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Abstract

Binary classifiers are often required to possess
fairness in the sense of not overly discriminating
with respect to a feature deemed sensitive, e.g.
race. We study the inherent tradeoffs in learn-
ing classifiers with a fairness constraint in the
form of two questions: what is the best accu-
racy we can expect for a given level of fairness?,
and what is the nature of these optimal fairness-
aware classifiers? To answer these questions, we
provide three main contributions. First, we relate
two existing fairness measures to cost-sensitive
risks. Second, we show that for such cost-
sensitive fairness measures, the optimal clas-
sifier is an instance-dependent thresholding of
the class-probability function. Third, we relate
the tradeoff between accuracy and fairness to
the alignment between the target and sensitive
features’ class-probabilities. A practical impli-
cation of our analysis is a simple approach to the
fairness-aware problem which involves suitably
thresholding class-probability estimates.

1. Introduction

Suppose we wish to learn a classifier to determine if
an applicant will repay a loan. That is, given vari-
ous input features about the applicant — such as their
employment status, income, and credit history — we
wish to predict the target feature, namely likelihood
of repaying the loan. Suppose however that one of
the input features is deemed sensitive, e.g. their race.
Then, we might be required to constrain the classifier
to not be overly discriminative with respect to this sen-
sitive feature; subject to this constraint, we would of
course like our classifier to be as accurate at predict-
ing the target feature as possible. This fairness-aware
learning problem has received considerable attention
in the machine learning community of late (Pedreshi
et al., 2008; Kamiran and Calders, 2009; Calders and
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Verwer, 2010; Dwork et al., 2012; Kamishima et al.,
2012; Fukuchi et al., 2013; Zafar et al., 2016; Hardt
et al., 2016; Zafar et al., 2017).

Existing work on fairness-aware learning has
largely focussed on two central questions: (a) how
does one formally measure the fairness of a classi-
fier?, and (b) given such a measure, how does one
learn a classifier that achieves fairness? For the for-
mer, the challenge is that seemingly sensible defini-
tions of fairness can have subtle, undesirable conse-
quences (Zliobaité et al., 2011; Dwork et al., 2012);
to address this, a range of progressively refined mea-
sures have been designed (Calders and Verwer, 2010;
Dwork et al., 2012; Hardt et al., 2016; Zafar et al.,
2017). For the latter, the challenge is that merely
ignoring the sensitive feature is inadmissible, owing
to it potentially being predictable by other features
(Pedreshi et al., 2008); to address this, approaches
based on post-hoc correction (Calders and Verwer,
2010; Hardt et al., 2016), regularisation (Kamishima
et al., 2012), and surrogate loss minimisation have
been proposed (Zafar et al., 2016, 2017).

1.1. The limits of the possible in fairness-aware
learning

Despite the impressive advances detailed above, some
basic theoretical aspects of the fairness-aware prob-
lem have received less attention. For example, before
attempting to design an algorithm targetting a partic-
ular measure of fairness, it is natural to ask:

Q1: What is the best we can do? There is typ-
ically an unavoidable tradeoff between how
accurate our classifier is with respect to the
target feature, and how fair it is with respect to
the sensitive feature. One may seek to quan-
tify this tradeoff in terms of properties of the
data source, giving inherent limits of what is
possible for any possible algorithm.
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Q2: How do we achieve the best? Having deter-
mined the inherent accuracy-fairness tradeoff,
one may seek to find what classifiers achieve
this limit. This is not purely of theoretical im-
port, as we may then seek to design methods
to approximate these optimal classifiers.

In machine learning terminology, Q2 concerns the
Bayes-optimal classifiers for the fairness-aware learn-
ing problem. The Bayes-optimal classifier attains the
lowest possible average error for a given problem:
thus, no algorithm, no matter how clever or sophisti-
cated, can attain lower average error than this classi-
fier. Such classifiers are foundational in the study of
standard binary classification (Devroye et al., 1996),
and provide a “limit of the possible” in a manner simi-
lar to what Shannon’s information theory did for prac-
tical problems of telecommunication (Gleick, 2011),
or what the science of thermodynamics did for heat
engines in the 19th century (Bryant, 1973).

1.2. A Mathematics of Morality?

We should strive for a kind of moral geometry
with all the rigor which this name connotes.

(Rawls, 1971, pg. 121)

In this paper, we present three contributions in the
study of Q1 and Q2. First, we show that two pop-
ular fairness measures can be seen as instances of a
more general scheme. We then show that for this gen-
eral scheme of fairness measures, the Bayes-optimal
classifier can be explicitly computed. Intuitively, this
classifier deems an instance to be positive if the prob-
ability of the target feature being active is sufficiently
higher than the probability of the sensitive feature be-
ing active. Finally, we use the explicit form of this
optimal classifier to provide an analytical expression
for the fundamental tradeoff curve of accuracy versus
fairness. This curve is shown to depend on measure
of similarity between the target and sensitive features.

Our approach in answering Q1 and Q2 is math-
ematical in nature, but does not purport to provide
a complete answer to the probems of fairness! It
is motivated by statements such as that due to John
Rawls quoted above. Such an approach provides the
ability to make precise statements at a considerable
level of generality, and is comparable to the formal
analysis of problems (including fairness) in welfare
economics (Harsanyi, 1955; Sen, 2009). In the con-
text of this literature, our work follows the precept
of Sen (2009, Chapter 18) that mere identification of
“fully just social arrangements is neither necessary

nor sufficient.” We embrace Sen’s pragmatism by fo-
cussing on the quantifiable tradeoffs one might make
to approach (certain notions of) fairness. However,
we do not claim to derive the “right” tradeoffs, neither
in the choice of loss functions to be used, nor even
their relative weights in contrast to Rawls (1971, pg
371F) who not only ackowledges there will be tradeoffs
between overall social utility and fairness but tries to
argue what the “right” tradeoff is. See Appendix H
for further relations to the philosophical and economic
literature on fairness.
Formally, our main contributions C1—C3 are:
C1: wereduce two popular fairness measures (dis-
parate impact and mean difference) to cost-
sensitive risks (Lemmas 1, 2).

C2: we show that for cost-sensitive fairness mea-
sures, the optimal fairness-aware classifier
is an instance-dependent thresholding of the

class-probability function (Propositions 4, 6).

we quantify the intrinsic, method-
independent impact of the fairness re-
quirement on accuracy via a notion of
alignment between the target and sensitive
feature (Proposition 8).

Our results deal with the theoretical limits of what is
possible for any fairness-aware learning method (for
the class of fairness measures we consider), given ac-
cess to the theoretical population distribution. This
leaves some important questions unanswered, such as
how one can construct a classifier that is optimal for a
given dataset (rather than the theoretical population).
While we do not provide a complete answer to this
matter, we do provide a practical means of approxi-
mating the Bayes-optimal classifier. Specifically, the
form of the optimal fairness-aware classifiers (C2) lets
us derive a practically usable algorithm, wherein we
separately estimate class-probabilities for the target
and sensitive features, e.g. by logistic regression, and
combine them suitably (§5.2).

C3:

2. Background and notation

We fix notation and review background. Table 1 sum-
marises some symbols that we frequently use.

2.1. Standard learning from binary labels

Let X be a measurable instance space, e.g. character-
istics of an applicant for a loan. In standard learning
from binary labels, we have samples from a distri-
bution D over X x {0, 1}, with (X,Y) ~ D. Here,
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Y is some farget feature we would like to predict,
e.g. whether to grant a loan. Our goal is to output
a measurable randomised classifier' parametrised by
f:X — [0, 1] that distinguishes between positive
(Y = 1) and negative (Y = 0) instances. A randomised
classifier predicts any x € X to be positive with prob-
ability f(x); the quality of any such classifier is as-
sessed by a statistical risk?> R(-; D): [0,1]% — R,.
Often, this is some function of the false negative and
false positive rates

FNR(/:D)= B [1 - f(X)]
1
FPR(/:D) = E [/(X)]. v

viz. the class-conditional error probabilities when
classifying x as positive with probability f(x). In the
sequel, we will drop dependence of quantities on the
underlying distribution when it is clear from context;
e.g. we will write FNR(f) in place of FNR(f; D).

Remark 2.1: A randomised classifier parameterised
by f: X — [0, 1] should not be confused with two
related objects: a deterministic classifier g: X —
{0, 1}, and a class-probability estimator #: X —
[0,1]. The former produces deterministic (non-
random) classifications for each input. Conse-
quently, e.g., in contrast to Equation 1,

FNR(g; D) = X|€=1 [g(X) =0].

The latter emits the confidence that an instance has
positive label, as per P(Y = 1 | X = x). How-
ever, one typically uses this to make deterministic
classifications, e.g. by constructing the classifier
g(x) = [[h(x) > 0.5]. Thus, while A has the same
type as f, the resulting predictions and their evalu-
ation are different; e.g., in contrast to Equation 1,

FNR( D) = B [h(X) <0.5].

A canonical risk is the cost-sensitive risk, which for
cost parameter ¢ € (0, 1) and 7 = P(Y = 1) is

CS(f;c¢) = m-(1-c)-FNR(f)+(1—-m)-c-FPR(f). (2)

1. Randomised classifiers are commonly used in rectifying local
non-concavities in ROC curves (Fawcett, 20006).

2. Strictly, this is an abuse of terminology, as risks conventionally
refer to expected losses. In our context, this corresponds to
using functionals that only linearly combine the false positive
and negative rates, i.e. , cost-sensitive risks. Fortunately, these
are precisely the class of R(-) that we consider in the sequel.

When ¢ = x, this is a scaled version of the balanced
error, BER(f) = (FNR(f) + FPR(f))/2.

A Bayes-optimal randomised classifier for arisk is
any minimiser f* € Argmin R(f; D). For the cost-
sensitive risk with parameter ¢, the Bayes-optimal
classifier is f*(x) = [[n(x) > c]] + @ - [n(x) = <]
(Elkan, 2001), where n(x) = P(Y = 1 | X = x) is the
class-probability function, [E] = 1 if E is true, and
zero otherwise, and @ € [0, 1] is arbitrary. Conse-
quently, for the 0-1 loss corresponding to ¢ = 1/2, we
classify as deterministically positive those instances
whose label is on average more likely to be positive.

2.2. Fairness-aware learning

In fairness-aware learning, one modifies the standard
binary label learning problem in two ways. The sta-
tistical setup is modified by assuming that in addition
to the target feature Y, there is some binary sensitive
feature Y we would like to treat in a special way, e.g.
the race of an applicant. The classifier evaluation is
modified by assuming that we reward classifiers that
are “fair” in the treatment of Y.3 To make this goal
concrete, the literature has studied notions of perfect
and approximate fairness.

Perfect fairness. We consider two notions of per-
fect fairness, stated in terms of Y,Y, and classifier
prediction Y | X ~ Bern(f(X)). The first is de-
mographic parity (DP) (Calders and Verwer, 2010),
which requires the predictions to be independent of
the sensitive feature:

PY=1|Y=0)=P¥=1|Y=1). @3
The second is equality of opportunity (EO) (Hardt
et al., 2016), which requires the predictions to be
independent of the sensitive feature, but only for the
positive instances:

PY=1|Y=1LY=0)=P(Y=1|Y=1LY=1).
“4)
Other notions include equalised odds (Hardt et al.,
2016), and lack of disparate mistreatment (Zafar et al.,
2017). Demographic parity has received the most
study, but is known to have deficiencies (Dwork et al.,
2012; Hardt et al., 2016; Zafar et al., 2017).
Approximate fairness. We consider two notions
of approximate fairness, via fairness measures that
quantify the degree of fairness for a classifier. The

3. The sensitive feature may or may not be available during
training (see §5.1.1); even if not available, other correlated
features may induce discrimination (Pedreshi et al., 2008).
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Symbol Meaning Symbol Meaning Symbol  Meaning Symbol Meaning

X Instance D Distribution P(X, Y) f Randomised classifier CS Cost-sensitive risk
Y Target feature D One of {Dpp, Dro} n(x) PY=1|X=x) CShpal Balanced CS risk
\% Sensitive feature  Dpp Distribution P(X, Y) ipp(x) PY=1|X=x) DI Disparate impact
\% Prediction Do Distribution P(X,Y | Y = 1)  #go(x,y) P(Y=1|X=xY=y) MD Mean difference

Table 1: Glossary of commonly used symbols.

firstis the disparate impact (DI) factor (Feldmanet al.,
2015), which is the ratio of the probabilities appearing
in Equation 5,

DI(f)=PY=1|Y=0)/P¥=1|Y=1). (5

The second is the mean difference (MD) score
(Calders and Verwer, 2010),

MD(f)=PY =1]Y=0)-PY=1]|Y=1). (6

We refer the reader to Zliobaité (2017) for a survey of
other fairness measures. While some scenarios may
demand perfect fairness, having a strong degree of
approximate fairness may be acceptable in others; for
example, disparate impact has its roots in the 80% rule
of the U.S. Equal Employment Opportunity Commis-
sion (EEOC, 1979).
Remark 2.2: The DI factor takes values in the range
[0, 00], and the MD score in [—1, +1]. Demographic
parity is achieved when DI(f) = 1, or MD(f) = 0;
thus, for both measures, it is undesirable for the score
to be too small or too large.

It is often implicitly assumed that f is such that
DI(f) < 1, or MD(f) < 0, in which case a
large score is desirable. Alternately, one can work
with “symmetrised” versions of these measures, e.g.
DI°(f) = min(DI(f), DI(1 — f)). Maximising this
ensures that one cannot predict the sensitive feature
merely by flipping outputs. Formally, observe that
e.g. DI°(f) € [0, 1], and DI°(f) = 1 < DI(f) =
1, i.e., we have perfect fairness; see Appendix C.

3. Fairness-aware learning and risk
difference minimisation

We now formalise the fairness-aware learning prob-
lem by viewing fairness measures as statistical risks.
We assume the following statistical setup. Let ran-
dom variables (X,Y,Y) ~ Djy for some joint distri-
bution Dj,¢ over X x {0,1} x {0,1}, where X rep-
resents the instance, Y the target feature, and Y the
sensitive feature. Suppose D refers to the distribu-
tion P(X,Y), and D to a suitable distribution over

(X,Y); concretely, in the demographic parity setting
D = Dpp = P(X,Y), while in the equality of opportu-
nity setting D = Dgo = P(X,Y | Y = 1).

3.1. Existing fairness measures as risks

We begin with a simple observation: the DI and
MD fairness measures are transformations of suitable
false positive and negative rates, and thus are statisti-
cal risks. Specifically, for any randomised classifier#
f: X — [0,1] with predictions Y | X ~ Bern(f(X)),
we have FNR(f;Dpp) = P(Y = 0 | Y = 1) and
FPR(f; Dpp) = P(Y = 1 | Y = 0). Consequently, for
D = Dpp,

DI(f; D) = FPR(f; D)/(1 = FNR(f; D)) 7

MD(f; D) = FPR(f; D) + ENR(f; D) - 1. ™
Observe that one can equally choose D = Dgo so
as to yield approximate fairness measures for the
equality of opportunity setting; clearly, when e.g.
DI(f ;Dpo) = 1, we recover Equation 4. The no-
tion that fairness measures are risks on D is implicit
in prior surveys, e.g. (Zliobaité, 2017). By making
this notion explicit, we may now succinctly state the
fairness-aware learning problem.

3.2. Fairness-aware learning: general case

Informally, fairness-aware learning involves finding a
randomised classifier f: X — [0, 1] so that Y is well
predicted, but Y is not. Formally, suppose that we
measure how well f can predict Y and Y via two risks:
a performance measure Rperr(; D): R* — R, and
fairness measure Reyir(+; D): R* — R. For example,
we might pick Rperf to be a cost-sensitive risk, and Ry,
to be one of DI or MD. Then, we seek to minimise
the difference of two statistical risks, as below.

Problem 3.1 (Fairness-aware learning): For trade-
off 1 € R, minimise the fairness-aware objective

Rperf(f; D) -4 Rfair(f; D) 3

4. This is understood to mean a randomised classifier
parametrised by f.
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The tradeoff parameter A determines how we bal-
ance the competing goals of accuracy and fairness.
We do not constrain 4 > 0 for a subtle, but impor-
tant reason: as per Remark 2.2, for the DI and MD
scores, it is undesirable for the fairness measure to be
too small or too large. Equation 8§ effectively con-
siders a constrained version of the problem, where
Reair(f) € [70, 71], and converts it to Lagrangian form;
A corresponds to the difference in Lagrange multipli-
ers for the two bounds, which can be negative. In §4.2,
we will see that another interpretation for the DI and
MD scores is that we constrain their “symmetrised”
versions (per Remark 2.2) to be large.

Remark 3.1: In practical settings, one only has ac-
cess to finite samples from the joint distribution
Djn. By focussing on Equation 8, our analysis is
thus asymptotic. We emphasise that our motivating
questions Q1 and Q2 are nonetheless non-trivial:
even with access to the underlying distributions, it
is not obvious what the accuracy-fairness tradeoff
is, nor what the form of the optimal classifier is.
Further, we will show how to approximate the latter
given only finite samples (§5.2).

3.3. Fairness-aware learning: cost-sensitive case

The generality of Problem 3.2 has conceptual appeal,
but presents challenges if we are to proceed with our
intended analysis of Q1 and Q2. To make progress,
we assume both the performance and fairness mea-
sures are cost-sensitive risks (Equation 2).

Problem 3.2 (Cost-sensitive fairness-aware
learning): For tradeoff 4 € R, and cost param-
eters ¢,¢ € (0,1), minimise the fairness-aware
cost-sensitive risk?

Rpa(f:D,D) = CS(f;D,¢) = 4 - CS(f3D,¢). (9)

a. More precisely, this is Rga(f; D, D, ¢, &, A); we suppress
(c, ¢, Q) as their scope will be clear from context.

Using a cost-sensitive risk as performance measure
is not strongly limiting, as it can encompass more
complex performance measures with distribution-
dependent costs (Parambath et al., 2014; Narasimhan
et al., 2015). However, it would be disappointing if
this choice makes us unable to accommodate the pop-
ular DI and MD fairness measures. We now allay this
concern.

4. A cost-sensitive view of existing
fairness measures

The previous section cast the DI and MD measures
as statistical risks. We now show they may be further
related to cost-sensitive risks, implying that it suffices
to analyse the latter. In the following, recall that for
brevity we write e.g. FPR(f) in place of FPR(f; D).

4.1. Relating DI and MD to cost-sensitive risks

Underpinning our results is the balanced cost-
sensitive risk,

CSpa(fic) = (1 - c) - ENR(f) + ¢ - FPR(f).
(10)

When ¢ = 1/2, we get the balanced error. For general
¢, this is simply a scaled and re-parameterised version
of the standard cost-sensitive risk; it will however
prove more convenient in our analysis.

Our first result relates the disparate impact factor
(Equation 7) and balanced cost-sensitive risk.

Lemma 1 Pick any randomised classifier f. Then,
forany € (0,0), if k = 1= € (0, 1),

DI(f) 27 & CSpa(f;1 -«) = «.

Lemma 1 does not imply that disparate impact
equals a cost-sensitive risk; rather, it says that a
disparate impact constraint is equivalent to a cost-
sensitive constraint, i.e. their super-level sets are
equivalent. We shall shortly see that this is sufficient
to justify learning with a cost-sensitive risk.

‘We next show an analogous (in fact stronger) result
for the mean difference score (Equation 7).

Lemma 2 Pick any randomised classifier f. Then,

foranyt e (-1,1), ifk = 1% € (0, 1),
MD(f) =2 - CSpa (f31/2) = 1 (11
MD(f) =7 & CSpu (f;1/2) = «. (12)

Note that Equation 11 implies an equivalence of
risks, and not just super-level sets. Note also that
for the MD score, the corresponding balanced cost-
sensitive risk has a cost-parameter that does not de-
pend on 7. This proves beneficial for the purposes of
learning, as we shall see in §5.2.
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4.2. Implications for learning with DI and MD

Lemmas 1 and 2 establish the versatility of cost-
sensitive fairness measures: we can reduce learning
with the DI and MD scores to the cost-sensitive Prob-
lem 3.3 for a suitable choice of cost ¢.

Lemma 3 Pick any distributions D, D, and fairness
measure Rpi; € {DL,MD}. Pick any c,7 € (0,1).
Then, 31 e R, ¢ € (0, 1) with

rr}in CS(f; D, ¢): min(Reir(f; D), Reair(1 = f3 D)) = 7 =
H}in Cs(f’ D’ C) -4 CSbal(f; D’ C_‘)
(13)

The first objective in Equation 13 constrains that the
“symmetrised” fairness measure (in the sense of Re-
mark 2.2) is large; recall that maximising this quan-
tity ensures perfect fairness, and thus the objective is
sensible. The equivalence to the second objective is
a consequence of the Lagrangian principle (see Ap-
pendix E ), combined with Lemmas 1 and 2.

We emphasise that our focus on the cost-sensitive
version of the fairness-aware learning problem is ow-
ing to Lemma 3: it implies that by analysing this
special case, we encompass the use of the MD and
DI scores as fairness measures. Moving beyond cost-
sensitive risks is only beneficial if one is interested in
a more exotic fairness measure that is inexpressible as
such a risk.

Remark 4.1: One subtlety with Lemma 3 is that for
the DI, we have to tune both A and c: this is because
the cost in Lemma 1 depends on 7. For the MD,
however, we can set ¢ = 1/2.

Related work. Lemma 1 can be seen a special case
of a broader relationship between fractional perfor-
mance measures and “level-finder” functions (Param-
bath et al., 2014, Theorem 1), (Narasimhan et al.,
2015, Lemma 7). We are not however aware of
prior results relating the DI and MD scores to cost-
sensitive risks. The closest analogue is Feldman et al.
(2015), who related (for 7 = 0.8) the DI to the bal-
anced error BER via DI(f) < 0.8 <= BER(f) <
(0.4 + 0.1 - FNR(f)) . This bound depends on the dis-
tribution and classifier, while our bound on CSy,; uses
a constant «. Our result is thus simpler, and allows for
tractable analysis of optimal classifiers (see §5).

Remark 4.2: Although not our primary focus,
Lemma 1 also lets us address the problem of certify-
ing whether a dataset is free of disparate impact Feld-
man et al. (2015) (i.e. for fixed 7, every classifier f
satisfies DI(f) > 7). By Lemma 1, this is equivalent
to asking whether for every f, CSpa(f;1 — &) > «,
where « = 7/(1 + 7). See Appendix F and G.1.

5. Optimal fairness-aware classifiers

Having justified the broad applicability of the cost-
sensitive fairness-aware learning problem (Problem
3.3), we are in a position to examine its inherent trade-
offs. We begin by studying the question: what are the
theoretically (i.e. Bayes-) optimal randomised classi-
fiers, and how do they differ in the fairness-unaware
problem? Formally, fix some D corresponding to
P(X,Y), and pick D € {Dpp, Dgo}. Then, for costs
¢, ¢ € (0,1) and tradeoff 1 € R, we seek

J* € Argmin Rpa(f; D, D)
fefo1]x

for the fairness-aware risk of Equation 8. Such Bayes-
optimal classifiers represent the gold-standard for the
learning problem, and computing them is thus of the-
oretical import. Further, we will shortly see that their
explicit form suggests a simple practical algorithm.

Our results will be expressed in terms of three sets
of quantities: the base rates 1 = P(Y = 1), 7 =
P(Y = 1), the class-probability functions for the target
and sensitive feature under demographic parity and
equality of opportunity,

nx)=PY=1]|X=1x)

pp(x) =P(Y = 1] X = x)
Tro(x) =P(Y =1|X=xY = 1),

(14)

and the modified Heaviside (or step) function H,(z) =
[z > 0] + @ - [z = O] for parameter @ € [0, 1].

5.1. Computing the Bayes-optimal classifiers

Thus far, we have not seen any distinction between
the demographic parity and equality of opportunity
settings; however, in computing the Bayes-optimal
classifiers, a separate analysis is necessary.

5.1.1. DEMOGRAPHIC PARITY

We begin with the explicit form of the optimal solu-
tions under demographic parity, D = Dpp.
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Proposition 4 Pickanycostsc,c € (0,1),and 1 € R.
Then,

Argmin Rea(f; D, Dpp) = {H, © s(x) | @ € [0, 1]}
felo,1]%
(15)

for s*(x) = n(x) — ¢ = 4 - (7fpp(x) = ©).

Three comments are in order. First, as a sanity
check, when 4 = 0, the optimal f* comprises the
familiar Bayes-optimal classifiers for a cost-sensitive
risk which thresholds the class-probability n around
cvia f*(x) = [n(x) > c] + a - [n(x) = c]. Here, a is
arbitrary, since for instances at the threshold boundary
n(x) = c, the risk is a constant and so any prediction
is optimal.

Second, for 4 # 0, the optimal f* modifies the
A = 0 solution with an instance dependent thresh-
old correction, which depends on 7j(x). The correc-
tion increases the standard threshold of ¢ whenever
7(x) > ¢; intuitively, when we are confident in the
sensitive feature being active for an instance, we are
more conservative in classifying the instance as posi-
tive for the target feature.

Third, the optimal classifier above is in fact deter-
ministic, except when n(x) = ¢ + A1 - (7(x) = ¢); in
general, for a given A, we expect this to only hold for
few orno x € X.

In the above, we made no explicit assumption as
to whether or not the sensitive feature is provided as
input to the classifier. If we assume this feature is
in fact available, the form of the optimal classifier
simplifies dramatically.

Corollary 5 Pick any costs ¢,C € EO, 1), a;zd A€
R. Suppose D is over (X,Y), where X = (X,Y), and
n(,y)=P(Y =1|X=x,Y =¥). Then,

Argmin  Rpa(f; D, Dpp) = {Hq 0 s* | @ € [0,1]}
fe[O,l]xx{O'”
s'(x,0) =n(x,0)—c+A-¢
s, D) =n(x,1)—c—A-(1=-2¢).

Here, we simply apply a constant threshold to the
class-probabilities for each value of the sensitive fea-
ture. This is a simple consequence of Proposition 4,
as we can simply consider one of the features of X to
be perfectly predictive of the sensitive feature, which
makes 7pp(x, y) € {0, 1}.

5.1.2. EQUALITY OF OPPORTUNITY

We next turn to the optimal classifiers for the equality
of opportunity setting, D = Dgo. The result here

is similar to Proposition 4, but with a multiplicative
threshold correction. It is surprising that a simple
change in fairness setting results in such a non-trivial
modification of optimal solutions.

Proposition 6 Pickanycostsc, ¢ € (0,1), and A € R.
Then,

Argmin Rea(f; D, Deo) = {He 0 s™ | @ € [0, 1]}
felo11x

S0 = (1= 277 ol 1) = ) - n) - .
(16)

When the sensitive feature is available, an analo-
gous result to the previous section holds.

Corollary 7 Pick any costs ¢,¢ € [0,1], and A € R.
Then,

Argmin R(f; D, Dgo) = {Ha os" | a €0, l]}
fE[O’I]DCx(O,l}

s*(x,0) = (1 +A-77! -5) -1(x,0) - ¢
s*(x, 1) = (l -7t —E)) -n(x, 1) —c,
wheren(x,5)=P(Y =1 |X=xY =)

Related work. Computing the Bayes-optimal clas-
sifiers as above is not without precedent: Hardt et al.
(2016); Corbett-Davies et al. (2017) considered the
same question, but in the case of exact fairness mea-
sures. We are not aware of prior work on computing
the optimal classifiers for approximate fairness mea-
sures. While our results have a similar flavour to
the exact fairness case, explicating them is important
to understand the full tradeoff between accuracy and
fairness (§6.1), and also suggests a simple algorithm
as we now see.

5.2. A plugin approach to the fairness problem

The form of the Bayes-optimal classifiers above is not
only of theoretical interest: they enable the derivation
of practical classifiers suitable which are suitable for
learning from finite samples, and rely on nothing more
than logistic regression. As a warm up, recall that for
standard cost-sensitive learning (i.e. 4 = 0), the opti-
mal classifier f*(x) = [n(x) > c]+a-[n(x) = c] sug-
gests the following plugin approach: estimate 7, e.g.
by logistic regression, and then threshold the resulting
predictions around c. This approach is intuitive, and
provably consistent Narasimhan et al. (2014).
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For the cost-sensitive fairness problem, the Bayes-
optimal classifiers similarly rely on thresholding a
suitable combination of the class-probabilities 7 and
71 € {fipp, feo}. Thus, we can analogously construct
a plugin classifier by estimating 7, 77 separately, e.g.
by logistic regression, and then combining them per
Equations 15, 16. When the sensitive feature is avail-
able, we only need a single model for 1(x, ¥), which is
thresholded separately for each sensitive feature value
(Equation 16).

Algorithm 1 summarises this procedure for the de-
mographic parity setting. Appendix G.2 presents
some illustrative experiments for this algorithm.

Algorithm 1 Plugin approach to fairness-aware learn-
ing, demographic parity setting.

Input: Samples {(x;, y;, )71-)31.]\:’ , from distribution
Djm; cost parameters c, C; tradeoft parameter A
Output: Fairness-aware randomised classifier
f: X —[0,1]

Estimate n: X — [0, 1] via logistic regression on
Z(xi’ yl)sl]\zll

Estimate fjpp: X — [0, 1] via logistic regression
on Z(-xh )_}I)Sll\zll

Compute s: x > 7(x) — ¢ — A - (fipp(x) — ¢) from
above estimates

Return f: x — H,(s(x)) for any a € [0, 1]

5.3. Strengths and weaknesses of the plugin
approach

The plugin approach has several salient features:

(a) it reduces the problem to two calls of a logis-
tic regression (or other class-probability es-
timation) solver, and avoids the need for any
bespoke algorithms;

(b) as a consequence of (a), it involves a con-
vex optimisation, unlike some existing ap-
proaches to the problem (Kamishima et al.,

2012);

tuning of the tradeoff parameter A does not re-
quire any retraining: we can simply learn n, 77
once, and appropriately change how they are
thresholded. The same holds true for tuning
the cost parameter ¢ when learning with the
DI score.

©

Despite these appealing properties, we caution that
in practice, the result of Algorithm 1 may be sub-
optimal. This is because our estimates of the class-
probabilities may be imperfect, owing to at least two
distinct possible sources of error:

(a) there are limits on how accurately we can esti-
mate these probabilities from a finite sample;

(b) the true class-probabilities may not be ex-
pressible in our chosen class of models.

These are manifestations of the more general issues
of estimation and approximation error (Devroye et al.,
1996) that plague any machine learning algorithm,
even for standard binary classification. There are
principled means of at least partially mitigating both
issues, for example by employing suitable regulari-
sation to prevent overfitting to a finite sample, and
employing nonparameteric estimators to allow mod-
elling of arbitrarily complex functions. Quantifying
the degradation resulting from using imperfect prob-
abilities is nonetheless an important but non-trivial
task; indeed, until the recent work of Woodworth et al.
(2017), we are not aware of any prior fairness-aware
algorithm with finite sample guarantees.

Related work. The idea of correcting outputs to
ensure fairness goes back to at least Calders and Ver-
wer (2010), who proposed to modify the output of
naive Bayes so as to minimise the MD score. How-
ever, their approach does not have any optimality guar-
antees. More recently, Hardt et al. (2016) proposed
to post-process the outputs of a classifier trained on
the original problem, and argued for its optimality.
They however worked in the exact rather than ap-
proximate fairness setting, and did not consider sep-
arate training procedures for predicting the target and
sensitive features. Woodworth et al. (2017) estab-
lished limits on such post-processing; extending this
to approximate fairness measures would be of interest.
Zafar et al. (2016, 2017) proposed to approximately
solve Equation 9 by picking convex surrogate losses
6,€:{0,1} x R — R, and find

s* € Argmin B
s: XoR XY)~D
- B [Cy- (Y, s(X)]
XY)~D

[Cy - (Y, s(X))] -
7)

for C; = 1 — ¢, Cy = c. For nonlinear ¢, this objective
will be non-convex in s. Similar problems plague re-
lated approaches based on regularisation (Kamishima
et al., 2012; Fukuchi et al., 2013).
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Remark 5.1: We emphasise a conceptual difference
between our plugin approach, and the surrogate ap-
proach of Equation 17. The latter aims to directly
design a differentiable approximation to Equation
9, but it is non-trivial task for the resulting objec-
tive to be convex. By contrast, the plugin approach
side-steps direct minimisation of this Equation 9,
and instead follows a procedure that asymptotically
results in the same theoretical optimal solution.

6. The accuracy-fairness tradeoff

As our final contribution, we now study the trade-
off between performance on our base problem and
fairness, and show it is quantifiable by a measure of
alignment of the target and sensitive variables.

6.1. The fairness frontier

Our definition of the cost-sensitive fairness-aware
learning problem (Problem 3.3) was in terms of a
linear tradeoff between the performance and fairness
measures. To quantify the tradeoff imposed by a fair-
ness constraint, we will study the following explicitly
constrained problem: for 7 € [0, 1], let

fi € Argmin CS(f;D,c): CS(f;D,¢) >
fiX—[0.1]
(18)

19)

Equations 9 and 18 are related by the Lagrangian
principle (see Appendix E ). The function F: R — R,
represents the fairness frontier: for a given lower
bound on fairness, it measures the best excess risk over
the solution without a fairness constraint. Evidently,
F(-) is non-decreasing since the constraints are nested
as T increases; i.e., demanding more fairness can never
improve performance.

F(t) = CS(f;; D, c) - CS(fy; D, c).

Remark 6.1: The tradeoff measured here is one in-
herent to the problem, rather than one owing to the
specific technique one uses. By computing F(-), we
determine the fundamental limits of what accuracy
is achievable by any classifier, no matter how sophis-
ticated it may be. Intuitively, this tradeoff captures
the level of “contention” between utility and fairness
in the distribution.

6.2. The frontier and probability alignment

The behaviour of F(-) summarises the tradeoff be-
tween performance and fairness: the steeper its

growth, the more we have to sacrifice per unit in-
crease in fairness. Can we relate this behaviour to
properties of the underlying distributions D, D? Note
that since cost-sensitive risks are linear in the clas-
sifier, F(-) can be computed empirically via a linear
program (see Appendix D); however, we seek a more
abstract understanding of its behaviour. By analogy,
we seek something akin to the notion of compatibil-
ity functions in semi-supervised learning (Balcan and
Blum, 2010), wherein one can guarantee that unla-
belled data is useful when there is an alignment of the
marginal data distribution with one’s function class.

Intuitively, we expect that the tradeoff between fair-
ness and performance depends on how “similar” the
target and sensitive features are: in the extreme case
where they are one and the same, there is an in-
escapable linear penalty, while if they are completely
dissimilar, we expect the penalty to be milder. This
idea can be formalised via a notion of disalignment
between the features. (For concreteness, the following
is for demographic parity.)

Proposition 8  Pick any cost parameters c,¢ €
(0,1). For any v € [0,1], there is some A €
R and Bayes-optimal randomised classifier f* €

Argmin Ry (f; D, Dpp) so that the frontier is
felo,11*

F(t) = E[(c =n(X)) - (/") = () > D] -

If further this [* is deterministic i.e. Im(f*) C {0, 1},
the frontier is

F(r) = IE [Ba(m(X), 7pp(X))]

Ba(n,7pp) = |7 — ¢l

[(7—c)-(m—c—A-(ppP —¢)) <O].
(21)

(20)

Unpacking the above, Equation 21 gives a concrete
notion of disalignment between 1 and 77pp —how much
they disagree around the respective thresholds ¢ and
¢ — and Equation 20 shows that when this disalign-
ment is high, the fairness constraint has less of an
effect. The requirement that f* be deterministic may
be dropped, at the expense of an additional term in
Equation 20 that depends on the alignment of the
non-deterministic component and 7. Appendix G.3
presents some illustrations of this frontier on synthetic
datasets.

Our prior analysis of the cost-sensitive fairness
problem is crucial to establishing Proposition 8: we
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exploit the explicit form of Bayes-optimal classi-
fiers to Problem 3.3, and existing results about cost-
sensitive risks. In particular, we use the fact that the
frontier (Equation 19) is simply the cost-sensitive re-
gret (or excess risk) of the classifier f;. This quantity
can be related to a Bregman divergence (Reid and
Williamson, 2009), and combined with our explicit
form for the Bayes-optimal classifier, we obtain our
Equation 21.

Relation to existing work. That there is in general
atradeoff between accuracy and fairness has been long
recognized (Kamiran et al., 2010). Zliobaité (2015)
has considered the subtleties of empirically determin-
ing trade-offs between fairness and accuracy, but did
not provide a theoretical analysis as above. Some
work has empirically studied the impact of varying 1
on problems akin to Equation 18 (e.g. (Zafar et al.,
2016)); however, we are not aware of a result analo-
gous to Proposition 8 that analytically quantifies the
performance-fairness tradeoff.

7. Conclusion and future work

We studied the tradeoffs inherent (i.e. not specific
to any algorithm) in the problem of learning with
a fairness constraint, showing that for cost-sensitive
approximate fairness measures, the optimal classifier
is an instance-dependent thresholding of the class-
probability function, and quantifying the degradation
in performance by a measure of alignment of the target
and sensitive variable. We used our analysis to derive
a simple plugin approach for the fairness problem.

7.1. An intuitive summary of our results

In order to grasp our main results at a more intuitive
level, let us consider their implications for a concrete
task of designing a classifier to determine whether
an applicant should be given a loan (the target fea-
ture), while not discriminating based on gender (the
sensitive feature).

C1 says that if we measure fairness using either the
DI or MD score, then this is equivalent to measuring
a particular cost-sensitive error. This simply means
that we use our classifier to predict each applicant’s
gender based on the available features, and look at
the error rates amongst both males and females; by
summing a suitably weighted combination of these
error rates, we get a quantity that is reflective of the
underlying fairness measure.

10

C2 says that, given access to the entire popula-
tion of males and females, the classifier which attains
the best tradeoff between accuracy and fairness has a
simple form: one computes for a given applicant the
probability of them repaying the loan, and determines
if this probability is larger than a threshold based on
the probability of them being male or female. To
understand this intuitively, assume that women are in-
herently more likely to repay a loan than men, and that
the sensitive feature is available as an input. Then, for
a given choice of accuracy-fairness tradeoff, the opti-
mal classifier aims to make it easier for men and harder
for women to be granted a loan, so as to make the pro-
portions of men and women amongst the accepted
and rejected pool more commensurate; and clearly, it
does so at some expense in accuracy of predicting the
probability of repayment.

C3 says that if gender perfectly coincided with loan
repayment (e.g. women were guaranteed to repay
loans, and men guaranteed to default), then we can
either have maximum accuracy but no fairness, or
maximum fairness but random-level accuracy. At the
other extreme, if gender were perfectly independent
of loan repayment (e.g. both women and men were
equally likely to repay loans), then we can have maxi-
mum accuracy and fairness simultaneously. Finally, if
gender partially correlates with loan repayment, then
the tradeoff between accuracy and fairness is deter-
mined by the strength of this correlation, and falls in
between the previous two extremes.

The ability to theoretically compute the tradeoffs
between fairness and utility is perhaps the most inter-
esting aspect of our technical results. We stress that
the tradeoft is intrinsic to the underlying data (in fact
it is intrinisc to the underlying distributions that gen-
erated that data). That is, any fairness or unfairness, is
aproperty of the data, not of any particular technique.
This raises interesting philosophical issues, which are
briefly touched upon in Appendix H. The tradeofts
we can theoretically compute precisely quantify what
price one has to pay (in utility) in order to achieve a
desired degree of fairness: in other words, we have
computed the cost of fairness.

7.2. Future work

There are several possible directions for future work:
we believe it valuable to study Bayes-optimal scorers
for ranking measures such as AUC; establish con-
sistency and finite-sample guarantees of the plugin
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estimators of §5; and extend our analysis to the case
of multi-category sensitive features.
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