronous variant.)

Algorithm Complexity Memory S&A
SVRG O((n+r)log?t) 1 Vec. Vv
SAGA  O((n+k)logl) 1Vec. 1V Table. /

Katyusha O((n + /kn)log ) 2 Vec. X

MiG  O((n+ y/kn)log 1) 1 Vec. Vv

We summarize some properties of the existing methods and
MiG in Table 1.

2. Notations

We mainly consider Problem (1) in standard Euclidean space
with the Euclidean norm denoted by ||-||. We use E to denote
that the expectation is taken with respect to all randomness
in one epoch. To further categorize the objective functions,
we define that a convex function f : R® — R is said to be
L-smooth if for all z,y € RY, it holds that

L
F@) < )+ Wz -y +5lz =y’ @
and o-strongly convex if for all z,y € RY,
[@) 2 f@) + (G -y + Tl =yl 3

where G € O f (y), the set of sub-gradient of f aty. If f is dif-
ferentiable, we replace G € 9 f (y) with G =V f(y). Then we
make the following assumptions to categorize Problem (1):

Assumption 1 (Strongly Convex). In Problem (1), each
fi(+)? is L-smooth and convex, g(-) is o-strongly convex.

Assumption 2 (Non-strongly Convex). In Problem (1),
each f;() is L-smooth and convex, and g(-) is convex.

3. A Simple Accelerated Algorithm

In this section, we introduce a simple accelerated stochastic
algorithm (MiG) for both strongly convex and non-strongly
convex problems.

3.1. MiG for Strongly Convex Objectives

We first consider Problem (1) that satisfies Assumption 1.

Now we formally introduce MiG in Algorithm 1. In order to

*In fact, if each f;(-) is L-smooth, the averaged function f(-)
is itself L-smooth — but probably with a smaller L. We keep
using L as the smoothness constant for a consistent analysis.
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Algorithm 1 MiG
1: Input: Initial vector xg, epoch length m, learning rate
7, parameter 6.
2: jozxé:xo,wzl—l—na;
3:fors=1...Sdo
4: Ms = vf (i's—l);

5 forj=1...mdo

6: Sample ¢; uniformly in {1...n};

7: Yj—1 = 0x5_y + (1-0)Ts_1; //temp variable y
8: V = Vi (yj-1) = Vfi;(Ts—1) + pss

9: x% = arg min, {%Hx — 5 [PV, :c)-i—g(:c)};
10:  end for

&= 0(X0wd) Y et (1-0), 1
12: ittt =ad;
13: end for

14: return Ts.

further illustrate some ideas behind the algorithm structure,
we make the following remarks:

o Temp variable y. As we can see in Algorithm 1, y is a
convex combination of x and & with the parameter 6.
So for implementation, we do not need to keep track
of y in the whole inner loop. For the purpose of giving
a clean proof, we mark y with iteration number j.

e Fancy update for Ts. One can easily verify that this
update for Z, is equivalent to using w’ weighted av-
eraged y;41 to update T,, which is written as: T, =
( Z;.nzfol w?) _1237;1 wly;jy1. Since we only keep
track of x, we adopt this expended fancy update for Z,
— but it is still quite simple in implementation.

e Choice of :cf)“. In recent years, some existing stochas-
tic algorithms such as (Zhang et al., 2013; Xiao &
Zhang, 2014) choose to use ¥, as the initial vec-
tor for new epoch. For MiG, when using Z,, the
overall oracle complexity will degenerate to a non-
accelerated one for some ill-conditioned problems,
which is O((n+r)log (1/e€)). It is reported that even
in practice, using the last iterate yields a better perfor-
mance as discussed in (Allen-Zhu & Hazan, 2016b).

Next we give the convergence rate of MiG in terms of oracle
complexity as follows (the proofs to all theorems in this
paper are given in the Supplementary Material):

Theorem 1 (Strongly Convex). Let x* be the optimal solu-
tion of Problem (1). If Assumption I holds, then by choosing
m = O(n), MiG achieves an e-additive error with the fol-
lowing oracle complexities in expectation:

O(y/mmlog Fo L)) - jp m < 8,
F(xg)—F(z* ., m
(’)(nlogi( “)6 ( )), if ;>%.

Table 2. The theoretical settings of the parameters 7 and 6.

CONDITION LEARNING RATE7)  PARAMETER ¢
m 3 1 /m
3 S 4 \/ 3omL 3k
m o~ 3 2 1
K 4 3L 2

In other words, the overall oracle complexity of MiG is
O((n +/Fm) log Fleel=F7)),

This result implies that in the strongly convex setting, MiG
enjoys the best-known oracle complexity for stochastic first-
order algorithms, e.g., APCG, SPDC, and Katyusha. The
theoretical suggestions* of the learning rate 1 and the pa-
rameter 6§ are shown in Table 2.

3.1.1. COMPARISON BETWEEN MIG AND RELATED
METHODS

We carefully compare the algorithm structure of MiG with
Katyusha, and find that MiG corresponds to a case of
Katyusha, when 1—7; — 75 =0, and Option II in Katyusha
is used. However, this setting is neither suggested nor ana-
lyzed in (Allen-Zhu, 2017), and thus without a convergence
guarantee. In some sense, MiG can be regarded as a “sim-
plified Katyusha”, while this simplification does not hurt its
oracle complexity. Since this simplification discards all the
proximal gradient steps in Katyusha, MiG enjoys a lower
memory overhead in practice and a cleaner proof in theory.
Detailed comparison with Katyusha can be found in the
Supplementary Material B.1.1.

MiG does not use any kind of “Nesterov’s Momentum”,
which is used in some accelerated algorithms, e.g., Acc-
Prox-SVRG (Nitanda, 2014) and Catalyst (Lin et al., 2015).

3.2. MiG for Non-strongly Convex Objectives

In this part, we consider Problem (1) when Assumption 2
holds. Since non-strongly convex optimization problems
(e.g., LASSO) are becoming prevalent these days, making a
direct variant of MiG for these problems is of interest.

In this setting, we summarize MiGNSC with the optimal
O(1/T?) convergence rate in Algorithm 2.

Theorem 2 (Non-strongly Convex). If Assumption 2 holds,
then by choosing m =0 (n), MiGNSC achieves the following
oracle complexity in expectation:

o <n\/F(JC0) —F) | \/nLHxO _ x*Hz) |

This result implies that MiGNSC attains the optimal con-

*We recommend users to tune these two parameters for better
performance in practice, or to use the tuning criteria mentioned in
Table 3 with only tuning 6.



A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates

Algorithm 2 MiGNS€
1: Input: Initial vector x, epoch length m, learning rate
7, parameter 6.

20 Ty = x§ = T0;

3:fors=1...Sdo

4: ,us :Vf (i‘s—l),ez S-‘r%’n: ﬁ;

5: forj=1...mdo

6: Sample ; uniformly in {1...n};

7: Yj—1 =0x;_; + (1 —0)Zs_1; //temp variable y
8: V = Vfi,(yj-1) = Vfi,(Ts-1) + pis;

9: z; = argmin, {%Hx—x;flﬂz—l—(V, ac)—l—g(x)};
10:  end for

1 B = 2300 s+ (1-0)Fs 13
12: aptt =2
13: end for

14: return zs.

vergence rate O(1/T?), where T = S(m-+n) is the total
number of stochastic iterations.

The result in Theorem 2 shows that MiGNSC enjoys the same
oracle complexity as Katyusha™ (Allen-Zhu, 2017), which
is close to the best-known complexity in this case’. If the
reduction techniques in (Allen-Zhu & Hazan, 2016a; Xu
et al., 2016) are used in our algorithm, our algorithm can
obtain the best-known oracle complexity.

3.3. Extensions

It is common to apply reductions to extend the algorithms
designed for L-smooth and o-strongly convex objectives
to other cases (e.g., non-strongly convex or non-smooth).
For example, Allen-Zhu & Hazan (2016a) proposed sev-
eral reductions for the algorithms that satisfy homogeneous
objective decrease (HOOD), which is defined as follows.

Definition 1 (Allen-Zhu & Hazan (2016a)). An algorithm A
that solves Problem (1) with Assumption 1 satisfies HOOD
if, for every starting vector xo, A produces an output x'
satisfying® F(x')—F(z*) < w in Time(L, o).

Based on Theorem 1, it is a direct corollary that MiG (refers
to Algorithm 1) satisfies HOOD.

Corollary 1. MiG satisfies the HOOD property in
Time(n + /kn).

The reductions in (Allen-Zhu & Hazan, 2016a) use either
decaying regularization (AdaptReg) or certain smoothing

SNote that the best-known oracle complexity for non-strongly
convex problems is O(nlog(1/e)++/nL/¢).

SThis definition can be extended to the probabilistic guarantee,
which is E[F(z')] — F(2*) < w (Allen-Zhu & Hazan,
2016a).

trick (AdaptSmooth) to achieve optimal reductions that
shave off a non-optimal log factor comparing to other re-
duction techniques. Thus, we can apply AdaptReg to MiG
and get an improved O(nlog(1/€)++/nL/e) rate for non-
strongly convex problems. Moreover, we can also apply
AdaptSmooth to MiG to tackle non-smooth optimization
problems, e.g., SVM.

4. Sparse and Asynchronous Variants

In order to further elaborate the importance of keeping track
of only one variable vector (in the inner loop), in this section
we propose the variants of MiG for both the serial sparse
and asynchronous sparse settings.

Adopting the sparse update technique in (Mania et al., 2017)
for sparse datasets is a very practical choice to reduce colli-
sions between threads. However, due to additional sparse
approximating variance and asynchronous perturbation, we
need to compensate it with a slower theoretical speed. On
the other hand, asynchrony (in the lock-free style) may even
destroy convergence guarantees if the algorithm requires
tracking many highly correlated vectors. In practice, it is
reported that maintaining more atomic’ variables also de-
grades the performance. Thus, in this section, we mainly
focus on practical issues and experimental performance.

As we can see, MiG has only one variable vector. This
feature gives us convenience in both theoretical analysis and
practical implementation. In order to give a clean proof, we
first make a simpler assumption on the objective function,
which is identical to those in (Recht et al., 2011; Mania
et al., 2017; Leblond et al., 2017):

min F(z) £ %Z fi(x). “4)
i=1

zER4

Assumption 3 (Sparse and Asynchronous Settings). In
Problem (4), each f;(-) is L-smooth, and the averaged func-
tion F(-) is o-strongly convex.

Next we start with analyzing MiG in the serial sparse setting
and then extend it to a sparse and asynchronous one.

4.1. Serial Sparse MiG

The sparse variant (as shown in Algorithm 3) of MiG is
slightly different from MiG in the dense case. We explain
these differences by making the following remarks:

e Sparse approximate gradient Vs. In order to perform
fully sparse updates, following (Mania et al., 2017), we
use a diagonal matrix D to re-weigh the dense vector

7 Atomic write of some necessary variables is a requirement to
achieve high precision in practice (Leblond et al., 2017).
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Algorithm 3 Serial Sparse MiG
1: Input: Initial vector x(, epoch length m, learning rate
7, parameter 6.
20 Tg = x$ = zo;

3: fors=1...5do

4 ps=VF(Ts5-1);

5 forj=1...mdo

6: T, := support of sample ;

7: [j—1lr, =0 [25_1]n, +(1—0)- [Z]n:
8 Ve=Vfy (il )~ Vhi, (Faciln, )+ Do
9 (e, =&} y]m, — 1 Vs:

10:  end for

11:  OptionI: ZES+1—538— 92 o wt +(1-0)F, 1
12:  Option IL: z5™ = 02;"1 25 4+-(1-0)T5a;
13: end for

14: return zs.

g ~

{15, whose entries are the inverse probabilities {p; '}
of the corresponding coordinates {k | k= 1,...,d}
belonging to a uniformly sampled support 7, of sam-
ple i;. P, is the projection matrix for the support
T;;. We define D;, = P;, D, which ensures the un-
biasedness E;, [D;, pus| = pus. Here we also define
D,, =max;—1. 4 pgl for future usage. Note that we
only need to compute y on the support of sample ¢;,
and hence the entire inner loop updates sparsely.

e Update T with uniform average. In the sparse and asyn-
chronous setting, a weighted average in Algorithm 1 is
not effective due to the perturbation both in theory and
in practice. Thus, we choose a simple uniform average
scheme for a better practical performance.

We now consider the convergence property of Algorithm 3.

Theorem 3 (Option I). Let x* be the optimal solution of
Problem (4). If Assumption 3 holds, then by choosing n=
1/L, =1/10, m =25k, Algorithm 3 with Option I satisfies
the following inequality in one epoch s:

E[(F(&s) — F(z%))] <0.75 - (F(Zs-1) — F(z")),

which means that the total oracle complexity of the serial
sparse MiG is O((n + k) log M)

Since it is natural to ask whether we can get an improved
bound for the Serial Sparse MiG, we analyze Algorithm 3
with Option II and a somewhat intriguing restart scheme.
The convergence result is given as follows:

Theorem 4 (Option II). If Assumption 3 holds, then by

executing Algorithm 3 with Option II and restarting® the
(1-6)-(1+0)+ 725

e -‘ epochs, where

algorithm every S = [2 .

SWe set o = é Zf:1 T as the initial vector after each restart.

(= D2, —D,,, the oracle complexity of the entire procedure
is divided into the cases,

(\/%log (zo)—F(z* )) lf%
(Q(frzlogiF("’“’)6 ), if %

S

3 .
< gwith( < ,/%,
> %WithSCq,

where C; is a constant for the sparse estimator variance.
Detailed parameter settings are given in the Supplementary
Material C.2.1.

Remark: This result indeed imposes some strong assump-
tions on D,,, which may not be true for real world datasets,
because the variance bound used for Option II highly cor-
relates to D,,, and D,, can be as large as n for extreme
datasets. Detailed discussion is given in the Supplementary
Material C.2.2.

The result of Theorem 4 shows that under some constraints
on sparse variance, Serial Sparse MiG attains a faster con-
vergence rate than Sparse SVRG (Mania et al., 2017) and
Sparse SAGA (Leblond et al., 2017). Although these con-
straints are strong and the restart scheme is not quite practi-
cal, we keep the result here as a reference for both the sparse
(¢ >0) and dense (( =0) cases.

4.2. Asynchronous Sparse MiG

In this part, we extend the Serial Sparse MiG to the Asyn-
chronous Sparse MiG.

Our algorithm is given in Algorithm 4. Notice that Option
I and II correspond to the update options mentioned in
Algorithm 3. The difference is that Option II corresponds
to averaging “fake” iterates defined at (5), while Option I is
the average of inconsistent read’ of z. Since the averaging
scheme in Option II is not proposed before, we refer to it
as “fake average”. Just like the analysis in the serial sparse
case, Option I leads to a direct and clean proof while Option
II may require restart and leads to troublesome theoretical
analysis. So we only analyze Option I in this setting.

However, Option II is shown to be highly practical since the
“fake average” scheme only requires updates on the support
of samples and enjoys strong robustness when the actual
number of inner loops does not equal to m'?. Thus, Option
Il leads to a very practical implementation.

Following (Mania et al., 2017), our analysis is based on the
“fake” iterates x and y, which are defined as:

Jj—1
zj=z0—n) V(G
=0

where the “perturbed” iterates ¢, £ with perturbation & are

yj =0z + (1—0)T;1, (5)

“We could use “fake average” in Option I, but it leads to a
complex proof and a worse convergence rate with factor (o< £~ 2).
'"This phenomenon is prevalent in the asynchronous setting.
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Algorithm 4 Asynchronous Sparse MiG
1: Input: Initial vector x(, epoch length m, learning rate
7, parameter 6.
2: x := shared variable, T := average of z;
3: Tp =T = xp;
4: fors=1...S5do
5:  Compute s = VF (Zs_1) in parallel;
6.
7
8

Option I: z = 0;
Option II: = z;
: j = 0; {inner loop counter}
9:  while j < m do {in parallel}

10: j=j+1; //atomic increase counter j

11: Sample ; uniformly in {1...n};

12: T, := support of sample ;;

13: [:%]Ti] := inconsistent read of [z]7, ;

14: [@]Tij =0- [jj]TiJ + (1 - 0) ’ [i‘s_l}Tij;

15 V() = Vf, (@), — Vi, (Eei)z,,) + Doy
16: [ulr,, = =n-V(9);

17: // atomic write x, Z for each coordinate

18: [‘r]T'ij = [x]Tij + [U]Tij;

19: Optionl: z = + % - T

20: Option II: [Z|r, = [Z]r,, + [u]z,, - bt
21:  end while

22: Zs =0+ (1—60)Ts_1;

23:  OptionI: x = z;

24:  Option II: keep x unchanged;

25: end for
26: return Ts.

defined as

g; =08+ (1 - 0)Ts1, %5 = 2 +&. ©

The labeling order and detailed analysis framework are
given in the Supplementary Material C.3.

Note that y is a temp variable, so the only source of pertur-
bation comes from x. This is the benefit of keeping track of
only one variable vector since it controls the perturbation
and allows us to give a smooth analysis in asynchrony.

Next we give our convergence result as follows:
Theorem 5. If Assumption 3 holds, then by choosing
m = 60k, n = 1/(5L), 6 = 1/6, suppose T satisfies
7<min {ﬁ, 2k, \/Z\/HZ} (the linear speed-up condition),
Algorithm 4 with Option I has the following oracle complex-
ity:

(o)

OQn+@bgFm_F@ﬂ>,

where T represents the maximum number of overlaps be-
tween concurrent threads (Mania et al., 2017) and A =
maxg—1.. .4 Pk, Which is a measure of sparsity (Leblond
etal., 2017).
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Figure 1. Comparison of the effect of the momentum techniques
used in Acc-Prox-SVRG (Nitanda, 2014), Katyusha (Allen-Zhu,
2017) and MiG for £2-logistic regression on covtype.

This result is better than that of KroMagnon, which cor-
relates to x2 (Mania et al., 2017), and keeps up with
ASAGA (Leblond et al., 2017). Although without signif-
icant improvement on theoretical bounds due to the exis-
tence of perturbation, the coupling step of MiG can still be
regarded as a simple add-on boosting and stabilizing the
performance of SVRG variants. We show this improvement
by empirical evaluations in Section 5.3.

5. Experiments

In this section, we evaluate the performance of MiG on
real-world datasets for both serial dense and asynchronous
sparse'! cases. All the algorithms were implemented in
C++ and executed through MATLAB interface for a fair
comparison. Detailed experimental setup is given in the

Supplementary Material D.

We first give a detailed comparison between MiG and other
algorithms in the sequential dense setting.

5.1. Comparison of Momentums

The parameter 6 in MiG, similar to the parameter 75 in
Katyusha, is referred as the parameter for “Katyusha Mo-
mentum’” in (Allen-Zhu, 2017). So intuitively, MiG can
be regarded as adding “Katyusha Momentum™ on top of
SVRG. Katyusha equipped with the linear coupling frame-
work in (Allen-Zhu & Orecchia, 2017) and thus can be re-

"Experiments for the serial sparse variant are omitted since it
corresponds to the asynchronous sparse variant with 1 thread.
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Table 3. Compared algorithms and parameter tuning criteria.

Momentum Parameter Tuning
SVRG None learning rate n
Acc-Prox-SVRG Nestrv. same 7, tune momentum [
Katyusha Nestrv.&Katyu. 5 = %, a= ﬁ, tune 7y
MiG Katyu. n= 577 tune 0

garded as the combination of “Nesterov’s Momentum™ with
“Katyusha Momentum”.

We empirically evaluate the effect of the two kinds of mo-
mentums. Moreover, we also examine the performance of
Acc-Prox-SVRG (Nitanda, 2014), which can be regarded
as SVRG with pure “Nesterov’s Momentum”. Note that the
mini-batch size used in Acc-Prox-SVRG is set to 1. The
algorithms and parameter settings are listed in Table 3 (we
use the same notations as in their original papers).

The results in Figure 1 correspond to the two typical con-
ditions with relatively large A=10"* and relatively small
A=1078. One can verify that with the epoch length m =2n
for all algorithms, these two conditions fall into the two
regions correspondingly in Table 2.

For the case of % < % (see the first row in Figure 1), we set
the parameters for MiG and Katyusha'? with their theoreti-
cal suggestions (e.g., § =7, =,/2%). For fair comparison,
we set the learning rate = - for SVRG and Acc-Prox-
SVRG, which is theoretically reasonable. The results imply
that MiG and Katyusha have close convergence results and
outperform SVRG and Acc-Prox-SVRG. This justifies the
improvement of \/kn convergence rate in theory.

We notice that Katyusha is slightly faster than MiG in terms
of the number of oracle calls, which is reasonable since
Katyusha has one more “Nesterov’s Momentum”. From the
result of Acc-Prox-SVRG, we see that “Nesterov’s Momen-
tum” is effective in this case, but without significant improve-
ment. As analyzed in (Nitanda, 2014), using large enough
mini-batch is a requirement to make Acc-Prox-SVRG im-
prove its convergence rate in theory (see Table 1 in (Nitanda,
2014)), which also explains the limited difference between
MiG and Katyusha.

When comparing running time (millisecond, ms), MiG out-
performs other algorithms. Using “Nesterov’s Momentum”
requires tracking of at least two variable vectors, which in-
creases both memory consumption and computational over-
head. More severely, it prevents the algorithms with this
trick to have an efficient sparse and asynchronous variant.

12We choose to implement Katyusha with Option I, which is
analyzed theoretically in (Allen-Zhu, 2017).
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Figure 2. First row: Theoretical evaluation of MiG and state-of-the-
art algorithms for £2-logistic regression (A= 10"%) on covtype.
Second row: Practical evaluation of MiG and the state-of-the-art
algorithms for ridge regression (A=10""*) on a9a.

For the case of =+ > % (see the second row in Figure 1), we
tuned all the parameters in Table 3. From the parameter
tuning of Acc-Prox-SVRG, we found that using a smaller
momentum parameter (3 yields a better performance, but still
worse than the original SVRG. This result seems to indicate
that the “Nesterov’s Momentum” is not effective in this case.
Katyusha yields a poor performance in this case because the
parameter suggestion limits 7 < % When tuning both 7
and 71, Katyusha performs much better, but with increasing
difficulty of parameter tuning. MiG performs quite well
with tuning only one parameter 6, which further verifies its
simplicity and efficiency.

5.2. Comparison with state-of-the-art Algorithms

We compare MiG with many state-of-the-art accelerated
algorithms (e.g., Acc-Prox-SVRG (Nitanda, 2014), Catalyst
(based on SVRG) (Lin et al., 2015), and Katyusha (Allen-
Zhu, 2017)) and non-accelerated algorithms (e.g., SVRG
(Johnson & Zhang, 2013) or Prox-SVRG (Xiao & Zhang,
2014) for non-smooth regularizer, and SAGA (Defazio et al.,
2014)), as shown in Figure 2.

In order to give clear comparisons, we designed two differ-
ent types of experiments. One is called “theoretical evalua-
tion” with a relatively small A'3, where most of the parame-
ter settings follow the corresponding theoretical recommen-
dations'* to justify the improvement of /rxn convergence
rate. Another is “practical evaluation” for a relatively large

®Note that we normalize data vectors to ensure a uniform L.

“Except for Acc-Prox-SVRG and Catalyst, we carefully tuned
the parameters for them, and the detailed parameter settings are
given in the Supplementary Material D.1.
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Figure 3. Comparison of KroMagnon (Mania et al., 2017),
ASAGA (Leblond et al., 2017), and MiG with 16 threads. First
row: RCV1, £>-logistic regression with A = 1077, Second row:
KDD2010, #»-logistic regression with A=10""C.

A, where we carefully tuned the parameters for all the algo-
rithms since in this condition, all the algorithms have similar
convergence rates.

For a relatively large )\, the results (see the Supplementary
Material D.1 for more results) show that MiG performs con-
sistently better than Katyusha in terms of both oracle calls
and running time. In other words, we see that MiG achieves
satisfactory performance in both conditions. Moreover, ex-
perimental results for non-strongly convex objectives are
also given in the Supplementary Material D.1.

5.3. In Sparse and Asynchronous Settings

To further stress the simplicity and implementability of MiG,
we make some experiments to assess the performance of
its asynchronous variant. We also compare MiG (i.e., Al-
gorithm 4 with Option I1'%) with KroMagnon (Mania et al.,
2017) and ASAGA (Leblond et al., 2017).

Unlike in the serial dense case where we have strong the-
oretical guarantees, in these settings, we mainly focus on
practical performance and stability. So we carefully tuned
the parameter(s) for each algorithm to achieve a best-tuned
performance (detailed setting and parameter tuning criteria
is given in the Supplementary Material D.2). We measure
the performance on the two sparse datasets listed in Table 4.

When comparing performance in terms of oracle calls, MiG
significantly outperforms other algorithms, as shown in Fig-
ure 3. When considering running time, the difference is
narrowed due to the high simplicity of KroMagnon (which

15We omit the tricky restart scheme required in theory to exam-
ine the most practical variant.

Table 4. Summary of the two sparse data sets.

Dataset # Data # Features Density
RCV1 697,641 47,236 1.5 x 1073
KDD2010 19,264,097 1,163,024 10-¢
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Running time(ms) x10% Number of threads

Figure 4. Speed-up evaluation on RCV1. Left: Evaluation of sub-
optimality in terms of running time for asynchronous versions
(20 threads) and SS (Serial Sparse) versions. Right: Speed-up of
achieving 10™° sub-optimality in terms of the number of threads.

only uses one atomic vector) compared with ASAGA (which
uses atomic gradient table and atomic gradient average vec-
tor) and MiG (which only uses atomic “fake average”).

We then examine the speed-up gained from more parallel
threads on RCV1. We evaluate the improvement of using
asynchronous variants (20 threads) and the speed-up ratio
as a function of the number of threads as shown in Figure 4.
For the latter evaluation, the running time is recorded when
the algorithms achieve 10~° sub-optimality. The speed-up
ratio is calculated based on the running time of a single core.

Since we used MiG with Option II for the above experiments
which only has a theoretical analysis (with restart) in the
serial case, we further designed an experiment to evaluate
the effectiveness of §. The results in the Supplementary
Material D.2.2 indicate the effectiveness of our acceleration
trick.

6. Conclusion

We proposed a simple stochastic variance reduction algo-
rithm (MiG) with the best-known oracle complexities for
stochastic first-order algorithms. These elegant results fur-
ther reveal the mystery of acceleration tricks in stochastic
first-order optimization. Moreover, the high simplicity of
MiG allows us to derive the variants for the asynchronous
and sparse settings, which shows its potential to be applied
to other cases (e.g., online (Borsos et al., 2018), distributed
(Lee et al., 2017; Lian et al., 2017)) as well as to tackle more
complex problems (e.g., structured prediction). In general,
our approach can be implemented to boost the speed of
large-scale real-world optimization problems.
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