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Abstract

We propose a stochastic variance-reduced cu-
bic regularized Newton method (SVRC) for non-
convex optimization. At the core of our algo-
rithm is a novel semi-stochastic gradient along
with a semi-stochastic Hessian, which are specif-
ically designed for cubic regularization method.
We show that our algorithm is guaranteed to con-
verge to an (e, /€)-approximate local minimum
within O(n*/?/e3/2) second-order oracle calls,
which outperforms the state-of-the-art cubic reg-
ularization algorithms including subsampled cu-
bic regularization. Our work also sheds light on
the application of variance reduction technique
to high-order non-convex optimization methods.
Thorough experiments on various non-convex op-
timization problems support our theory.

1 Introduction

We study the following finite-sum optimization problem:

min F(x) = %Z fi(x), (1.1)

x€ER?

where F'(x) and each f;(x) can be non-convex. Such prob-
lems are common in machine learning, where each f;(x) is
a loss function on a training example (LeCun et al., 2015).
Since F'(x) is non-convex, finding its global minimum is
generally NP-Hard (Hillar & Lim, 2013). As a result, one
possible goal is to find an approximate first-order stationary
point (e—stationary point):

IVE(x)[2 <

for some given € > 0. A lot of studies have been devoted
to this problem including gradient descent (GD), stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951), and
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their extensions (Ghadimi & Lan, 2013; Reddi et al., 2016a;
Allen-Zhu & Hazan, 2016; Ghadimi & Lan, 2016). Never-
theless, first-order stationary points can be non-degenerate
saddle points or even local maximum in non-convex opti-
mization, which are undesirable. Therefore, a more rea-
sonable objective is to find an approximate second-order
stationary point (Nesterov & Polyak, 2006), which is also
known as an (¢4, €5, )-approximate local minimum of F'(x):

[VF(x)||2 < €g, Amin(V2F(x)) > —ep, (1.2)
for some given constant €4, ¢, > 0. In fact, in some ma-
chine learning problems like matrix completion (Ge et al.,
2016), one finds that every local minimum is a global mini-
mum, suggesting that finding an approximate local min-
imum is a better choice than a stationary point, and is
good enough in many applications. One of the most pop-
ular method to achieve this goal is perhaps cubic regular-
ized Newton method, which was introduced by Nesterov &
Polyak (2006), and solves the following kind of subprob-
lems in each iteration:

h(x) = argminm(h, x),
heRd

(i, %) = (VF(), B) + 5 (V2F (b, b) + ¢ [,
(1.3)

where 6 > 0 is a regularization parameter. Nesterov &
Polyak (2006) proved that fixing a starting point xg, and
performing the updating rule x; = x;—1 + h(x;_1), the
algorithm can output a sequence x; that converges to a local
minimum provided that the function is Hessian Lipschitz.
However, it can be seen that to solve the subproblem (1.3),
one needs to calculate the full gradient V F'(x) and Hessian
V2F(x), which is a big overhead in large scale machine
learning problem because n is often very large.

Some recent studies presented various algorithms to avoid
the calculation of full gradient and Hessian in cubic regu-
larization. Kohler & Lucchi (2017) used subsampling tech-
nique to get approximate gradient and Hessian instead of
exact ones, and Xu et al. (2017c) also used subsampled Hes-
sian. Both of them can reduce the computational complexity
in some circumstance. However, just like other sampling-
based algorithm such as subsampled Newton method Er-
dogdu & Montanari (2015); Xu et al. (2016); Roostakho-
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rasani & Mahoney (2016a;b); Ye et al. (2017), their con-
vergence rates are worse than that of the Newton method,
especially when one needs a high-accuracy solution (i.e.,
the optimization error € is small). This is because the sub-
sampling size one needs to achieve certain accuracy may be
even larger than the full sample size n. Therefore, a natural
question arises as follows:

When we need a high-accuracy local minimum, is there
an algorithm that can output an approximate local mini-
mum with better second-order oracle complexity than cubic
regularized Newton method?

In this paper, we give an affirmative answer to the above
question. We propose a novel cubic regularization algorithm
named Stochastic Variance-Reduced Cubic regularization
(SVR Cubic, or SVRC for short), which incorporates the
variance reduction techniques (Johnson & Zhang, 2013;
Xiao & Zhang, 2014; Allen-Zhu & Hazan, 2016; Reddi et al.,
2016a) into the cubic-regularized Newton method. The
key component in our algorithm is a novel semi-stochastic
gradient, together with a semi-stochastic Hessian, that are
specifically designed for cubic regularization. Furthermore,
we prove that, for p-Hessian Lipschitz functions, to attain
an (e, \/pé€)-approximate local minimum, our proposed al-
gorithm requires O(n + n*/®/e/2) Second-order Oracle
(SO) calls and O(1/€>/2) Cubic Subproblem Oracle (CSO)
calls. Here an SO oracle represents an evaluation of triple
(fi(x), Vfi(x), V2fi(x)), and a CSO oracle denotes an
evaluation of the exact solution (or inexact solution) of
the cubic subproblem (1.3). Compared with the original
cubic regularization algorithm (Nesterov & Polyak, 2006),
which requires O(n/e3/2) SO calls and O(1/€3/2) CSO
calls, our proposed algorithm reduces the SO calls by a fac-
tor of Q(n'/%). We also carry out experiments on real data
to demonstrate the superior performance of our algorithm.

Our major contributions are summarized as follows:

e We present a novel cubic regularization method with im-
proved oracle complexity. To the best of our knowledge,
this is the first algorithm that outperforms cubic regular-
ization without any loss in convergence rate. In sharp
contrast, existing subsampled cubic regularization meth-
ods (Kohler & Lucchi, 2017; Xu et al., 2017b) suffer from
worse convergence rates than cubic regularization.

e We also extend our algorithm to the case with inexact
solution to the cubic regularization subproblem. Similar
to previous work (Cartis et al., 2011a; Xu et al., 2017b),
we also layout a set of sufficient conditions, under which
the output of the inexact algorithm is still guaranteed to
have the same convergence rate and oracle complexity
as the exact algorithm. This further sheds light on the
practical implementation of our algorithm.

e As far as we know, our work is the first to rigorously
demonstrates the advantage of variance reduction for
second-order optimization algorithms. Although there ex-
ist a few studies (Lucchi et al., 2015; Moritz et al., 2016;
Rodomanov & Kropotov, 2016) using variance reduction
to accelerate Newton method, none of them can deliver
faster rates of convergence than standard Newton method.

The remainder of this paper is organized as follows: We first
review the most related work in Section 2. Then we present
our algorithm and its main theoretical results in Sections 3
and 4 respectively. We discuss the proposed algorithm with
inexact oracles in Section 5. In Section 6, we present our
experimental results. Finally, we draw the conclusions in
Section 7.

Notation We use [n] to denote index set {1,2,...,n}.
We denote vector Euclidean norm by ||v||2. For sym-
metric matrix H € R%*? we denote its eigenvalues
by MM(H) < < Xq¢(H), its spectral norm by
[|H|2 = max{|A1(H)|, |\¢(H)|}, and the Schatten r-norm
by [Hls, = (X0, [NH)[)Y" for r > 1. We de-
note A = B if \;(A — B) > 0 for symmetric matrices
A B € R¥™4 Note that |[A — Bz < C = [|A]2 =
|IBll2 — C-I,C > 0. We call £ a Rademacher random vari-
able if P(§ = 1) =P(£ = —1) = 1/2. Weuse f, = O(gn)
to denote that f,, < Cg,, for some constant C' > 0 and use
fn = O(gn) to hide the logarithmic terms of g,,.

2 Related Work

In this section, we briefly review the relevant work in the
literature.

The most related work to ours is the cubic regularized New-
ton method, which was originally proposed in Nesterov &
Polyak (2006). Cartis et al. (2011a) presented an adaptive
framework of cubic regularization, which uses an adaptive
estimation of the local Lipschitz constant and approximate
solution to the cubic subproblem. To connect cubic regu-
larization with traditional trust region method (Conn et al.,
2000; Cartis et al., 2009; 2012; 2013), Blanchet et al. (2016);
Curtis et al. (2017); Martinez & Raydan (2017) showed that
the trust-region Newton method can achieve the same it-
eration complexity as the cubic regularization method. To
overcome the computational burden of gradient and Hes-
sian matrix evaluations, Kohler & Lucchi (2017); Xu et al.
(2017b;c) proposed to use subsampled gradient and Hes-
sian in cubic regularization. On the other hand, in order to
solve the cubic subproblem (1.3) more efficiently, Carmon
& Duchi (2016) proposed to use gradient descent, while
Agarwal et al. (2017) proposed a sophisticated algorithm
based on approximate matrix inverse and approximate PCA.
Tripuraneni et al. (2017) proposed a refined stochastic cubic
regularization algorithm based on above subproblem solver.
However, none of the aforementioned variants of cubic reg-
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Table 1. Comparisons between different methods to find (e, |/pe)-local minimum on the second-order oracle (SO) complexity and and the

cubic sub-problem oracle (CSO) complexity.

Algorithm SO calls CSO calls Gradient Lipschitz Hessian Lipschitz
Cubic regularization 3/2 3/2
(Nesterov & Polyak, 2006) O(n/e*?) O(1/e*) no yes
Subsampled cubic regularization ~ 3/2 57211 3/2
(Kohler & Lucchi, 2017: Xu etal, 2017¢) /€7 +1/e2)1 - O(1/€*7) yes yes
SVRC ~ .
/5 /.3/2 3/2
(this paper) O(n+n*?/e3/2)  O(1/e?) no yes

ularization outperforms the original cubic regularization
method in terms of oracle complexity.

Another line of related research is the variance reduction
method, which has been extensively studied for large-scale
finite-sum optimization problems. Variance reduction was
first proposed in convex finite-sum optimization (Roux et al.,
2012; Johnson & Zhang, 2013; Xiao & Zhang, 2014; De-
fazio et al., 2014), which uses semi-stochastic gradient
to reduce the variance of the stochastic gradient and im-
proves the gradient complexity of both stochastic gradient
descent (SGD) and gradient descent (GD). Representative al-
gorithms include Stochastic Average Gradient (SAG) (Roux
etal., 2012), Stochastic Variance Reduced Gradient (SVRG)
(Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014),
to mention a few. Garber & Hazan (2015); Shalev-Shwartz
(2016) studied non-convex finite-sum problems where each
individual function may be non-convex, but their sum is still
convex. Reddi et al. (2016a) and Allen-Zhu & Hazan (2016)
extended the SVRG algorithm to the general non-convex
finite-sum optimization, which outperforms SGD and GD
in terms of gradient complexity as well. However, to the
best of our knowledge, it is still an open problem whether
variance reduction can improve the oracle complexity of
second-order optimization algorithms.

Last but not least is the vast literature of research which aims
to escape from nondegenerated saddle points by finding the
negative curvature direction. Ge et al. (2015); Jin et al.
(2017a) showed that simple (stochastic) gradient descent
with perturbation can escape from saddle points. Carmon
et al. (2016); Royer & Wright (2017); Allen-Zhu (2017)
showed that by calculating the negative curvature using
Hessian information, one can find (e, \/pé€)-approximate
local minima faster than first-order methods. Recent work
(Xu & Yang, 2017; Allen-Zhu & Li, 2017; Jin et al., 2017b)
proposed first-order algorithms that can escape from saddle
points without using Hessian information. Yu et al. (2017b)
proposed the GOSE algorithm to save negative curvature
computation and Yu et al. (2017a) improved the gradient
complexity by using third-order smoothness. Raginsky et al.
(2017); Zhang et al. (2017); Xu et al. (2017a) proved that a
family of algorithms based on discretizations of Langevin

dynamics can find a neighborhood of the global minimum
of nonconvex objective functions.

For better comparison of our algorithm with the most related
algorithms in terms of SO and CSO oracle complexities,
we summarize the results in Table 1. It can be seen from
Table 1 that our algorithm (SVRC) achieves the lowest (SO
and CSO) oracle complexity compared with the original
cubic regularization method (Nesterov & Polyak, 2006)
which employs full gradient and Hessian evaluations and
the subsampled cubic method (Kohler & Lucchi, 2017; Xu
et al., 2017c¢). In particular, our algorithm reduces the SO
oracle complexity of cubic regularization by a factor of n'/®
for finding an (e, \/pe)-approximate local minimum. We
will provide more detailed discussion in Section 4.

3 The Proposed Algorithm

In this section, we present a novel algorithm, which utilizes
stochastic variance reduction techniques to improve cubic
regularization method.

To reduce the computation burden of gradient and Hes-
sian matrix evaluations in the cubic regularization updates
in (1.3), subsampled gradient and Hessian matrix have
been used in subsampled cubic regularization (Kohler &
Lucchi, 2017; Xu et al., 2017c) and stochastic cubic reg-
ularization (Tripuraneni et al., 2017). Nevertheless, the
stochastic gradient and Hessian matrix have large variances,
which undermine the convergence performance. Inspired
by SVRG (Johnson & Zhang, 2013), we propose to use
a semi-stochastic version of gradient and Hessian matrix,
which can control the variances automatically. Specifically,
our algorithm has two loops. At the beginning of the s-th
iteration of the outer loop, we denote X° = x§. We first cal-
culate the full gradient g* = VF(X®) and Hessian matrix
H?® = V2F(x*), which are stored for further references in
the inner loop. At the ¢-th iteration of the inner loop, we
calculate the following semi-stochastic gradient and Hessian

'Tt is the refined rate proved by Xu et al. (2017¢) for the subsam-
pled cubic regularization algorithm proposed in Kohler & Lucchi
(2017)
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Algorithm 1 Stochastic Variance Reduction Cubic Regularization (SVRC)

1: Input: batch size by, by, cubic penalty parameter { M, , }, epoch number .S, epoch length 7" and starting point xy.

2: Initialization X! = x,

i Zitelg v2fif, (SES) -

H) (x} — %°)

3: fors=1,...,5do

4 x5=Xx°

5. g = VF(R) = LY, VAR H = LY VAL ()
6: fort=20,...,7T—1do

7: Sample index set I, I, |14 = by, |In| = bn;

8: Vf = é Zitelg [Vf“(X§) - Vflr()?s)] +g8 - (
9: Us = 5- >0, cr, (V2. (x5) = V2 £5,(%°)] + H?
10: hi = argmin(vi, h) + %(Ufh7 h) + Mg’t k|13,
11: x{ 1 = x{ +h{

12:  end for

13 x5 =x3

14: end for

15: Output: x,, = X7, where s, t are uniformly random chosen from s € [S] and ¢ € [T7].

matrix:

1 S S
vi F E Vflt x;) = Vfi,(X )] +g
cl,

T Z (V?fi,(®°) = H*) (x; — %°), (3.1
lfGI
U=, Z [V2f5.(x}) = V2 £, (%) + B, (3.2)
teIh

where I, and Ij, are batch index sets, and the batch sizes
will be decided later. In each inner iteration, we solve the
following cubic regularization subproblem:

h; = argmin m; (h),

1 M
mi(h) = (v{, h) + 5 (Uyh, h) + T’tllhll‘; (3.3)
where {M, ;} are cubic regularization parameter, which
may depend on s and t. Then we perform the update x7, ; =
x; + hj in the ¢-th iteration of the inner loop. The proposed

algorithm is displayed in Algorithm 1.

There are two notable features of our “estimator” of the full
gradient and Hessian in each inner loop, compared with
that used in SVRG (Johnson & Zhang, 2013). The first is
that our gradient and Hessian estimators consist of mini-
batches of stochastic gradient and Hessian. The second one
is that we use second order information when we construct
the gradient estimator v}, while classical SVRG only uses
first order information to build it. Intuitively speaking, both
features are used to make a more accurate estimation of the
true gradient and Hessian with affordable oracle calls. Note
that similar approximations of the gradient and Hessian
matrix have been staged in recent work by Gower et al.
(2017) and Wai et al. (2017), where they used this new kind
of estimator for traditional SVRG in the convex setting,
which radically differs from our setting.

4 Main Theory

We first lay out the following Hessian Lipschitz assumption,
which are necessary for our analysis and are widely used
in the literature (Nesterov & Polyak, 2006; Xu et al., 2016;
Kohler & Lucchi, 2017).

Assumption 4.1 (Hessian Lipschitz). There exists a con-
stant p > 0, such that for all x,y and i € [n]
[V2fi(x) = V23, < pllx =2

In fact, this is the only assumption we need to prove our
theoretical results. The Hessian Lipschitz assumption plays
a central role in controlling the changing speed of second
order information. It is obvious that Assumption 4.1 implies
the Hessian Lipschitz assumption of F', which, according to

Nesterov & Polyak (20006), is also equivalent to the follow-
ing lemma.

Lemma 4.2. Let function ' : R — R satisfy p-Hessian
Lipschitz assumption, then for any h € R, it holds that

[V2F(x) = V?F(y)]|, < pllx — sz,

F(x+h) < F(x)+ (VF(x),h) + <V2F )h,h)
+ £ln3,

IVF(x+h) - VF(x) - V’F(x)h], < £|In]3.

We then define the following optimal function gap between
initial point xo and the global minimum of F'.

Definition 4.3 (Optimal Gap). For function F(-) and the
initial point xq, let A be

Ap =inf{A e R: F(x¢) — F* < A},

where F** = inf, cpa F'(x).
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W.L.O.G., we assume Ap < 400 throughout this paper.

Before we present nonasympotic convergence results of
Algorithm 1, we define

3 2 x
W) =max{|VF<x>||3/27—W”))}. @

PIE
By definition in (4.1), u(x) < €%/? holds if and only if

)\min(VQF(X)) > —\//%.

Therefore, in order to find an (e, ,/pé€)-approximate local
minimum of the non-convex function F', it suffices to find
a point x which satisfies y1(x) < €*/2. Next we define our
oracles formally:

IVF(x)|l2 <, 4.2)

Definition 4.4 (Second-order Oracle). Given an index ¢ and
a point x, one second-order oracle (SO) call returns such a
triple:

[fi(x), Vfi(x), V2fi(x)]-

Definition 4.5 (Cubic Subproblem Oracle). Given a vector
g € RY, a Hessian matrix H and a positive constant 6, one
Cubic Subproblem Oracle (CSO) call returns hy,, where
h,, can be solved exactly as follows

4.3)

. 1 0
hy, = argmin(g, h) + §(h, Hh) + EHhH%
heRd

Remark 4.6. The second-order oracle is a special form of
Information Oracle introduced by Nesterov, which returns
gradient, Hessian and all high order derivatives of the objec-
tive function F'(x). Here, our second-order oracle will only
returns first and second order information at some point
of single objective f; instead of F'. We argue that it is a
reasonable adaption because in this paper we focus on finite-
sum objective function. The Cubic Subproblem Oracle will
return an exact or inexact solution of (3.3), which plays an
important role in both theory and practice.

Now we are ready to give a general convergence result of
Algorithm 1:

Theorem 4.7. Under Assumption 4.1, suppose that the cu-
bic regularization parameter M, ; of Algorithm 1 satisfies
that M, ; = Chyp, where p is the Hessian Lipschitz param-
eter and C'py > 100 is a constant. The batch sizes b, and by,
satisfy that

by > 5T*, by, > 10072 log d, (4.4)

where T' > 2 is the length of the inner loop of Algorithm 1
and d is the dimension of the problem. Then the output of
Algorithm 1 satisfies

240C%,p' 2 A p

E[(x%out)] < ST

(4.5)

Remark 4.8. According to (4.1), to ensure that x,, is an
(€, /p€)-approximate local minimum, we can set the right
hand side of (4.5) to be less then €3/2. This immediately
implies that the total iteration complexity of Algorithm 1 is
ST = O(App'/2¢73/2), which matches the iteration com-
plexity of cubic regularization (Nesterov & Polyak, 2006).

Remark 4.9. Note that there is a log d term in the expres-
sion of parameter, and it is only related to Hessian batch
size by. The log d term comes from matrix concentration in-
equalities, which is believed to be unavoidable (Tropp et al.,
2015). In other words, the batch size of Hessian matrix b,
has a inevitable relation to dimension d, unlike the batch
size of gradient by.

The complexity result in Theorem 4.7 depends on a series
of parameter. In the following corollary, we will show how
to choose these parameters in practice to achieve a better
oracle complexity.

Corollary 4.10. Under Assumption 4.1, let the cubic regu-
larization parameter My, = M = C)jrp, where Cps > 100
is a constant. Let the epoch length 7' = n'/5, batch sizes
b, = 5n*/° and b, = 100n?/°logd, and the number of
epochs S = max{1,2400%,p'/2Apn=1/5¢73/2}. Then
Algorithm 1 will find an (e, \/pe)-approximate local mini-
mum Xqy,e Within

A 4/5
o) (n + %) SO calls 4.6)
€
and
A
o( i/\f) CSO calls. @7
€

Remark 4.11. Corollary 4.10 states that we can reduce the
SO calls by setting the batch size by, by, related to n. In
contrast, in order to achieve an (e, \/pe) local minimum,
original cubic regularization method in Nesterov & Polyak
(2006) needs O(n/e>/?) second-order oracle calls, which is
by a factor of n!/° worse than ours. And subsampled cubic
regularizaNtion (Kohler & Lucchi, 2017; Xu et al., 2017¢)
requires O(n/e3/2 4 1/€°/2) SO calls, which is also worse
than our algorithm.

5 SVRC with Inexact Oracles

In practice, the exact solution to the cubic subproblem (3.3)
cannot be obtained. Instead, one can only get an approxi-
mate solution by some inexact solver. Thus we replace the
CSO oracle in (4.5) with the following inexact CSO oracle

~ . 1 0
hyo & argmin{g, h) + 7 (h, Hh) + ~|hlf5.
heR4 6

To analyze the performance of Algorithm 1 with inexact
cubic subproblem solver, we relax the exact solver in Line



Stochastic Variance-Reduced Cubic Regularized Newton Methods

-—- TR

10t 4 —— Adaptive Cubic
- Gradient Cubic 102 g

= Subsampled Cubic

Stochastic Cubic

--- TR N --- TR

—— Adaptive Cubic 10! | “ —— Adaptive Cubic
"""" Gradient Cubic H ‘ v . Gradient Cubic

—-- Subsampled Cubic 10° H ‘\‘_"\-. —-= Subsampled Cubic

----- Stochastic Cubic ) - ---=+ Stochastic Cubic

% 1071 5 10 % 10 ~— il
102 g U R T W -
St 102 -
10-3 4 w072 TRIS--ITIT
“““ 1073
10744 N
107 . 1
1075 4 . 10 i
0 0 50 100 150 200 250 300 ] 20 40 60 80 100
epochs epochs
(b) covtype (c) ijennl
10°
102
102 -—- TR -—- TR T
10t —— Adaptive Cubic —— Adaptive Cubic —— Adaptive Cubic

Gradient Cubic
== Subsampled Cubic
Stochastic Cubic

Gradient Cubic
—-- Subsampled Cubic
Stochastic Cubic
—— SVRC

Gradient Cubic
—-= Subsampled Cubic
Stochastic Cubic |

0 10 20 30 40 50 0 25 50 75
time in seconds

(d) a9a

time in seconds

(e) covtype

0.75 1.00 1.25 1.50 175
time in seconds

(f) ijennl

100 125 150 175 200 025 0.50

Figure 1. Logarithmic function value gap for nonconvex regularized logistic regression on different datasets. (a), (b) and (c) present the
oracle complexity comparison; (d), (e) and (f) present the runtime comparison.

10 of Algorithm 1 with

h{ ~ argminm; (h). (5.1)

The ultimate goal of this section is to prove that the theoret-
ical results of our SVRC algorithm still hold with inexact
subproblem solvers. To this end, we present the follow-
ing sufficient condition, under which inexact solution can
ensure the same oracle complexity as the exact solution:

Condition 5.1 (Inexact condition). For each s, ¢ and given
0 > 0, hy satisfies J-inexact condition if hj satisfies

M'at 1s

IVmg (B))||2 < ML6%/3,
h —1/3
110512 — b3 [lo| < M, /2613,

m;(hy) < —

Remark 5.2. Similar inexact conditions have been studied
in the literature of cubic regularization. For instance, Nes-
terov & Polyak (2006) presented a practical way to solve
the cubic subproblem without termination condition. Cartis
et al. (2011a); Kohler & Lucchi (2017) presented termina-
tion criteria for approximate solution to cubic subproblem,
which is slightly different from Condtion 5.1.

Now we present the convergence result of SVRC with inex-
act CSO oracles:
Theorem 5.3. Suppose that for each s, t, flf is an inexact

solver of cubic subproblem mj (h), which satisfies Condi-
tion 5.1. Under the same conditions of Theorem 4.7, the

output of Algorithm 1 satisfies

240C2,p* 2 AR

s (5.2)

E[1(Xou)] < + 48003, p*/%5.
Remark 5.4. By the definition of u(x), in order to at-
tain an (e, \/pe)-approximate local minimum, we require
E[14(%ou)] < €/ and thus 480C2,p'/25 < €3/2, which
implies that J in Condition 5.1 should satisfy § <
(480C3,p/?)~1€3/2, Thus the total iteration complexity of
Algorithm 1 with inexact oracle is still O(App'/2e73/2).

By the same choice of parameters, Algorithm 1 with inexact
oracle can achieve a reduction in SO calls.

Corollary 5.5. Suppose that for each s, t, I~1§ is an in-
exact solver of cubic subproblem m; (h), which satisfies
Condition 5.1 with § = (960C3,)"'p~1/2¢%/2, Under
Assumption 4.1, let the cubic regularization parameter
Myy = M = Cyp, where Cpy > 100 is a constant.

Let the epoch length 7' = n'/®, batch sizes b, = 5n*/>
and by, = 100n2/5 log d, and the number of epochs S =
max{1,480C%p'/2Apn=1/5¢=3/2}. Then Algorithm 1
will find an (e, /p€)-approximate local minimum within

A 4/5
0] (n + 7F\é/ﬁ2n ) SO calls 5.3)
€
and
A
o( - ‘/ﬁ) CSO calls. (5.4)
€3/2
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Figure 2. Logarithmic function value gap for nonlinear least square on different datasets. (a), (b) and (c) present the oracle complexity

comparison; (d), (e) and (f) present the runtime comparison.

Remark 5.6. It is worth noting that even with the inexact
CSO oracle satisfying Condition 5.1, the SO and CSO com-
plexities of SVRC remain the same as that of SVRC with
exact CSO oracle. Furthermore, this result always holds
with any inexact cubic sub-problem solver.

6 Experiments

In this section, we present numerical experiments on differ-
ent non-convex Empirical Risk Minimization (ERM) prob-
lems and on different datasets to validate the advantage of
our SVRC algorithm in finding approximate local minima.

Baselines: We compare our algorithm with adaptive cubic
regularization (Adaptive Cubic) (Cartis et al., 2011a), sub-
sampled cubic regularization (Subsampled Cubic) (Kohler
& Lucchi, 2017), stochastic cubic regularization (Stochastic
Cubic) (Tripuraneni et al., 2017), gradient cubic regular-
ization (Gradient Cubic) (Carmon & Duchi, 2016) and
trust region Newton method (TR) (Conn et al., 2000). All
algorithms are carefully tuned for a fair comparison.

Calculation for SO calls: For Subsampled Cubic, each
loop takes (B, + By,) SO calls, where B, and B}, are the
subsampling sizes of gradient and Hessian. For Stochastic
Cubic, each loop costs (ng +np,) SO calls, where ng and ny,
denote the subsampling sizes of gradient and Hessian-vector
operator. Gradient Cubic, Adaptive Cubic and TR cost n
SO calls in each loop. We define the amount of epochs to
be the amount of SO calls divided by n.

Parameters and subproblem solver: For each algorithm

and each dataset, we choose different by, by, T for the best
performance. Meanwhile, we choose M;; = «a/(1 +
ﬁ)(s+t/T), a, B > 0 for each iteration. When § = 0, it has
been proved to enjoy good convergence performance. This
choice of parameter is similar to the choice of penalty pa-
rameter in Subsampled Cubic and Adaptive Cubic, which
sometimes makes some algorithms behave better in our ex-
periment. For the subproblem solover of (3.3) in each loop,
we choose the Lanczos-type method (Cartis et al., 2011a).

Datasets: The datasets we use are a9a, covtype, ijcnnl,
which are common datasets used in ERM problems. The
detailed information about these datasets are in Table 2.

Table 2. Overview of the datasets used in our experiments

Dataset sample sizen  dimension d
a%a 32,561 123
covtype 581,012 54
ijennl 35,000 22

Non-convex regularized logistic regression: The first non-
convex problem we study is a binary logistic regression prob-
lem with a non-convex regularizer Z?:l )\w%i) J(1+ W%i))
(Reddi et al., 2016b). Specifically, suppose we are given
training data {x;,y; }_,, where x; € R? and y; € {0, 1}
are feature vectors and labels corresponding to the ¢-th data
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Figure 3. Logarithmic function value gap for robust linear regression on different datasets. (a), (b) and (c) present the oracle complexity

comparison; (d), (e) and (f) present the runtime comparison.

points. The minimization problem is as follows

min 1 Z yi log p(x;] w) + (1 — y;) log[1 — ¢ (x; w)]
=1

d
+ Z Awlyy /(14 wiy),

=1

where ¢(x) = 1/(1 + exp(—=x)) is the sigmoid function.
We fix A = 10 in our experiments. Recall the definition
M, =a/(1+8)EHT) o B> 0. Weseta = 0.05, 5 =
0 for a9a and ijcnnl datasets and o = 5e3, 5 = 0.15 for
covtype. The experiment results are shown in Figure 1.

Nonlinear linear squares: The second problem is a non-
linear least squares problem which focuses on the task of
binary linear classification (Xu et al., 2017b). Given training
data {x;,y;}7,, where x; € R?and y; € {0, 1} are feature
vectors and labels corresponding to the i-th data points. The
minimization problem is

n

min — > "[y; — ¢(x; w)]>.
i=1
Here ¢ is the sigmoid function. We set a = 0.05, 1e8, 0.003
and 8 = 0,1,0.5 for a9a, covtype and ijcnnl datasets re-
spectively. The experiment results are shown in Figure 2.

Robust linear regression: The third problem is a robust
linear regression problem where we use a non-convex robust
loss function log(z%/2+ 1) (Barron, 2017) instead of square
loss in least square regression. Given a training sample

{xi, i}, where x; € R% and y; € {0,1} are feature
vectors and labels corresponding to the ¢-th data point. The
minimization problem is

1

n

: § : T

min — Yi —X; W

weRd M 4 177( T 1 )7
=

where 7(z) = log(z2/2 + 1). We set a = 0.1, 19, 2 and
B = 0.1,1,0 for a9a, covtype and ijcnnl datasets respec-
tively. The experimental results are shown in Figure 3.

From Figures 1, 2 and 3, we can see that our algorithm
SVRC outperforms all the other baseline algorithms on all
the datasets. The only exception happens in the non-linear
least square problem and the robust linear regression prob-
lem on the covtype dataset, where our algorithm behaves
a little worse than Adaptive Cubic at the high accuracy
regime in terms of epoch counts. However, under this set-
ting, our algorithm still outperforms the other baselines in
terms of the cpu time.

7 Conclusions

In this paper, we propose a novel second-order algorithm
for non-convex optimization called SVRC. Our algorithm
is the first algorithm which improves the oracle complexity
of cubic regularization and its subsampled variants under
certain regime using variance reduction techniques. We also
show that similar oracle complexity also holds with inexact
oracles. Under both settings our algorithm outperforms the
state-of-the-art methods.
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