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Supplementary material for
“The Cost of Fairness in Binary Classification”

Appendix A. Proofs of results in main body
Proof [Proof of Lemma 1] By definition,

FPR(f)
1—FENR(f) ~ "
FPR(f) = 7 — 7 - ENR(f) , since FNR(f) < 1
7 -ENR(f) + FPR(f) > 7

T 1 T

"ENR(f) + ——— -FPR(f) 2

DI(f) 217 <

,sincel+7>0

1111l

1+ 1+7
k - FNR(f) + (1 — k) - FPR(f) > « , by definition of «
CSpal(f51 - ) > k.
]
Proof [Proof of Lemma 2] By definition,
MD(f) = FNR(f) + FPR(f) — 1
=2-(1/2- FNR(f) + 1/2- FPR(f)) - 1
=2-CSpa (f312) - 1.
The subsequent implication follows trivially. |

Proof [Proof of Lemma 3] For any f and ¢,

CSpa(l = f;¢) =(1 =¢)-FNR(1 — f) + ¢ - FPR(1 - f)
=(1-2¢)-(1 —FENR(f))+ ¢ - (1 — FPR(f)) by Equation 1
=(l-¢)+¢—-(1-2¢)-FENR(f)—¢-FPR(f)
=1-CSpalf,0).
Lemmas 1 and 2 imply that for any 7, there exists suitable ¢, x such that

Rpir(f) 2 7 & CSpal(f;0) = «.

For example, for the DI score, ¢ = 1 —x = 1/(1 + 1), while for the MD score, ¢ = 1/2 and x = (1 +7)/2. Since
this is true for any classifier, we also have

Ruir(1 - f) 27 & CSpa(l - f16) 2 «
— 1-CSpa(f,?) =«
— CSpu(f,¢) <1—«.

Consequently, we can rewrite the desired “symmetrised” fairness constraint as

min(Rfair(f)’ Rfair(l - f)) 2T & CSbal(f; 5) € [K’ 1- K]'
Consequently, for 41, A, > 0, the corresponding Lagrangian version will be (see Appendix E for details)

H}in CS(f;D,c) + A1 - (CSpui(f3; D, €) = (1 = k)) — A2 - (CSpar(f3 D, €) — k).
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Letting A = A} — A, shows the result. |

Proof [Proof of Proposition 4] By Lemma 9, the performance and fairness measures are

Rpert(f3 D) = (1 = ¢) - 7w + B(c = n(X)) - f(X)]
R+ Dor) = (1= &) 7+ E[(e = op(X0) - ()]
Ignoring constants independent of £, the overall objective is thus
i Roeer(f3 D) = 4+ Reaie(f Dpp)
= minE[((c = 7(X)) = - (€ = 7ipp(X))) - f(X)]

= minE [~s*(X) - /(X))

Thus, at optimality, when s*(x) # 0, f*(x) = [[s*(x) > 0]. When s*(x) = 0, any choice of f*(x) is admissible.
|

Proof [Proof of Corollary 5] We simply apply Proposition 4 to ¥ = (x, ¥). Note that
ip(x,5) =P(Y =1|X=ux,Y =)
=[y=1].
Then,

f*(x’y)zl — U(x,y)>c+/l'(ﬁDP(x,y)—C_)
— nx,y)>c+A-([y=1]-2).

Proof [Proof of Proposition 6] By Lemma 9, the fairness measure is

Rl f: Do) = (1=0) BV = 1Y = 1)+ B[~ 7ko(X. 1)) f(X)]

=a—a-M?=1|Y=n+§ %?~@—mmaJ»~ﬂw,

where the second line is from applying the importance weighting identity, and the fact that

PX=x|Y=1) PY=1[X=x) n(x)
PX=x)  PY=1) &

Equivalently, for suitable 1, we seek

)
T

minE (c—n(X)—/l~ (¢ - iz (X 1>>)-f<X>]
= minE [s*(X) - (X))

Thus, at optimality, when s*(x) # 0, f*(x) = [s*(x) > 0]. When s*(x) = 0, any choice of f*(x) is admissible.
|

Proof [Proof of Corollary 7] Plug in 77(x, ¥) = [J = 1] into Proposition 6.
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Proof [Proof of Proposition 8] Let Rper(f; D) = CS(f;D,c). Observe that fi' € Argmin Rper(f; D).

Consequently, the frontier is
F(t) = reg(f;: D)

where the regret or excess risk of a classifier is

reg(f; D) = Rperf(f3 D) — min  Rye(g; D).
g: X—[0,1]

This lets us specify the form of F(-) analytically when Rpef is a cost-sensitive risk. By Lemma 11,

F()= B [(c=n00)- (£ 00~ [104) > <]
Now, since f; is the solution to a linear program by Lemma 13, we can appeal to strong duality (see Appendix
E) to conclude that there exists some A for which the corresponding soft-constrained version of the problem

(Equation 9) has the same optimal value. This means there is some Bayes-optimal classifier f; to Equation 9
for which

F(r)=E [(c = n(X)) - (f5(X) = [7(X) > c])] -
If additionally this f} is deterministic, then also by Lemma 11,
F)= B [In00=cl- LX) = ) - ;0 = 1) < 0]

Now just plug in the definition of f; from Equation 15. |
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Appendix B. Helper results

We present some results here that are useful in establishing results in the body of the paper. In the following,
let D be any distribution over X x {0, 1}.

Lemma 9 Pick any randomised classifier f. Then, for any cost parameter ¢ € (0, 1),
CS(fie) =1 =) m+E[(c-n(X)- fX)]

where t =P(Y = 1), andn(x) =P(Y =1 | X = x).

Proof [Proof of Lemma 9] By definition,

CS(fe)=(1=0) m B [1=fX)]+c-(1=m) B /X
=B[(1 - 0)-n(X) - (1= FO0) + ¢ (1= (X)) - f(X)]
= E[(1 - ) n(X)] + El(c - (1 = n(X)) = (1 = ) -7(X)) - (X}
= (=) m+El(c-(1=700) = (1= ) - n(X) - £(X)]

=1 =¢) - +E[(c-n(X)- fX)].

The second line is since P(X | Y = 1) -P(Y = 1) = P(X) - P(Y = 1 | X). ]

Lemma 10 Pick any cost parameter ¢ € (0, 1). Let
(Vx € X)s*(x) =n(x) —c¢
where n(x) = P(Y = 1 | X = x). Then, any randomised classifier f* satisfying
VxeX)s*"(x) #0 = f"(x) = [[s*(x) > 0]
minimises CS(f; D, c¢).
Proof [Proof of Lemma 10] By Lemma 9, we need to find, for each x € X

sin (e=n() f() = min ~s'(x)- f(2)

observing that the minimisation may be done pointwise. Clearly, it is optimal to predict f*(x) = 1 when
s*(x) > 0, and f*(x) = 0 when n(x) < c. When n(x) = ¢, any prediction is optimal. ]

Lemma 11 Pick any cost parameter ¢ € (0, 1). Then, for any randomised classifier f,

CS(fie) = min  CS(g:e) = Bl(c —n(X) - (/09 ~ [1(X) > cD)].

If further f € {0,1}%,

CS(fie)~  min | CS(g:0) = El(X) ~ |- 10100 = )+ (2f(x) = 1) < O]

16



THE CosT oF FAIRNESS IN BINARY CLASSIFICATION

Proof [Proof of Lemma 11] By Lemma 10, an optimal classifier for Rpef(g; D) is the deterministic f*(x) =
[7(x) > c]. Thus, plugging this into Lemma 9,

CS(fie)= _min | CS(gic) = El(e —n(X) - (FX) = [700 > ).

The second statement follows from a simple case analysis. The difference f(x) — [[n(x) > c] takes on the
value +1 when f(x) = 1 and (x) < ¢, and —1 when f(x) = 0 and (x) > c, i.e. the value sign(c — n(x)) when
2f — 1 and n(x) — ¢ disagree in sign. Since |z| = z - sign(z), the result follows. ]

Lemma 12 Pick any cost parameter ¢ € (0, 1). Then,

’ &nirfo’l]CS(f;C) = -L,EX]Y=1.PX]|Y=0))

where I¢(-, ) denotes the f-divergence between distributions, and
et)=—-min((1-¢)-w-t,c-(1 -m)).

Proof [Proof of Lemma 12] This follows from Reid and Williamson (2011, Theorem 9), applied as follows.
Let f*(x) = [n(x) > c] + % - [n(x) = c]l, which is an optimal classifier for CS(f; ¢) by Lemma 10. Then,

CS(f1ie)= B 1AY.n(x)

where ¢ is the cost-sensitive loss given by
1
(lL,v)y=(1-¢)- ([[v <c]+ E[[v = c]])

£0,v)=—c- ([[v>c]]+%[[v=c]]).

Now, ¢ is proper in the sense of Reid and Williamson (2010). Consequently,

E Y, n(X))] = i E Y,7(X))].
B OO0 = min B Y. AX)]

The right hand side above is the Bayes-risk for the proper loss ¢ in the sense of Reid and Williamson (2011).
Consequently, by Reid and Williamson (2011, Theorem 9),

(X,\];:;~D [£(Y, n(X))] = “L,(BX [ Y = 1), P(X [ Y = 0)),

where
e(t)=—-min((1-c¢)-m-t,c-(1-m)).

This may be verified easily, since
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CS(f'50)
& [(1 o)) ([[n(x) <cl+ g Into) = c]]) ¢+ (1= () ([[n(x) > cll+ 5 I = c]])]
= E[min((1 - ¢) - n(X), ¢ - (1 = (X)),

while, if P =P(X | Y =1),0 =P(X | Y = 0) with densities p, g,

(P 0) = i [90 (%)]

min((l—c)~n~;%,c~(l —71'))]
. i p(X) q(X)
mln((l—c)~7r~ m,n(l—ﬂ)-m)]

= B [min (1= ¢) - n(X).c - (1 = ()]

= CS(f*;0).

E
X~Q

= E
X~M
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Appendix C. On anti-classifiers

Employing a statistical risk for R, in Equation 8 constrains the false-positive and negative rates in some
manner. However, these constraints may assume our classifier is non-trivial on D. As an example, suppose a
classifier f has MD(f; D) = 7. Then, it is easy to check that MD(1 — f; D) = 1 — 7. Consequently, when 7 is
small, simply by flipping around predictions, one achieves a poor fairness score.

Intuitively, one wishes to disallow such a trivial transformation from adversely affecting fairness. A simple
option is to work with the symmetrised fairness measure Rei(f) A Riir(1 — f), where a A b = min(a, b). For
cost-sensitive fairness measures, it is an easy calculation that for any ¢ € (0, 1) and classifier f,

CSpa(1 = f3¢) =1 = CSpal(f;0).

Consequently,
CSpai(f5¢) A CSpai(1 = f5¢) = CSpar(f;¢) A (1 = CSpal(f50));

further, this implies that constraints on the symmetrised fairness measure can be translated as
CSpal(f5¢) ACSpai(1 = f3¢) 27 &= CSpa(fic) €[r,1-7].

When converting this hard constraint to a soft constraint on the Lagrangian, one will thus obtain two non-
negative Lagrange (KKT) multipliers 4; and A, so that

n}in CSva(f: D, ¢): CSpa(f; D, ¢) € [1,1—7]

ErrlfinCSbal(f;D,C)+(/12—/11)'Csba1(f;D,C_)+/12'(1 -T)+ ;- T.

One can then define 1 = A, — A; and use this to obtain Equation 9, noting that A is now unconstrained.
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Appendix D. The frontier problem as a linear program

Lemma 13 For finite X, pick any costs ¢, ¢ € (0,1), and v € R,. Then, the problem

in CS(f;D,c): CS(f;D,¢) >
L (f:D,c): CS(f;D,0) 21

is expressible as a linear program.

Proof [Proof of Lemma 13] By Lemma 9, cost-sensitive risks are linear in the randomised classifier. In
particular, for discrete X,

CS(f1¢) = (1 =) -7+ El(c = (X)) - f(X)]
=(l=c)-m+ Y m(x)- (c=n(x)- f(x),

xeX
where m(x) = P(X = x). Similarly,
CS(f30) =1 -0 m+E[(c-7(X)- fX)]
=(1=0)-m+ Y m(x)- (=) f(x).

xeX

Now let

(Vx € X)a(x) = m(x) - (c = n(x))
(Vx € X) b(x) = m(x) - (¢ = 7(x)) .

Then, the optimisation is
rrl)‘inan: - f<-1
0<f<l1.

This is a linear objective with linear constraints. We thus may find the optimal random classifier by the
solution to a linear program. ]
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Appendix E. Relating the constrained and unconstrained objectives

Pick some cost-sensitive performance and fairness measures. Suppose CS®(f;¢) = min(CS(f;¢), CS(1 —
f;¢)). Consider the constrained version of the fairness problem,

f* € ArgminCS(f; D, c): CS°(f;D,¢) > 1.
felo,1x

By Lemma 13, for finite X, this is expressible as the solution to a linear program

. T
Jrcnelga f
where
F={f1b' felr,1-7,0< f(x) <1}
and

(Vx € X)a(x) = m(x) - (c = n(x))
(Vx € X) b(x) = m(x) - (¢ = 7(x)) .

Now, by strong duality for linear programs>, we have

. T . T
= —4b+ b + it — A1 —-1). 22
R VK A ”

Observe now that the inner optimisation is

min (a - b+ Lb)L f

fefo,1]%

= min (a— (1 - )b f
Felo,11%

= min_ D m(x) - [e = n(x) = (A1 = 2) (€ = 7] - F(x)
FEOT fox

= min_ E[(c —n(X) = (A — ) (€ — 7(X))) - £(X)]
fe[0,1]1% X

= min_CS(f;D,c)— (11 — ) - CS(f; D, ¢).
fefo,1x

That is, we solve Equation 9 for 4 = A; — ;. By sweeping over A, we can thus in principle find the one
which achieves the highest value of the objective in Equation 22, and consequently find the solution to the
constrained problem for a fixed 7.

Note that strong duality guarantees agreement of the objective functions. In general, it does not mean that
every optimal solution to the inner problem (for optimal 1, A7) will also be optimal for the original constrained
problem. As an extreme case, suppose that 7 = n, and ¢ = ¢. Then, the constrained problem has optimal
solution any f for which CS(f; D, C) = 1, so that the frontier is linear. On the other hand, we will find that for
the optimal 24, A5, the inner optimisation is simply of the constant 0, in which case every f is deemed optimal.

5. This implicitly assumes feasibility of the primal problem, i.e. that we pick 7 such that it is possible to find a randomised classifier
with symmetrised fairness at least 7.
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Appendix F. Relating disparate impact and balanced error

Following Feldman et al. (2015), we explore the relationship between the balanced error and disparate impact.
Intuitively, we expect that when the balanced error of a classifier is low — meaning that it accurately predicts
the sensitive variable — we will have disparate impact. Conversely, we might hope that possessing disparate
impact implies low balanced error. Can we formalise a relationship akin to Lemma 2?

In what follows, for an implicit distribution D, let

FPR(f) + ENR(¥)
5 .

BER(f) =

We have the following relations between the two quantities.

Lemma 14 Pick any randomised classifier f: X — [0, 1] with ENR(f) # 1. Then,

_ FPR(f)
DI = 1 — 2 - BER(f) + FPR(f) ’3
_ 2-BER(f) — FNR(f) 23)
a 1 -FENR(f)
and similarly
1 1
BER(f) = 5 - ENR(f) + 5 - (1 - FNR(/)) - DI(/)
(24)
_ L Loy - EPRG)
=5 FPR(f)+2 (1 DI(f))'
Proof [Proof of Lemma 14] These are trivial consequences of the fact that, by definition of DI(f),
FPR(f) = (1 - FNR(f)) - DI(f).
]

We now turn to relating a bound on the balanced error to a bound on the disparate impact factor. The
following is a minor generalisation of Feldman et al. (2015, Theorem 4.1) to account for disparate impact at
any level.

Lemma 15 Pick any randomised classifier f: X — [0, 1] with ENR(f) # 1. Then, for any € € [0, %],

FPR(f) . 2€~FNR(/)
—2-€+FPR(f) " 1-FNR(f)

BER(f) < e < DI(f) < ]
and for any T € [0, 1],

DI(f) < T & BER(f) < I+1;T~FNR(f))/\(l—1;T-FPR(f) .
272 27 2.7

Proof [Proof of Lemma 15] The first equivalence follows from the two expressions in Equation 23, and the
fact that the dependence on BER(f) is monotone increasing.

This second equivalence follows from the two expressions in Equation 24, and the fact that the dependence
on DI(f) is monotone increasing. u

When 7 = 0.8, as considered in Feldman et al. (2015), this means that

2 1 I 1
DI(f) < 0.8 < BER(f) < (§ + 10 ~FNR(f)) A (E -3 -FPR(f)) .
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F.1. Low balanced error implies disparate impact

It is of interest to remove the dependence of the above bounds on the false positive and negative rates of f.
For one direction, this is possible.

Corollary 16 Pick any randomised classifier f: X — [0, 1] with ENR(f) # 1. Then, for any € € [0, %],
BER(f) <e = DI(f)<2-¢

or for any T € [0, 1],
DI(f) > r = BER(f) > %

Proof The first bound follows from Lemma 15 and the fact that if BER(f) < €, it must be true that
FPR(f) V FNR(f) < 2 - €. The second bound is the contrapositive of the first. [ ]

Corollary 16 says that with a balanced error of 7 or less, we are guaranteed a disparate impact of level at
least 7, though possibly worse. So, if we want to guarantee a lack of disparate impact at level 7, it is necessary
that the balanced error be at least 5. But is this condition also sufficient? Unfortunately, it is not.

F.2. Disparate impact does not imply low balanced error

It is evident from Lemma 15 that regardless of the precise level of impact 7, we could have a classifier with
balanced error arbitrarily close to % The basic issue is that by driving the false positive rate to 0, we trivially
have disparate impact. By further driving the false negative rate to O (i.e. by predicting everything negative),
we trivially have a balanced error rate of %

Corollary 17 Pick any 7 € [0, 1] Then, there exists a classifier f: X — {0, 1} with

1
BER(f) = 5
DI(f) < 7.
Proof Consider the trivial classifier with
FPR(f) =0
ENR(f) = 1.
Clearly, this has balanced error % Evidently, this classifier also has disparate impact at level 7. |

Corollary 17 says that even if we have a classifier with high balanced error, there is no guarantee it will
not have disparate impact. This is a worst case analysis over all possible classifiers we might have obtained.
However, if we happen to know the false positive and negative rates we actually have obtained, we might be
able to conclude there is no disparate impact. This is used in Feldman et al. (2015, Section 4.2) to certify the
lack of disparate impact for a particular classifier.

Corollary 18 Pick any randomised classifier f: X — [0, 1]. For any T € [0, 1],

1-71

2

BER(f) > %+ -FNR(f))/\(%—l;T-FPR(f) & DI(f) > 1.

27

Proof [Proof of Corollary 18] This is the contrapositive of Lemma 15. |
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Appendix G. Experimental illustration

We present experiments that illustrate each of our three contributions C1-C3, showing that
* relating fairness measures to cost-sensitive risks (C1) can be used to certify a dataset as free of disparate
impact.
* the plugin approach inspired by the form of the optimal fairness-aware classifiers (C2) is practically
viable.

* the inherent accuracy-fairness tradeoff (C3) behaves as predicted by our quantification in terms of
probability alignment.

G.1. Certifying lack of disparate impact

We present an experiment inspired by Feldman et al. (2015), who aimed to certify whether a dataset admits
disparate impact (i.e. for fixed 7, one can achieve DI(f) < ) by testing if the minimal achievable balanced
error is below a classifier dependent threshold (see Appendix F). Following Remark 4.2, we verify that such
certification is equivalently possible via testing if the minimal achievable balanced cost-sensitive risk for
c=1/(1 +71)isbelow 1 —¢.

Specifically, following Feldman et al. (2015), we consider the UCI german dataset with Y denoting whether
or not the age of a person is above 25, and fix 7 = 0.8. For a number of train-test splits to be specified, we
train models to minimise the cost-sensitive logistic loss with parameter ¢ (per Equation 17), and evaluate on
the test set the disparate impact, as well as the gap A(f) = CSpa(f;¢) — (1 — ¢). Our Lemma 1 indicates that
we should find the latter to be positive only when the former is larger than 7 = 0.8.

To construct training sets, we make an initial 2:1 train-test split of the full data, treating Y as the label to
predict. To obtain models with varying levels of accuracy in predicting Y, we inject symmetric label noise of
varying rates into the training set. Figure 1(a) shows that for the resulting models, as per Lemma 1, there is
perfect agreement of disparate impact at 7 = 0.8 and sign(A(f)), evidenced by there being no points in the
top-left and bottom-right quadrants.

G.2. A plugin approach to the fairness problem

We next present an experiment inspired by Zafar et al. (2016), where on the same german dataset we learn a
classifier that respects a MD score constraint, while being accurate for predicting the target feature in the sense
of balanced error (BER). We employ the plugin estimator proposed in §5.2 (which we term 2LR), training
logistic regression to predict the target and sensitive feature and combining these models via Equation 15 for
some A € R. On the test set, we compute the BER for the target feature, and the MD score for the sensitive
feature. We compare this to the COV method of Zafar et al. (2016), which uses a surrogate to the MD constraint
as discussed in §5.3, with tuning parameter 7 € R,.

Varying A € {-1,-0.495,...,0} and 7 € {0,0.005, ..., 1} yields tradeoff curves for both methods. Figure
1(b) shows these curves at high fairness value, where we see that our plugin approach is generally competitive
with COV, resulting in lower BER at higher fairness levels. (Note that COV does not sweep out the same range
of lower fairness values as 2LR owing to the use of a surrogate constraint.) Further, as mentioned in §5.2,
tuning of A with 2LR requires no model training — to generate the curves in Figure 1(b) takes 2LR 0.25 seconds,
as opposed to 25 seconds for COV.

We present a further experiment on the synthetic dataset considered by Zafar et al. (2016), where P(Y =
1) =0.5,each X | Y = y ~ N(y,, Z,) where

and

B o1 X P(X = Rx | Y = 1)
T T T B X Ry |Y=1)+P(X=Rx | Y = 1)
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We generated N = 10* samples from this distribution, and followed the same setup as before: we constructed
a 2:1 train-test split, and compared COV and our plugin (2LR) approach in terms of the balanced error of
predicting Y, versus the MD score in predicting Y.

Figure 1(c) shows the tradeoff curves of the methods closely track each other. However, the plugin approach
performs slightly worse at higher fairness levels. We conjectured this is due to the fact that logistic regression
is not suitable for 7,77, as the class-conditionals have non-isotropic covariance and thus possess quadratic
boundaries. Indeed, when we explicitly include quadratic features as input to both methods, Figure 1(d) shows
that the plugin approach performs consistently (albeit slightly) better than COV.

While a more exhaustive experimentation is needed to make firm conclusions, the above illustrates that our
Bayes-optimal analysis of Problem 3.3 is not solely of theoretical interest, and may be useful in designing
fairness-aware classifiers.

G.3. Illustrations of the fairness frontier

We illustrate the fairness frontier (Equation 19) for some simple distributions. Consider first the case where X
comprises 100 linearly spaced points in [—1, 1], D is such that (x) = [x > 0] and the marginal over instances
is uniform. Suppose also that 77(x) = [x > t], for tuning parameter . Consider a cost-sensitive performance
and fairness measure with ¢ = ¢ = 1/2. We can explicitly compute the frontier here, shown in Figure 2(a)
for a range of ¢. As ¢ increases, 7 and 77 grow increasingly dissimilar, and so the fairness constraint does not
affect performance as dramatically: this is manifest in the fact that the benign fairness value 7* increases with
t. Further, for every ¢, when there is a tradeoff, it is linear.

Suppose we instead have 7(x) = (1 +exp(=x))~!, and retain the same 77. Here again, Figure 2(b) shows that
as t increases, n7 and 77 grow increasingly dissimilar. The impact of changing the shape of 7 is the effect on
the frontier when it is nonzero: as per Equation 21, this depends on the deviation of n from ¢, and hence the
frontier here is nonlinear.
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Appendix H. Fairness in Context

In this appendix we tentatively survey some of the broader literature that bears upon the problem of fairness
in machine learning, especially as it relates to the perspective of the present paper (with a focus on measures
such as Disparate Impact and Mean Difference that can be equivalently represented as a difference in risks®).
The appendix does not claim to be comprehensive. And neither does it stake out a “position.” It does illustrate
the rich set of connections that remain to be explored in further developing an analytical theory of fairness in
data analytics. We believe that machine learning has much to learn from the extant work on fairness, from a
range of diverse disciplines.

We start by examining the meaning of fairness and its connections to justice (§H.1). We then argue that two
of the most famous proposals for justice in terms of fairness are intrinsically information-theoretic (§H.2).
The use of protected attributes (designating group membership) is central to most approaches to fair ML;
we survey the significance of groups, the choice of groups, and their use and abuse in statistics (§H.3). We
then briefly survey the literature on fairness and ethics as a natural phenomenon (§H.4). We conclude this
appendix with a list of challenges for fair ML which we believe are novel (§H.5).

H.1. Fairness and Justice

“Fairness” is challenging to define and comprehend because (as a word) it carries significant cultural heritage,
mostly originating in the Anglo culture (Wierzbicka, 2006, pages 141-167). It is not a cultural universal.
Indeed, “fair” is an innocuous sounding word of a kind that “may be invisible to native speakers, who simply
take them for granted and assume that they must have their equivalents in other languages” (Wierzbicka, 2006,
pages 10—11), but often there are not equivalent words because the very concept is missing from the culture
in which the language developed’. There is a considerable richness and complexity to what, exactly, is “fair”
and there seems little hope of a single simple definition that works in all situations, and for all people.

The Anglo notion of Fairness is intimately related to Justice, (arguably) “the first virtue of social institutions”
(Rawls, 1971, p586); “when Justice Potter Stewart first joined the Supreme Court in 1958, he said, ‘fairness is
what justice really is’” (Dorans and Cook, 2016). But there is no consensus that this is actually the case; see
the series of tables in (Kolm, 1996, pages 77-83) summarising the (largely incommensurate) proposals that
have been made to date. One of the most famous proposals for defining Justice is (somewhat surprisingly)
information-theoretic. John Rawls’ famous theory of “justice as fairness” has at its heart an information
throttling device (the “veil of ignorance”) whereby a given person’s position in society is held to be unknown
(to the person) while designing the rules of a just society. (This information theoretic observation is expanded
in the next subsection). While his theory as stated is philosophical, and not mathematical, Rawls recognised
the necessity of a mathematical treatment of fairness:

A correct account of moral capacities will certainly involve principles and theoretical constructions
which go beyond the norms and standards cited in everyday life; it may eventually require fairly
sophisticated mathematics as well (Rawls, 1971, p47).

Variants of Rawls’ theory, especially due to Harsanyi (1955), who anticipated him, are mathematical, and
are well aligned with the approach of the present paper. The notion of group membership is often assumed
to be essential in defining fairness; indeed, a “protected attribute” typically denotes group membership. But
one should not take this group-theoretic notion of fairness for granted (see below, subsection H.3). Certain
notions of fairness (wealth redistribution and a social safety net) were key to the New Zealand elections in the
1990s. But was it fairness “for” groups or “for” individuals? Fischer (2012)3 said that the New Zealand Royal

6. There is a wide range of fairness measures considered in the ML literature. They are usually incommensurate with each other in
the sense that they can not be optimized simultaneously (Kleinberg et al., 2016). The recent survey by Zliobaité (2017) enumerates
many of the fairness measures proposed to date, and while drawing some measures from literature outside of machine learning, does
not deal with the problem of how one might select from these measures in a principled fashion. Some of the literature we survey in
this appendix attempts to do that. We do not claim they are successful in doing so, nor even that it is possible in general to do so!

7. See the discussion in (Sen, 2009, p72) regarding the distinction between the concepts of justice and fairness.

8. Fischer credibly claims (Appendix — Fairness in Other Disciplines) that his is the “first book to be published on the history
of fairness”. His appendix contains a valuable survey of fairness in other disciplines, including linguistics, moral philosophy,

27



THE CosT oF FAIRNESS IN BINARY CLASSIFICATION

Commission on Social Policy (1988) “argued that a fair society should do justice not to groups or classes of
people, but to individuals according to their rights, needs, and just ‘deserts.””” The crucial point is the demand
was for justice for individuals, not groups. The tension between fairness for groups or individuals recurs
throughout the literature, and is especially relevant to the problem of fairness in machine learning.

Much of the machine learning literature on fairness is based on the notion that membership of a given
category should not cause statistical decisions to “discriminate”. This is sometimes taken to mean that
outcomes need to be the same regardless of membership in a category. Analogous theories such as that of
(Harsanyi, 1955) and (Sen, 2009) differ in what precisely “ignorance” means (uniform prior over what role
one has, or the perspective of a separate impartial observer). In all cases, the general idea is that a just outcome
should not depend (either way) on membership of a particular category, but should focus upon the individual;
Rawls (1971, page 26) motivates his approach by saying “utilitarianism does not take seriously the distinction
between persons” because it is only concerned with average welfare. These ideas have had profound impact
on political philosophy, and there already exist a range of mathematical theories motivated by them (Binmore,
1994, 2005; Fleurbaey and Maniquet, 2011; Harsanyi, 1977c; Sen, 1986).

Rawls argued the advantages of “pure procedural justice” where the attainment of justice (hence fairness)
is a consequence of the process followed, not the outcome obtained. This is, of course, taken for granted
in machine learning and statistics, where the statistician typically analyses a procedure (an estimator), rather
than the results of the procedure on a given set of data. Taking this principle seriously means that protected
attributes have to be identified ahead of time, and not after the fact because you did not like the outcome;
confer the analogous problem in designing electoral districts in subsection H.2 below.

Much of the philosophical literature on fairness (including that of Rawls) is motivated by the ultimate
question of designing a perfect society. The intrinsic pragmatism and empiricism of machine learning
suggests that instead it is better to follow the precept of Sen (2009, Chapter 18) that mere identification of
“fully just social arrangements is neither necessary nor sufficient” (to make the present world a better place).
As with any other engineering problem, one never attains perfection, but rather one identifies the fundamental
trade-offs. We embrace Sen’s pragmatism by focussing on the quantifiable trade-offs one might make to
approach (certain notions of) fairness and hence justice. Rawls (1971, p37) acknowledges that there will have
to be trade-offs between overall social utility and fairness, but he tries to argue what the “right” trade-off is.
We do not try to solve that question, believing instead there is unlikely to be a universal right trade-off, and
instead focus upon merely quantifying what the trade-offs might be. Our goal is to merely parametrise this
(i.e. define the Pareto frontier), not to pick a particular point on the frontier®.

H.2. Rawls’ and Harsanyi’s Notions of Fairness are Information-Theoretic

Whate’er the passion, knowledge, fame or pelf,
Not one will change his neighbour with himself.
—Alexander Pope, Essay on Man (1I)

Rawls (1971) and Harsanyi (1958, 1977a,b,c, 1978, 1979) independently proposed approaches to fairness.
While usually explained in terms of a “veil of ignorance” or an “impartial observer,”!° from an engineer’s

behavioural sceinces, genetics and evolution, neuroscience, social and cultural sciences, economics, and mathematics. It is a fine
starting point to explore this diverse threads of fairness.

9. Focussing upon quantifying the trade-off between utility and fairness has drawn attention in the machine learning literature only
recently (Johnson et al., 2016). Zafar et al. (2017), in talking about fairness in pretrial risk assessments (where one might be required
to make the false positive rates equal for all groups), quote William Blackstone’s famous aphorism “[T]he law holds it is better that
ten guilty persons escape, than that one innocent party suffer” (Blackstone, 1765). This is a trade-off, of sorts, between utility and
fairness. It begs the question: Why 10? Why not some other value n? Of course there is no especial reason to choose 10, as has
been documented by Volokh (1997) with admirable scholarship. He cites seperate authorities claiming that the right choice of n is,
respectively, ﬁ, 1L0’ 1,2,3,4,5,9, 10, 12, 20, 99, 100, 599, 900, 1000, 5000, oo, “a few”, “some”, “several”, “many”, “a considerable
amount”, or “a goodly number”! (Numbers less than 1 mean, taking % for example, that it is considered better that 10 innocent
men suffer than one guilty man escape). In the spirit of data analytics, it is possible to empirically estimate the value of n at a given
time and place (by looking at various court statistics). Volokh (1997) estimated the value in 1997 in the US was 59.72.

10. “As Harsanyi has often and forcefully argued, an important basis for utilitarianism’s claim to be morally compelling is that it can
claim to represent the judgment of a sympathetic but impartial observer — one who accepts the interests of other persons and seeks
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perspective it is perhaps better described as an information throttling device — a “bottleneck™ of sorts. The
idea is that in order to determine what is fair, one needs to not know one’s place in the system one is designing.
If designing the rules of a society, one must not know one’s place in the society, else it is impossible to prove
one’s design choices were not in fact motivated by self interest. This “veil of ignorance” hides the morally
relevant information. The particular bottlenecks or veils chosen by Rawls and Harsanyi differ:

Behind Rawls’s ‘thick’ veil of ignorance, individuals do not know the likelihood that they may end
up in any given person’s position. Behind Harsanyi’s ‘thin’ veil of ignorance, they know that they
have an equal chance of being in any person’s position (Kurtulmus, 2012, p41).

Harsanyi (2008) has argued that his ‘thin’ veil is a better choice, and that the choice of a uniform prior is
not only a more rational choice, but is more robust too. Rawls argues that since one does not know one’s
position at all (Knightian uncertainty), and thus one can reason in terms of the worst case — his maximin
rule. Harsanyi, on the other hand, by assuming the uniform prior, can reason probabilistically (Knightian risk)
and one should reason in terms of the average case, and in doing so throttles the relevant information:

The idea of deriving substantive principles of morality based on rational decision making in a
hypothetical situation in which the decision maker is deprived of morally irrelevant information is
one of Harsanyi’s greatest achievements (Fleurbaey et al., 2008, p15).

One interesting aspect of Harsanyi’s solution is that his utilities (which correspond roughly to our loss
functions) are ‘cardinal’ (in the terminology of economists), meaning they are what we would call scores,
rather than just rank orderings. Furthermore, his fairness proposal relies upon the “interpersonal comparison”
of these utilities (Hammond, 1991). The form of our overall objective function, a difference of two loss
functions, implicitly makes such a comparison. (We are glossing over the issue of exactly what the utilities
represent in the ML fairness problem; they are usually not the utilities of the people who are the subject of the
data analysis, although the fairness loss £ is arguably correlated with that.) The richer information conveyed
by cardinal utilities completely bypass vexing negative results such as Arrow’s impossibility theorem precisely
because this comparison becomes possible; see (Harsanyi, 1977c) for details.

We speculate that by looking at a richer class of information throttling devices (especially, for example, those
that only partially destroy information, such as utilising noisy labels and devices such as used in differential
privacy) we may be able to develop a richer class of theories of fairness in machine learning. The hope is
that the impact of an information-theoretic view will be as signifcant as that view was in economics (Stiglitz,
2002). We suspect that focussing on the information-theoretic limits may be more helpful than concentrating
on different notions of equity (Young, 1994).

H.2.1. AN ANALOGY: FAIRNESS AND THE PREVENTION OF GERRYMANDERING

The information throttling aspect of Harsanyi’s model of fairness can be illustrated by an analogy. Consider
the problem of the “fair” subdivision of a region into electoral districts. The importance of the problem is
demonstrated by the fact that there is a name for what happens when this is not done fairly — gerrymandering.

Much of the literature on the prevention of gerrymandering attempts to solve the problem ex post — that is,
to detect that gerrymandering has occurred by detecting unusual or “bizarre” shapes of the boundaries drawn.
There are various proposal for the “compactness” (Young, 1988) or “bizarreness” (Chambers and Miller,
2010) of boundaries. But this is akin to judging whether overfitting has occurred in a statistical estimation
problem by only examining the resulting hypothesis. We know, however, that this cannot work. One needs
to control the complexity of all possible hypothesis before the inference step is done. Such a proposal is
precisely what was made by William Vickrey!!:

to resolve conflicts among them in a disinterested way” (Wagner, 1980). But this way of looking at matters is tricky! See the
discusson of the limits of personal identity in (Adler, 2014).

11. Fleurbaey et al. (2008) (and indeed Harsanyi himself) credit the idea of limiting the information available in order to guarantee
fairness to even earlier work by Vickrey (1945). The information-hiding idea also arises in the neuroscience of fairness in human
behaviour; see §H.4 below.
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[I]t means that the selection of the process, which must itself be at least initiated by human action,
should be as far removed from the results as possible, in the sense that it should not be possible to
predict in any detail the outcome of the process (Vickrey, 1961, p106).

Vickrey extolls the virtue of randomization as an information destroying device:

This means that at some stage in the process a random element should be introduced which, while
not affecting the general principles that are to be applied, will substantially affect the result in the
particular instance, so that legislators in selecting one process rather than another will not be able
to base their choice on particular detailed outcomes and will be compelled to base their choice on
general principles (Vickrey, 1961).

Vickrey’s point is that the only way to guarantee no untoward manipulation occurs is to hide the relevant
information from the decision maker (the person drawing up the boundary). Thus if they are required to
draw the boundaries before they know the outcomes of the way individual people vote, this would suffice. A
proxy would be to choose a class of shapes of boundaries a priori as a way to control the degree of strategic
overfitting that is allowed.

H.2.2. FAIrRNESS Ex ANTE OR Ex PosT — TEMPORAL INCONSISTENCIES IN HUMAN BEHAVIOUR

The veil of ignorance and other such information throttling devices are intrinsically ex ante. While people
accept the logic of this in the abstract, when put into practice it is not so simple. Andreoni et al. (2016) found
in a lab experiment that:

[M]ost people view fairness from an ex ante perspective when making decisions ex ante, and from
an ex post perspective when making decisions ex post.!2

The matter is subtle; Trautmann and van de Kuilen (2016), who used the different distinction of process vs
outcome fairness found “a significant share of people subscribe to process fairness both before and after the
resolution of uncertainty.” Trautmann and van de Kuilen (2016) discuss an example due to Machina (1989,
p1643) which makes it clear what the issue is: the difference between fairness in a priori probabilities (ex
ante) and unfair mutually exclusive outcomes once the random outcome occurs (ex post).

This phenomonenon has been called “moral luck” (Nagel, 1979) — the idea that one’s blame should be in
terms of one’s choices (things under one’s control) rather than exogenous things not under one’s control:

Anything which is the product of happy or unhappy contingency is no proper object of moral
assessment, and no proper determinant of it, either (Williams, 1981, p20).

Vickrey’s solution to gerrymandering, and Harsanyi’s solution to fairness are both ex ante and defined in
terms of probabilities not outcomes. It seems there is no alternative in the design of fair systems. But the
evidence above suggests we should not be surprised nevertheless at complaints regarding the outcomes of
such “fair” systems.

H.3. Taking Groups for Granted

The approach to fairness in the machine learning literature, which we follow in this paper, focusses on the
notion of a protected attribute (typically indicating membership of a group), and assumes that both its choice
is manifest, and indeed it is a sensible categorisation. But such categories to which people are assigned are not
intrinsic to the world, but a choice that we make (Lakoff, 1987), and can be highly ambiguous and contested
(Bowker and Star, 1999). In this section we will consider some of the complexities and subtleties regarding
group membership that are largely taken for granted in the machine learning literature.

12. They continue:

As aresult, they exhibit the hallmark of time-inconsistency: after making an initial plan that is fully state-contingent, they
revise it upon learning that certain states will not occur. These patterns are robust and persist even when people are aware of
their proclivities. Indeed, subjects who switch from ex ante fair to ex post fair choices, and who are aware of this proclivity,
generally avoid precommitments and intentionally retain the flexibility to manifest time inconsistency.
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H.3.1. THE S1GNIFICANCE OF GROUPS — CATEGORICAL NOMINALISM

Singling out particular attributes to be protected (as opposed to the rather more sweeping requirements of
Rawls’ full theory that requires no specific attributes be taken into account) opens the door to the problems
inherent in the “ecological fallacy” (Kramer, 1983) — making inferences about individuals based on mem-
bership in a category, which is precisely what some argue one should not do (the right to be treated as an
individual) (Lippert-Rasmussen, 2011).

The notions of fairness considered in the present paper (and indeed in most of the machine learning literature
on the topic) take for granted that the are groups to which people belong (and which are the subject of fair
learning algorithms) really exist in some sense. But it can be argued that these groups are purely conventions;
this is the philosophical position called “categorical nominalism”, and it has a long history. Desrosieres
(1998), in the context of “averages and the realism of aggregates”, explained how William of Occam famously
argued the nominalist position against the existence of aggregates in the context of the pope wanting to give
back property to the Franciscan Order: Occam argued (presaging a famous remark of Margaret Thatcher!3)
“that it was impossible to return these possessions to the order as a whole, since the Franciscan Order was
only a name designating individual Franciscans” (Desrosieres, 1998, p71).

The reification of groups to which people belong is central to the notion of prejudice. Gordon Allport, in
his famous book on the subject, said

Overcategorization is perhaps the commonest trick of the human mind. Given a thimbleful of facts
we rush to make generalizations as large as a tub (Allport, 1954, p8).

Of course some categorization is essential for normal functioning:

The human mind must think with the aid of categories (the term is equivalent here to generalization).
Once formed, categories are the basis for normal prejudgement. We cannot possibly avoid this
process. Orderly living depends upon it (Allport, 1954, p20).

The relevant question is thus not so much whether groups “exist” and in what sense they do, but rather which
groups are singled out for “protection” and why? We turn to this question now.

H.3.2. Tue Cuoic AND CONSTRUCTION OF GROUPS — ENTITATIVITY AND SIMILARITY

Humans form themselves into groups all the time. Academic researchers do this when they proudly quote
the “impact factors” of journals in which they have published!4. But how are these groups chosen? One can
create bizarre groups that nobody could argue should be protected (people whose names have a number of
letters that is prime, for example). But there are other groups (e.g. membership of a racial category) which
are widely accepted as being legitimate and worthy of “protection.” How can one distinguish between these
two different types of groups? One obvious source is anthropology, “the science of groups of men and their
behaviour and productions” (Kroeber, 1948, p1) which has made substantial study of the social groupings
underpinning kinship systems (Lévi-Strauss, 1969; Stone, 2010; Dziebel, 2007; Radcliffe-Brown, 1952).

13. Thatcher famously said “There is no such thing as society. There is living tapestry of men and women and people” Keay (1987).
Interestingly, rather than the common (mis)-interpretation (that she was dismissing all societal considerations), her actual point was
methodological. This is clearly apparent in the context of the interview, and via her subsequently clarifactory statement

Society as such does not exist except as a concept. Society is made up of people. It is people who have duties and beliefs
and resolve. It is people who get things done (Thatcher, 1988).

She was, in effect, arguing for what is now called “methodological individualism,” the formal statement and naming of which is
due to Popper (1945, p91), and which, to continue the otsogian spirit of this footnote (Merton, 1965), was succinctly espoused by
Karl Marx (the very subject of Popper’s book) in 1844: “What is to be avoided above all is the re-establishing of ‘Society’ as an
abstraction vis-a-vis the individual” (Marx, 1959) (quoted in (Sen, 2009)).

14. They do so in the hope of deriving individual benefit by virtue of belonging to the group. This example is particularly apposite
because the grouping made rational sense for its original purpose (for librarians to choose which journals to subscribe to on the basis
of the average impact of all the papers in the journal; the librarians do not care about the individual papers, just the aggregate —
the journal). The use by individual researchers makes far less sense (Seglen, 1997): why should the average number of times other
people’s papers are cited imply anything about the significance of your paper that happens to be published in the same venue? The
only way it makes sense is as an example of the freerider problem Hardin (2013)!
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Even a grouping such as ethnicity or race (Wade, 2002; Barth, 1969), widely accepted as being worthy
of protection, rests on rather uncertain foundations. Alfred Kroeber, whose famous book Anthropology
quoted above lists “race” as the first word in its sub-title, attempts to clarify race in terms of the “traits on
which classification rests” (Kroeber, 1948, p126). These traits include hair texture, skin color, nose shape,
cranial shape, stature, mongoloid eyes etc. Kroeber complains of the difficulty of constructing a “trustworthy
classification of the human races” and observes

A race is only a sort of average of a large number of individuals; and averages differ from one another
much less than individuals. Popular impression exaggerates the differences, accurate measurements
reduce them (Kroeber, 1948, p126).

He claims that his trait maps (Kroeber, 1948, p145) are more accurate and reliable than (self-declared) race.
Thus, ironically, the “protected attribute” is suggested to be best defined in terms of a feature vector! He also
presents (p.148) a range of other racial categorizations, with the explicit goal of pointing out the impossibility
of there being one single “true” racial categorization. Kroeber’s difficulty arises becase there is no notion of
similarity that cleanly draws the boundaries in question. This is not unique to race: “nothing out there in
nature answers to the name ‘overall similarity’” (Hull, 1996).

The point is not whether a given grouping can be given an objective and unassailable definition. (And
even when it cannot, it is common that people believe it can through an essentialist fallacy (Haslam and
Rothschild, 2000).) Rather, the question is whether enough people believe in the group, as occurs with people
self-identifying with a racial group, even if this contradicts measurable features and exaggerates differences
with non-members of the group. If a grouping is widely believed to exist, then, socially, it can be said to exist:

Social categories differ from classifications of the natural world in an undeniable aspect. Classifica-
tions of the natural world are one-way relationships in the sense that only people categorise plants:
plants are in no position to protest. People, however, have their own ideas about group membership
— not only ideas, but strong sentiments (Starr, 1992, p158).

Starr (1992, p160) goes on to observe that official classification is a political act and the “the principle of
classification varies with our purposes and intents.” (Goodman, 1992, p16) The very question of whether one
wishes to be considered to be in a given group is prone to self-serving biases in the same way that one’s view
of the value of affirmative action programs depends upon whether you are in the group on whose behalf the
action is taken (Graves and Powell, 1994).

This phenomenon of the social construction of groups seems quite significant for the problem of fair
machine learning. Fortunately there is a substantial literature on the topic (Turner et al., 1994; McGarty et al.,
1995; McGarty, 1999; McGarty et al., 2002). The property of perceiving a social group as an entity in its own
right was named “entitativity” (the property of being an entity) by Campbell (1958), who recognised that a
significant factor affecting the entitativity of a group is the degree of “common fate” that its members share.
Entitativity is central to notions of prejudice (Brown, 2010; Fishbein, 2002; Dovidio et al., 2005).

As well as assimilating the substantial knowledge regarding social categorization in the works cited above,
there remains the significant challenge, which to our knowledge is not yet addressed in the machine learning
literature, of handling partial or graded membership of social categories, and to manage the complexity of
simultaneous membership of multiple categories, which is the most common situation in practice (Sen, 2009,
pl145), (Sen, 2006, p22).

H.3.3. Tue INDIVIDUAL AND THE GROUP IN STATISTICS — FROM THE ECcoLoGIcAL FALLACY TO ADVERSE
SELECTION

In statistical affairs . . . the first care before all

else is to lose sight of the man taken in isolation in
order to consider him only as a fraction of the species.
It is necessary to strip him of his individuality to
arrive at the elimination of all accidental effects

that individuality can introduce into the question.
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— Siméon Denis Poisson, 183515

Whenever an efficiency-promoting but emotionally
or morally suspect variable is rendered inadmissible,
a redistribution of risk occurs. (Abraham, 1985, p441).

Classical statistics traditionally deals with individuals, not groups, but in doing so endeavours to erase
notions of individuality as the above quotation illustrates. When the individuals (about whom the statistical
inference is being performed) can be aggregated into groups, there arises the danger of the “ecological fallacy”
(where one attempts to infer something statistical about an individual on the basis of only pre-aggregated data)
(Robinson, 1950; Freedman, 1999; Kramer, 1983); a particular case of this is known as Simpson’s paradox
(Feld and Grofman, 2010, p.140, footnote 3). The problem arises when a conditional statistic (per group) is
used to infer something about an individual:

We believe that the investigator is never justified in interpreting the results of ecological analyses
in terms of the individuals who give rise to the data. This may seem to many readers to be an
overstatement; however, our theoretical and empirical analyses offer no consistent guidelines for
the interpretation of ecological correlations or regressions when data on individuals are unavailable
(Piantadosi et al., 1988).

As Barocas and Selbst (2016, footnote 68 and associated text) explain, even when the intent is that people
are all treated as individuals, as ethicists argue is right (Lippert-Rasmussen, 2011), resource constraints will
sometimes require treatment in terms of group membership. Obviously many of the methods proposed for
fair machine learning sail very close to this problem.

A domain of statistical thinking where group membership questions loom large is insurance. In this case,
the potential downside is often not to the individual (the insured) but to the the organisation (the insurer). The
problem is known as “adverse selection” whereby members of high risk groups preferentialy buy insurance
and those in low risk groups do not, thus increasing the aggregate risk for the insurer (Rees and Wambach,
2008).

Insurance is an asymmetric information market (Rees and Wambach, 2008; Dionne and Rothschild, 2014)
(not unlike the veil of ignorance, which has the information asymmetry, but without necessarily a market
structure). The individuals seeking insurance know more about their risk than the insurer, who in the extreme
case knows only very broad population averages. The individual can condition on many variables that remain
hidden to the insurer (Doherty and Thistle, 1996). It is thus (from the perspective of an insurer) a “market for
lemons” Akerlof (1970). (To be sure, there are informational advantages on the insurer’s side sometimes too
(Keogh and Otlowski, 2013).)

The relevance to fairness in machine learning becomes clear when one considers the issue of genetic testing
in insurance, an issue first raised by Fisher in 1933 (Harper, 1993). Those who study insurance have concerns
about “discrimination” and “unfairness” Billings et al. (1992) without making it clear what they mean by
“fair.” Some authors (Hudson et al., 1995) have argued extreme positions against any conditioning on genetic
tests. 16,

The economic impacts of banning such forms of risk classification (as it is so called) were studied by Dionne
and Rothschild (2014) for classifying risk in terms of gender and race. (Gender based risk classification has
been prohibited in the EU since late 2012, notwithstanding the significant differences in mortality on average.)
Health insurance typically conditions on “age, sex, smoking behaviour, parent’s health history information,
current medical conditions,. . . information about lifestyle, diet, and exercise.” Risk classification is usually

15. Quoted in (Hacking, 1990, p81).

16. Hudson et al. (1995) say that
1) Insurance providers should be prohibited from using genetic information, or an individual’s request for genetic services,
to deny or limit any coverage or establish eligibility, continuation, enrollment, or contribution requirements. 2) Insurance
providers should be prohibited from establishing differential rates or premium payments based on genetic information or an
individual’s request for genetic services.
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associated with increased efficiency (as one would expect). They conclude that prohibition of the use of
predictive features (such as those listed above) is likely to cause significant problems.!” The issue of the cost
of such risk classification bans (note the similarity to the cost of fairness considered in the present paper) has
been considered from the perspective of social welfare function (average utilities), but not fairness directly
(Hao et al., 2016), although (Hoy, 2006) adopts “an explicit welfare function approach of the sort inspired by
Harsanyi’s veil of ignorance.”

The information-throttling nature of the problem is made clear by current Australian law (Centre for
Genetics Education, 2016), which draws a distinction between a subject having had a genetic test done, but
not knowing the result (the law then says that the result cannot be taken into account in pricing the insurance)
versus having had a test done and the subject being told the result, in which case they are obliged to share the
result with the insurer, who may price the insurance differentially as a consequence. What matters is what
information is known to whom at what time.

This perspective, and the close connection to the “cost of fairness” is made clear by Tabarrok (1994) who
asks “What rules governing genetic policy would rational agents agree to if placed behind a veil of ignorance”.
He quotes Maddox (1991):

The contention that people unlucky enough to carry identifiable genetic abnormalities should not
be denied insurance on the same terms as other people begs the question why people relatively free
from identifiable genetic abnormality should therefore pay more than would otherwise be necessary.

The point is that some groupings are widely considered to be socially acceptable: Maddox (1991) goes on
to say “In any case, the principle of discrimination has already been considered both in respect of those who
smoke cigarettes and, for much longer, those with a familiar history of heart disease.”

The issue of fairness (in the sense of the present paper) and risk classification in insurance is most
systematically studied by Abraham (1985, 1986), who also recognises the trade-off inherent in excluding
certain protected attributes (see the quotation at the beginning of this subsection). Akin to the notion or
“moral luck” mentioned above, Abraham (1985, p424) considered the incentive effects of properly priced
insurance (in encouraging the reduction of risk). But this only works if the risk factors are under the
individual’s control: “if classification sends messages about features outside the insured’s control — age or
sex, for example — the messages cannot be converted to action.” This is particularly pertinent for risk factors
one may be born with (Keogh and Otlowski, 2013).

H.4. Naturalising Fairness — Evolution, Ethology, Psychology, Neuroscience, & Immunology

Fairness can be studied as an empirical science, examining the way humans actually deal with notions of
fairness, as well as trying to understand how such behaviours evolved. There is a range of work at many
different levels that attempts to “naturalize fairness.”

Trivers (1971) has famously demonstrated how simple notions of fairness (reciprocal altruism) can naturally
evolve. There is a vast literature building upon this work. Binmore (2005, 2008) has focussed on naturalizing
the proposals of Harsanyi and Rawls. Naturalists have argued that the broader foundation of ethics can
be develop as an applied science (Ruse and Wilson, 1986) following the tenets of evolutionary naturalism
(Ruse, 1995, 2009) and sociobiology (Alcock, 2001; Singer, 1981). The contractarian theories have also been
examined from an evolutionary perspective (Skyrms, 1996). Such attempts do not so much as ignore the so
called naturalistic fallacy (that “is” cannot imply “ought”), as deliberately repudiate it (Walter, 2006).

17. Dionne and Rothschild (2014) observe that

Risk-pooling arising from legal restrictions on risk classification may lead to a situation in which lower-risk individuals are
charged higher than actuarially fair premiums and higher-risk individuals are charged lower than actuarially fair premiums.
While these financial inequities (may) reduce classification risk (and/or improve social equity), the higher-than-fair premiums
for lower-risk individuals may cause them to forgo insurance entirely, particularly when the proportion of high-risk individuals
is large. This reduced pool of insured individuals reflects a decrease in the efficiency of the insurance market. These negative
efficiency consequences of limits on risk classification can, in principle, be quite severe: exit of low risks can lead to a “death
spiral” of rising premiums and lower-risk exit that ends up unravelling and destroying the entire market.

Similar conclusions are reached by Porrini (2015).

34



THE CosT oF FAIRNESS IN BINARY CLASSIFICATION

The psychology of ethical behaviour has been studied in both humans (Rottschaefer, 2000) and other
primates. de Waal et al. (2006) have argued from primate behaviour studies how human morality has evolved,
and capuchin monkeys have been shown to have a strong sense of inequity aversion (Brosnan and de Waal,
2003; Brosnan, 2014). Scholars such as Haidt (2008) have turned morality into an empirical psychological
discipline (the “new synthesis” (Haidt, 2007; Graham et al., 2011)), which provides a five-fold taxonomy for
the basis of morality: harm/care, fairness/reciprocity, ingroup/loyalty, authority/respect and purity/sanctity.
People of differing political persuasions (liberal vs conservative) systematically differ in the relative weight
they give to these 5 dimensions when considering whether something is right or wrong (Haidt, 2007), and
women pay more attention to the fairness dimension than men (Graham et al., 2011, p.379). Haidt argues that
“individuals are the fundamental units of moral value” (not groups)!8.

Even more mechanistically, there is now work on the neuroscience underpinning fair behaviour in humans
(Pfaff, 2007). Like the philosophical theories of Harsanyi and Rawls, it seems our brains engender fairness
through information throttling!®, with a clear and significant role played by the neuropeptide oxytocin (De
Dreu, 2012; Sheng et al., 2013; Shalvi and De Dreu, 2014) which underpins the development of trust and
in-group identification (Kosfeld et al., 2005).

We need not stop there. Our immune system’s primary role is the information theoretic pattern recognition
of self from non-self, the self being the ultimate in-group (Anderson and Mackay, 2014), with all individuals
being immunologically unique (Medawar, 1957)29. This was the fundamental insight of (Burnet, 1956) who
early on noted that “Recognition of ‘self” from ‘not-self’ .. .is probably the basis of immunology” (Burnet,
1948).

We conjecture that much can be gleaned from this literature (briefly skteched above) to guide the further
development of fairness in data analytics.

H.5. Challenges

God loves from Whole to Parts: But human soul
Must rise from Individual to the Whole.
Self-love but serves the virtuous mind to wake,
As the small pebble stirs the peaceful lake;

The centre moved, a circle straight succeeds,
Another still, and still another spreads;

Friend, parent, neighbour, first it will embrace;
His country next; and next all human race;

— Alexander Pope, Essay on Man (1V, 361-372)

We conclude this appendix with a list of some interesting challenges for fair machine learning that is 1)
based on solid evidence but 2) not significantly treated in the machine learning community. Analogous to the
sentiment expressed by Pope above, this requires us to “expand the circle?!” of our moral concern.

Machine learning researchers know that any prediction of future performance is only ever probabilistic.
But this in itself can be a problem. Rebecca Zwick, in studying the various schemes that have been devised for

18. “We might call it an individualist approach to morality because individuals are the fundamental units of moral value. In this
approach, selfishness is suppressed by encouraging individuals to empathize with and care for the needy and vulnerable (Gilligan)
and to respect the rights of others and fight for justice (Kohlberg). Authority and tradition have no value in and of themselves; they
should be questioned and altered anew in each generation to suit society’s changing needs. Groups also have no special value in
and of themselves. People are free to form voluntary cooperatives, but we must always be vigilant against the ancient tribal instincts
that lead to group-based discrimiation. (Haidt, 2008, p70) (italics added). See also (Gibbs, 2014; Sinnott-Armstrong, 2008a,b).

19. Pfaff (2007, p) says (italics added):

What circuitry in the brain could possibly produce behavior as universal, as exible, and yet as reliable as ‘fair play?’ Believe
it or not, according to my theory, this circuitry does not require fancy tricks of learning and memory but instead makes use
of the easiest brain process of all — the blurring and forgetting of information.

His point is that by blurring the distinction between self and non-self, one’s self-interest transfers to interest in the welfare of others.
20. “So far from being one of his higher or nobler qualities, his individuality shows man nearer kin to mice and goldfish than to the
angels; it is not his individuality but only his awareness of it that sets man apart” (Medawar, 1957, p185).
21. Observe that Pope anticipated the tag line of Singer (1981)!

35



THE CosT oF FAIRNESS IN BINARY CLASSIFICATION

college admissions (selecting who gets to attend) noted that psychologists “found this unpredictability hard
to accept and rejected statistical prediction because it made the reality of poor prediction explicit” (Zwick,
2017, p85). Any acceptable data analytic notion of fairness will have to grapple with this point (related to the
ex ante vs ex post distinction made eatlier).

H.5.1. THe REALITY OF DIFFERENT BASE RATES ACrROss PROTECTED CATEGORIES

Anecodotally, one of the most significant challenges arises, ironically enough, from the underlying data itself,
which gets exposed to full view only when one grapples with the fairness problem in the manner of the present
paper. Specifically the issue is that of “different base rates” between members and non-members of protected
categores. That is, where the desired attribute being classified by the ML method is highly correlated with
the chosen protected attribute. One just has to think of the heat generated in discussions about the correlation
of race with recidivism?? or about sex differences in cognitive abilities (exhaustively documented by Halpern
(2012)) or sex differences in susceptibility to mental illnesses (Hartung and Widiger, 1998). Thus if one were
to find that a predictor for some cognitive task resulted in a sex-ratio different to the population, emotions
could run high. Although the evidence for these differences (which are not unidirectional) is overwhelmingly
solid, merely drawing attention to them can be fraught:

But among many professional women the existence of sex differences is still a source of discomfort.
As one colleague said to me, “Look, I know that males and females are not identical. I see it in my
kids, I see it in myself, I know about the research. I can’t explain it, but when I read claims about
sex differences, steam comes out of my ears” (Pinker, 2003, p352).

The challenge is that perhaps in response to such reactions, a practice has developed that attempts to deny
what the data says:

In contrast to such anthropological and sociological bases for expecting real group differences to
provide in some sense ‘accurate’ components for stereotypes, there has grown up in social and
educational psychology a literature and teaching practice which says that all stereotypes of group
differences are false, and, implicitly, that all groups are on the average identical. (Campbell, 1967,
p823).

We offer no simple solution, but note that until we move away from the practice described by Campbell,
progress is impossible, and that the oft proposed device of inter-generational remediation (assuaging an
injustice to an ancestor by providing recompense to a descendent) could well create more problems than it
solves, especially noting the imponderable and opaque causative mechanisms involved (Sen, 2009).

H.5.2. THE PARTIAL TRUTH OF STEREOTYPES AND PREJUDGEMENTS

Stereotypes are sometimes partially true. This too seems hard for some people to accept, perhaps because they
have assimilated Campbell’s point above that all sterotypes are wrong and harmful. But generalisations such
as accurate stereotypes are not harmfully prejudicial. Indeed, Allport, in his foundational work on prejudice,
actually defined prejudice as a faulty generalisation.

Prejudgements become prejudices only if they are not reversible when exposed to new knowledge.
... Ethnic prejudice is an antipathy based on a faulty and inflexible generalization. It may be felt or
expressed. It may be directed toward a group as a whole, or toward an individual because he is a
member of that group. (Allport, 1954, p9)

His point is refined in a more recent book on stereotype accuracy:

22. Berk et al. (2017, Section 8) complain that

Perhaps the most challenging problem in practice for criminal justice risk assessments is that different base rates are endemic
across protected group categories.
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Any probababilistic cue is potentially inaccurate. Using an accurate stereotype is not unfair, however,
unless it is used when more diagnostic cues are ignored. (Lee et al., 1995, p308)

But such a viewpoint is far from universal. In fact there seems to be a widespread instinctive aversion to any
probabilistic prediction of behaviour based on statistical behaviour (Schauer, 2003), even though the more
individualised one makes the basis of prediction, the less one is likely to fall prey to unfair stereotypes.

H.5.3. ConrLict witH FoLk NoTIONS OF DISCRIMINATION AND FAIRNESS

There are two “folk” notions that conflict with the more principled approaches that are the focus of the present
paper. One is the the perceived difference between identified and statistical lives (Cohen et al., 2015; Russell,
2014). An identified life is a particular named person (think of newspaper human interest stories) versus a
statistical life which is merely a statistic. One challenge that needs to be faced in the (statistical) approach to
fairness is that it is impersonal in the sense of not identifying people. Given that processes are often judged
ex post, the individuals concerned will often become identified and thus this bias could come into play.

Not unrelated to the previous point is the folk notion of discrimination. Using the Wikipedia article on
“discrimination” as a proxy for this folk idea makes this clear:

In human social affairs, discrimination is treatment or consideration of, or making a distinction in
favor of or against, a person based on the group, class, or category to which the person is perceived
to belong rather than on individual attributes (Wikipedia, 2017).

By that definition, the only non-discriminatory approach is to ignore the protected attributes entirely and take
the outcome as it comes. That is, to make no attempt to ensure the outcome is “fair.” In particular, the Bayes
optimal schemes we derived would be inadmissible precisely because they do take consideration of a category
to which a person is perceived to belong (the protected attribute). The difficulty is not so much with the
proposed practice, but with clumsy definitions such as that above which are obviously unworkable. Ironically
(since the whole point of a classifier is to “discriminate”), any ML method for fair data analytics will need to
have a defence against such a charge of discrimination.

H.5.4. ULTIMATE SOURCES OF CONFLICT — DIFFERENT FRAMES OF SOCIALITY AND MORALITY

Trading of utility for fairness is a fraught endeavour: witness the vehement response (Dorff, 2002) to the
proposal of Kaplow and Shavell (2002). This particular debate was scholarly and rational?3, but alas that is
not something one can rely upon.

We do not expect that even the most careful mathematical analysis will resolve the problem of fairness
in data analytics for everyone. Beyond the obvious fact that different loss functions and utilities lead to
different solutions (hardly a new idea in data analytics), there are more deep-seated disagreements, such as
the varying opinions regarding whether groups have rights themselves?4, or that prior injustice to an ancestor
justifies remediation to a descendant. As Fiske (1992) has shown, there are four quite different types of
human sociality: community sharing, authority ranking, equality matching, and market pricing?3, and these
underpin different moral motives (Rai and Fiske, 2011). Typically, notions of fairness are construed within the
frame of equality matching. But this runs into problems, especially when considering probabilistic notions of
fairness as is necessary for fairness in ML where some notion of utility (cost) is needed to even define what a
satisfactory solution is — to talk of cost immediately pushes one into the market pricing type.

23. One concern, pertinent for the present paper, was the degree to which Pareto optimality is violated; see (Chang, 2000, p196). Our
proposal does not do this: as one trades off fairness to utility, one does not make everyone worse off (as Kaplow and Shavell (2002)
argue); instead only those who’s predicted outcome was very uncertain would have their outcome changed for fairness concerns, as
is evident by the form of the Bayes optimal solution we derived.

24. This is itself a complex issue which we can hardly do justice to here. The theories of Rawls and Harsanyi are entirely focussed upon
the rights of individuals and we believe this is the appropriate stance to take. For an (in our opinion unconvincing) contrary view,
namely that groups themselves have rights, see (Van Dyke, 1975; Fiss, 1976).

25. These have a correlation with, but are not identical to, the new synthesis typology mentioned earlier (harm/care, fairness/reciprocity,
ingroup/loyalty, authority/respect and purity/sanctity) (Graham et al., 2011).
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Fiske (1991, p372) argued that “since the motives, the ‘utilities’ of each type are distinct and incommensu-
rable, there is no transcendant value that encompasses all four types of social motives.” Thus there is no single
foundation on which to rest. We speculate that the present paper, which conjoined notions from equality
matching (fairness) and market pricing (cost), uncovers this difficulty. Perhaps the revulsion that sometimes
occurs when these moral domains come into conflict could explain the negative reaction that some people
exhibit to the very point of this paper — evaluating the cost of fairness.
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