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Abstract
We study the structure learning problem for H-colorings, an important class of Markov random
fields that capture key combinatorial structures on graphs, including proper colorings and indepen-
dent sets, as well as spin systems from statistical physics. The learning problem is as follows: for
a fixed (and known) constraint graph H with q colors and an unknown graph G = (V,E) with n
vertices, given uniformly random H-colorings of G, how many samples are required to learn the
edges of the unknown graph G? We give a characterization of H for which the problem is identifi-
able for every G, i.e., we can learn G with an infinite number of samples. We also show that there
are identifiable constraint graphs for which one cannot hope to learn every graph G efficiently.

We focus particular attention on the case of proper vertex q-colorings of graphs of maximum
degree d where intriguing connections to statistical physics phase transitions appear. We prove that
in the tree uniqueness region (i.e., when q > d) the problem is identifiable and we can learn G
in poly(d, q) × O(n2 log n) time. In contrast for soft-constraint systems, such as the Ising model,
the best possible running time is exponential in d. In the tree non-uniqueness region (i.e., when
q ≤ d) we prove that the problem is not identifiable and thus G cannot be learned. Moreover,
when q < d −

√
d + Θ(1) we prove that even learning an equivalent graph (any graph with the

same set of H-colorings) is computationally hard—sample complexity is exponential in n in the
worst case. We further explore the connection between the efficiency/hardness of the structure
learning problem and the uniqueness/non-uniqueness phase transition for general H-colorings and
prove that under a well-known condition in statistical physics, known as the Dobrushin uniqueness
condition, we can learn G in poly(d, q)×O(n2 log n) time.
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1. Introduction

Structure learning is a general framework for supervised learning where, instead of learning labels
or real numbers as in classification or regression, the task is to learn a more complex structure
such as a graph. A myriad of fundamental learning problems can be studied in this framework.
Notably, structure learning for Markov random fields (undirected graphical models), where the
goal is to recover the underlying graph from random samples, has found important applications
in diverse fields, including the study of phylogeny [29], gene expression [35], protein interactions
[38], neuroscience [42], image processing [40] and sociology [20].
∗ Research supported in part by NSF grants CCF-1617306 and CCF-1563838.
† Research supported in part by NSF grant CCF-1318374.
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STRUCTURE LEARNING OF H -COLORINGS

Our goal in this paper is to understand when is structure learning for Markov random fields
possible in polynomial time. We mostly focus on the task of exact recovery, where a learning
algorithm is said to succeed only when it outputs exactly the hidden graph. In applications, exact
recovery of graphical models is often of interest since the true graph structure contains valuable
information about the dependencies in the model. Consequently, it has been very well-studied; see,
e.g., [12, 14, 46, 13, 33, 2, 30, 39, 5, 7, 3, 47, 26, 32]. While the typical setting in these works are
soft-constraint models, our focus here are models with hard constraints. Specifically, we consider
the structure learning problem and the closely related question of statistical identifiability in the
general setting of H-colorings, an important class of Markov random fields that include all hard-
constraint models and capture key combinatorial structures on graphs, including proper colorings
and independent sets.

Given an undirected, connected constraint graph H = (V (H), E(H)), with vertices V (H) =
{1, . . . , q} referred to as colors (or spins), an H-coloring of a graph G = (V,E) is an assignment
of colors {1, . . . , q} to the vertices of G such that adjacent vertices of G receive adjacent colors
in H . That is, an H-coloring σ is a mapping σ : V → V (H) such that if {v, w} ∈ E, then
{σ(v), σ(w)} ∈ E(H). If such an assignment is possible we say that G is H-colorable. The
constraint graph H is allowed to have self-loops, but not parallel edges, and every {i, j} such that
{i, j} 6∈ E(H) is called a hard constraint.

When, for example, H is the complete graph on q vertices with no self-loops, denoted Kq,
neighboring vertices of G must be assigned different colors, and thus the proper q-colorings of G
are precisely itsH-colorings. If, on the other hand,H is the graph with two vertices V (H) = {0, 1}
and two edges E(H) = {{0, 0}, {0, 1}}, then the subset of vertices assigned color 1 in any H-
coloring of G form an independent set. Hence, in this case, there is one-to-one correspondence
between the independent sets and the H-colorings of G. Spin systems without hard constraints, i.e.,
soft-constraint systems, correspond to the constraint graph with all possible edges; that is, H = K+

q

which is the complete graph Kq with a self-loop at every vertex. In this case, all q|V | labelings of G
are valid H-colorings.

We consider structure learning and statistical identifiability for H-colorings with at least one
hard constraint; that is, H 6= K+

q . (Note that the missing edge could be a self-loop.) H-colorings
are well-studied in several other contexts. For the decision problem (for a fixed H is a graph H-
colorable?), a dichotomy result [27, 28, 10, 43] has been established characterizing for which H the
problem is either in P or is NP-complete. The corresponding dichotomy conjecture for the directed
case (directed graph homomorphisms) has also received considerable attention [22]; see also the
recent works [11, 49] and the references therein. The complexity of the exact counting version
of the problem was characterized by Dyer and Greenhill [17], and the complexity of approximate
counting/sampling was studied in [25, 18, 23].

For an H-colorable graph G, let ΩH
G be the set of all possible H-colorings of G and let πHG

denote the uniform measure over ΩH
G . (Typically the constraint graph H will be fixed and thus we

will drop the dependence on H in our notation.) Some of our results extend to the more general
setting of a weighted constraint graph H and a weighted graph G, where πHG is the corresponding
Gibbs distribution; see Appendix E for a precise definition.

For statistical identifiability our goal is to characterize the cases when every graph is learnable
with an infinite number of samples. For structure learning our goal is to efficiently learn the graphG
from samples drawn independently from πG. More formally, let H be a fixed constraint graph and
let G be a family of H-colorable graphs. Suppose that we are given L samples σ(1), σ(2), . . . , σ(L)
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STRUCTURE LEARNING OF H -COLORINGS

drawn independently from the distribution πHG whereG ∈ G. A structure learning algorithm for the
constraint graph H and the graph family G takes as input the sample sequence σ(1), σ(2), . . . , σ(L)

and outputs an estimator Ĝ ∈ G such that Pr[G = Ĝ] ≥ 1 − ε where ε > 0 is a prescribed error
(failure probability).

As mentioned earlier, structure learning has been well-studied for soft-constraint models where
H = K+

q . In the context of the Ising model, the most well-known and widely studied soft-constraint
system, for an unknown graph G with n vertices, maximum degree d and maximum interaction
strength β (which corresponds to the inverse temperature in the homogenous model), Bresler [3]
presented an algorithm to learn G in O(n2 log n) × exp(exp(O(βd2))) time. A different algo-
rithm was provided by Vuffray et al. [47] with running time O(n4 log n)× exp(O(βd)). Recently,
Bresler’s algorithm was extended to arbitrary Markov random fields by Hamilton et al. [26], and
a new approach was presented by Klivans and Meka [32] which achieves nearly-optimal running
time of O(n2 log n) × exp(O(βd)). Both of these general results [26, 32] are for the case of soft-
constraint models and do not apply to the setting of hard-constraint systems. We shall see that,
while the algorithm in [32] achieves (optimal) single exponential dependence on d for general soft-
constraint systems, the structure learning problem for hard-constraint systems is quite different.
Indeed, some hard-constraint systems are not statistically identifiable (and thus the unknown graph
G cannot be learned); others allow very efficient structure learning algorithms with poly(n, d, q)
running time; while in others any structure learning algorithm requires exponentially (in n) many
samples.

For hard-constraint systems, the structure learning problem was previously studied by Bresler,
Gamarnik, and Shah [6] for independent sets (more generally, for the hard-core model where the
independent sets are weighted by their size and a model parameter λ > 0). They achieve nearly-
optimal running time of O(n2 log n) × exp(O(dλ)). For our positive results we generalize the
structure learning algorithm in [6].

Finally, we remark that while our results aim to learn the underlying graph G exactly (i.e., exact
recovery), in some cases, we also consider the problem of learning an equivalent graph G′ such that
πG = πG′ (equivalent-structure learning). The corresponding approximation problem of finding a
graph G′ such that πG′ is close to πG in some notion of distance, such as total variation distance
or Kullback-Leibler divergence (see, e.g., [1, 4]), is apparently much simpler for hard-constraint
systems; see Appendix D.

1.1. Results

We first address the statistical identifiability problem for general H-colorings.

Definition 1 A constraint graphH is said to be identifiable with respect to a family ofH-colorable
graphs G if for any two distinct graphs G1, G2 ∈ G we have πG1 6= πG2 (or equivalently ΩG1 6=
ΩG2). In particular, when G is the set of all finite H-colorable graphs we say that H is identifiable.

To characterize identifiability we introduce a supergraphGij ofH . This supergraph will not be used
as a constraint graph, but rather we will consider the H-colorings of Gij in our characterization
theorem. Consider an edge {i, j} ∈ E(H). We construct Gij by starting from H and duplicating
the colors i and j. These new copies, denoted i′ and j′, have the same neighbors as the original
colors i and j, respectively, except for the one edge {i′, j′} which is not included; see Figure 1 for
an illustration of this supergraph and Definition 6 for a formal definition.
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For a constraint graph H we say that a pair of colors i, j ∈ V (H) are compatible (resp., in-
compatible) if {i, j} ∈ E(H) (resp., {i, j} 6∈ E(H)). Also, if σ is an H-coloring of a graph
G = (V,E), we use σ(v) to denote the color of v ∈ V in σ. Our characterization theorem considers
whether in every H-coloring of Gij the new vertices i′, j′ receive compatible colors.

Theorem 2 Let H 6= K+
q be an arbitrary constraint graph. If H has at least one self-loop, then

H is identifiable. Otherwise, H is identifiable if and only if for each {i, j} ∈ E(H) there exists an
H-coloring σ of Gij such that σ(i′) and σ(j′) are incompatible colors in H .

The intuition for the role of the graphGij in our characterization theorem is that if we added the edge
{i′, j′} to Gij to form the graph G′ij = Gij ∪ {i′, j′}, then in every H-coloring of G′ij the vertices
i′, j′ receive compatible colors. If the same property holds for Gij , i.e., in every H-coloring of
Gij the vertices i′, j′ receive compatible colors, then the edge {i′, j′} plays no role and the pair of
graphs Gij and G′ij have the same set of H-colorings. That is, Gij and G′ij are indistinguishable,
and so H is not identifiable.

Let G(n, d) be the family of n-vertex graphs of maximum degree at most d. Our next result
shows that for some identifiable (with respect to G(n, d)) constraint graphs, one cannot hope to
learn the underlying graph G efficiently. We remark that this is not the case for soft-constraint
models, where one can always learn G in time O(n2 log n)× exp(O(dβ)) [32].

Theorem 3 There exists an identifiable constraint graph H and a constant c > 0 such that, for
all n ≥ 8, any structure learning algorithm for H and the graph family G(n, 7) that succeeds with
probability at least exp(−cn) requires at least exp(cn) samples.

While this theorem shows that there is no efficient learning algorithm for all identifiable models, for
some relevant models structure learning can be done efficiently.

We focus first on the case of proper q-colorings where H = Kq. In general, the colorings
problem is not identifiable. However, if we consider identifiability with respect to the graph family
G(n, d) we get a richer picture. We prove that when q > d the q-colorings problem is identifiable,
whereas when q ≤ d it is not. This phase transition for identifiability/non-identifiability at q = d
is quite intriguing since it coincides with the statistical physics uniqueness/non-uniqueness phase
transition of the Gibbs distribution on infinite d-regular trees.

Uniqueness on an infinite d-regular tree T may be defined as follows. Let T` be a finite d-
regular tree of height ` rooted at vertex r and consider the uniform measure µ` over the proper
q-colorings of T`. We say that the Gibbs measure on T is unique if, as ` → ∞, the configuration
in the leaves of T` has no influence on the color of r. Formally, the Gibbs measure on T is unique
iff for every color c ∈ {1, . . . , q} and every configuration τ on the leaves of T`, we have µ`(r =
c|τ) → 1/q as ` → ∞. That is, the conditional distribution at the root given τ is the uniform
measure over {1, . . . , q} as `→∞. In [31, 8] it was shown that there is a unique Gibbs measure iff
q > d. The uniqueness/non-uniqueness phase transition on the infinite d-regular tree is known to be
closely connected to the efficiency/hardness of other fundamental computational problems, such as
sampling and counting; see, e.g., [48, 44, 45, 24, 34].

In the identifiable region q > d we present an efficient structure learning algorithm with
O(n2 log n) × poly(d, q) running time. When q ≤ d, where we cannot hope to learn the hid-
den graph G since there are pairs of graphs with the same set of H-colorings, we may be interested
in a learning algorithm that outputs a graph G′ that is equivalent to the unknown graph G, in the
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sense that ΩG′ = ΩG. We say that an algorithm is an equivalent-structure learning algorithm for a
fixed constraint graph H and a graph family G if for every G ∈ G, with probability at least 1 − ε,
the algorithm outputs G′ ∈ G such that ΩG = ΩG′ .

In the q-coloring setting, it turns out that when q ≤ d−
√
d+Θ(1) there is a family of exponen-

tially many n-vertex graphs with different sets of q-colorings that only differ on an exponentially
small (in n) fraction of their q-colorings. Consequently, any equivalent-structure learning algorithm
requires exponential many samples to distinguish among these graphs.

Our results for statistical identifiability, structure learning and equivalent-structure learning for
proper q-colorings are stated in the following theorem.

Theorem 4 Consider the q-colorings problem H = Kq. The following hold for all d.

1. Efficient learning for q > d: For all q > d, n ≥ 1 and any G ∈ G(n, d), there is a structure
learning algorithm that given L = O(qd3 log(n

2

ε )) independent samples from πG outputs G
with probability at least 1− ε and has running time O(Ln2).

2. Non-identifiability for q ≤ d: For all q ≤ d and n ≥ q + 2 there exist q-colorable graphs
G1, G2 ∈ G(n, d) such that G1 6= G2 and πG1 = πG2 .

3. Lower bound for q < d −
√
d + Θ(1): For all q < d −

√
d + Θ(1) there exists a constant

c > 0 such that any equivalent-structure learning algorithm for the family of graphs G(n, d)
that succeeds with probability at least exp(−cn) requires at least exp(cn) samples, provided
n is sufficiently large.

As mentioned earlier, the phase transition for identifiability/non-identifiability at q = d coincides
with the statistical physics uniqueness/non-uniqueness phase transition. The lower bound when
q < d−

√
d+Θ(1) is also quite curious since it coincides exactly with the threshold for polynomial-

time/NP-completeness for the decision problem [21, 37]. In fact, the graph used in the proof of
Part 3 of Theorem 4 is inspired by the graph used in the NP-completeness proof in [21] and the
graph theoretic result in [37].

Since our results for the structure learning problem in the setting of q-colorings suggest an inti-
mate connection between the efficiency/hardness of the learning problem and the uniqueness/non-
uniqueness phase transition of the Gibbs distribution, we further explore this connection for general
H-colorings. A sufficient condition for uniqueness on general graphs is the Dobrushin uniqueness
condition [16], which is a standard tool in statistical physics for establishing uniqueness of the Gibbs
distribution.

Dobrushin’s condition considers the so-called influence matrixRwhere the entryRvw measures
the worst-case influence of vertex w on v. In particular, consider all pairs of color assignments τ, τw
that differ only at vertex w. Rvw is the maximum (over these pairs τ, τw) of the difference in total
variation distance of the marginal distribution at v conditional on the color assignment τ(V \ v)
versus τw(V \ v). Observe that Rvw = 0 for non-adjacent pairs v, w. The Dobrushin uniqueness
condition holds if the maximum row sum in R is strictly less than 1, so that the total influence on a
vertex of its neighborhood is less than 1; see Definition 16 for a precise definition.

We prove that if the Dobrushin uniqueness condition holds, then we can learn the underlying
n-vertex graph in poly(n, q) time.

Theorem 5 Let H 6= K+
q be an arbitrary constraint graph. Suppose G is such that πG satisfies

the Dobrushin uniqueness condition. Then, there is a structure learning algorithm that given L=
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Figure 1: Two constraint graphs H and H ′ with corresponding supergraphs G12 and G′12.

O(q2 log(n
2

ε )) independent samples from πG outputs the graph G with probability at least 1 − ε
and has running time O(Ln2).

The above theorem provides an efficient structure learning algorithm under a fairly strong model as-
sumption. For soft-constraint systems, under a similar but weaker (i.e., easier to satisfy) condition,
Bresler, Mossel and Sly [5] give a structure learning algorithm with running time exponential in the
maximum degree d of the graph G. We provide a structure learning algorithm for hard-constraint
systems with a similar running time that works under an even weaker assumption. Our algorithm
works for permissive systems, which are a class of hard-constraint models widely studied in statis-
tical physics; see, e.g., [19, 36, 15]. The precise definition, as well as the running time and sample
complexity of our algorithm, are provided in Appendix E.3.

The rest of the paper is organized as follows. In Section 2 we prove our characterization theo-
rem (Theorem 2) and our learning lower bound for identifiable models (Theorem 3). In Section 3,
we prove our results for colorings (Theorem 4). In particular, in Section 3.1 we introduce a general
structure learning algorithm STRUCTLEARN-H which will be the basis of all our algorithmic result.
Our poly(n, d, q)-time algorithm under the Dobrushin uniqueness condition (Theorem 5) is estab-
lished in Section 4. In Appendix D we consider the approximation problem of learning a graph G
such that πG is close in total variation distance to the true distribution. Finally, the case of weighted
H and G is considered in Appendix E.

2. Identifiability

As discussed in the introduction, given a constraint graph H , it is possible that πG1 = πG2 for two
distinct H-colorable graphs G1 and G2; i.e., the structure learning problem is not identifiable. In
this section we prove Theorem 2 from the introduction that characterizes the identifiable constraint
graphs.

Let G be a family of H-colorable graphs. Recall that a constraint graph H is identifiable with
respect to G if for any two distinct graphs G1, G2 ∈ G we have πG1 6= πG2 or equivalently ΩG1 6=
ΩG2 . In particular, when G is the set of all finite H-colorable graphs we say that H is identifiable;
see Definition 1.

To characterize identifiability of H-colorings we previously introduced the supergraph Gij of
H obtained by duplicating the colors i and j. The new copies of i and j, denoted i′ and j′, have
the same neighbors as i and j, respectively, except for the one edge {i′, j′} that is not present in
Gij—see Figure 1 for examples of the graph Gij . We provide next the formal definition of Gij .
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Figure 2: (a) The constraint graph F ; each thick edge corresponds to 32 edges, one incident to
each vertex of I32. (b) The graph Gm showing the edges in Ei,i+1 and the connections between the
vertices a1, a

′
1, b1, c1.

Definition 6 Let H = (V (H), E(H)) be an arbitrary constraint graph with no self-loops. For
each {i, j} ∈ E(H), we define the graph Gij = (V (Gij), E(Gij)) as follows:

1. V (Gij) = V (H) ∪ {i′, j′} where i′ and j′ are two new colors;

2. If {a, b} ∈ E(H), then the edge {a, b} is also in E(Gij);

3. For each k ∈ V (Gij) \ {i′, j′}, the edge {i′, k} is in Gij if and only if the edge {i, k} is in H ,
and similarly {j′, k} ∈ E(Gij) if and only if {j, k} ∈ E(H);

Our characterization of identifiability, i.e., Theorem 2 from the introduction, is established by
the next two lemmas. Lemma 7 deals with the case of constraint graphs with at least one self-loop,
while Lemma 8 considers constraint graphs with no self-loops.

Lemma 7 If H 6= K+
q has at least one self-loop, then H is identifiable.

Lemma 8 If H 6= K+
q has no self-loops, H is identifiable if and only if for each {i, j} ∈ E(H)

there exists an H-coloring of Gij where i′ and j′ receive incompatible colors.

The proofs of Lemmas 7 and 8 are provided in Appendix A.

2.1. Learning lower bounds for identifiable models

In this section we prove Theorem 3 from the introduction. In particular, we provide a constraint
graph F and a family of F -colorable n-vertex graphs of maximum degree 7 such that the num-
ber of samples from πFG required to learn any graph in this family, even with success probability
exp(−O(n)), is exponential in n.

We define the constraint graph F = (V (F ), E(F )) first, which consists of an independent set
of size 32, denoted I32, and four additional vertices {1, 2, 3, 4}. Every vertex in the independent set
I32 is connected to these four vertices and also {1, 2}, {2, 3}, {3, 4} ∈ E(F ); see Figure 2(a).
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Lemma 9 F is identifiable.

We define next a family Gn of n-vertex graphs of maximum degree 7 such that every graph in the
family have almost the same set of F -colorings. Every graph in Gn will be a supergraph of the graph
Gm = (Vm, Em), whose vertex set is given by Vm = {ai, a′i, bi, ci : 1 ≤ i ≤ m} with m = n/4.
(For clarity we assume first that 4 divides n; we later explain how to adjust the definition of Gn
when n is not divisible by 4.) For each 2 ≤ i ≤ m, {ai, a′i, bi, ci} is an independent set. The edges
with both endpoints in {a1, a

′
1, b1, c1} are:

E1,1 := {{a1, b1}, {a1, c1}, {a′1, b1}, {a′1, c1}, {b1, c1}}.

The edges between the independent sets {ai, a′i, bi, ci} and {ai+1, a
′
i+1, bi+1, ci+1} for 1 ≤ i < m

are:

Ei,i+1 :=
{
{ai, bi+1}, {ai, ci+1}, {a′i, bi+1}, {a′i, ci+1}, {bi, ai+1},
{bi, a′i+1}, {bi, ci+1}, {ci, ai+1}, {ci, a′i+1}, {ci, bi+1}}.

We then let Em =
(⋃m−1

i=1 Ei,i+1

)
∪ E1,1; see Figure 2(b).

Now, let
M = {{ai, bi+2} : i = 1, 2, . . . ,m− 2} (1)

and let E(1), E(2), . . . , E(t) be all the possible subsets of M ; hence t = 2m−2. We define Gn as:

Gn = {G(1) = (Vm, Em ∪ E(1)), G(2) = (Vm, Em ∪ E(2)), . . . , G(t) = (Vm, Em ∪ E(t))}.

Since the maximum degree of Gm is 6, every graph in Gn has maximum degree 7. Moreover, if we
let Am = {ai, a′i : 1 ≤ i ≤ m}, Bm = {bi : 1 ≤ i ≤ m} and Cm = {ci : 1 ≤ i ≤ m}, then it is
clear from our construction that (Am, Bm, Cm) is a tripartition for every graph in Gn. An immediate
consequence of this is that every graph in Gn has an F -coloring that assigns, for example, color 2 to
every vertex in Am, color 3 to every vertex in Bm and a color from the independent set I32 to every
vertex in Cm. Therefore, all graphs in the family Gn are F -colorable.

The next theorem shows that structure learning is hard for F and Gn.

Theorem 10 Let m ∈ N+ such that m ≥ 2 and let n = 4m. Then, any structure learning
algorithm for the constraint graph F and the family of graphs Gn that succeeds with probability at
least 2−(m−3) requires at least 2m+1 samples.

Before proving this theorem we state two key facts that will be used in its proof. In particular,
Fact 11 shows that actually (Am, Bm, Cm) is the unique tripartition of Gm, and Fact 12 gives a
lower bound for the number of samples required by a structure learning algorithm to guarantee a
prescribed success probability.

Fact 11 For any m ∈ N+ the graph Gm is tripartite and has a unique tripartition (Am, Bm, Cm),
where Am = {ai, a′i : 1 ≤ i ≤ m}, Bm = {bi : 1 ≤ i ≤ m} and Cm = {ci : 1 ≤ i ≤ m}.

Fact 12 Let H be an arbitrary constraint graph. Suppose Ĝ = {Ĝ1, Ĝ2, . . . , Ĝr} is a family of r
distinct H-colorable graphs such that H is identifiable with respect to Ĝ. Assume also that Ĝ1 is a
subgraph of Ĝi for all 2 ≤ i ≤ r and that Ĝr is a supergraph of Ĝi for all 1 ≤ i ≤ r − 1. Let

η = 1−
|ΩĜr

|
|ΩĜ1

|
.
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If there exists a structure learning algorithm for H and Ĝ such that for any G∗ ∈ Ĝ, given L
independent samples from πHG∗ as input, it outputs G∗ with probability at least 1/r+α with α > 0,
then L ≥ α/η.

We observe that when α = 0, the structure learning algorithm that outputs a graph from Ĝ uniformly
at random has success probability 1/r without requiring any samples. We are now ready to prove
Theorem 10.

Proof of Theorem 10 Let m ≥ 2, n = 4m and for ease of notation let G = Gn. Let G(1) = Gm
and G(t) = Gm ∪M where M is defined in (1) and t = 2m−2. Hence, the graph G(1) (resp., G(t))
is a subgraph (resp., supergraph) of every other graph in G. Moreover, all graphs in G are distinct
and F is identifiable by Lemma 9. Hence, to apply Fact 12 all we need is a lower bound for

η = 1− |ΩG(t) |/|ΩG(1) |.

By Fact 11, Gm has a unique tripartition (Am, Bm, Cm). Since the constraint graph F has a
tripartition {{1, 3}, {2, 4}, I32}, every F -coloring of Gm induces the same tripartition of Gm. That
is to say, in every F -coloring of Gm one of the sets Am, Bm or Cm is colored with colors {1, 3},
another is colored with {2, 4} and the third one is colored using colors from the independent set
I32 of F . Then, the number of F -colorings of Gm such that Am is colored with colors from I32

is K · 322m, where K is the number of F -colorings of Bm ∪ Cm given a fixed F -coloring of Am
that only uses colors from I32. Observe that K is the same for every F -coloring of Am, and K ≥ 2
since we can always color Bm with color 2 and Cm with 3, or color Bm with 3 and Cm with
2. On the other hand, the number of F -colorings where Bm receives colors from I32 is at most
2 · 32m · 2m · 22m = 2 · 32m · 8m, and similarly for Cm. Hence, the probability that in a uniformly
random F -coloring of Gm, Am is colored with colors from the independent set I32 is at least

K · 322m

K · 322m + 4 · 32m · 8m
= 1− 4 · 8m

K · 32m + 4 · 8m
≥ 1− 1

22m−1
.

Let σ be an F -coloring of Gm such that Am is colored with colors from I32. Since colors from
I32 are compatible with any other color, the pair of colors σ(ai), σ(bi+2) are compatible for any
1 ≤ i ≤ m− 2. Therefore, σ is also a valid F -coloring of G(t) and thus σ ∈ ΩG(t) . We then deduce
that

1− η =
|ΩG(t) |
|ΩG(1) |

≥ 1− 1

22m−1
.

Since |G| = 2m−2, it follows from Fact 12 that the number of samples required to learn a graph in
G with success probability 2−(m−3) is at least

L ≥ 2−(m−3) − 2−(m−2)

η
≥ 2m+1. �

The proofs of Lemma 9, Fact 11 and Fact 12 are provided in Appendix A.1.

2.2. Proof of Theorem 3

To conclude this section, we provide the proof of Theorem 3 from the introduction, which follows
straightforwardly from Theorem 10.

9
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Proof of Theorem 3 Let n ≥ 8. If 4 divides n, then Theorem 10 implies there exists a constant
c > 0 such that any structure learning algorithm for the constraint graph F and the graph family Gn
with success probability at least exp(−cn)) requires at least exp(cn) samples. Since Gn ⊆ G(n, 7),
the result follows.

The same ideas carry over without significant modification to the case when 4 does not divide n.
For example, suppose that n = 4m + 1 for some m ≥ 2. For G ∈ G4(m+1), let Ĝ be the subgraph
of G induced by Vm+1 \ {a′m+1, bm+1, cm+1}. We define Gn as the family of the subgraphs Ĝ for
each G ∈ G4(m+1). When n = 4m + 2 or n = 4m + 3, we consider instead the graph families of
the subgraphs induced by Vm+1 \{bm+1, cm+1} and Vm+1 \{cm+1}, respectively. The argument in
the proof of Theorem 10 carries over to these graph families straightforwardly. Since in every case
Gn ⊆ G(n, 7) the result follows. �

3. Learning proper q-colorings

In this section we consider statistical identifiability, structure learning and equivalent-structure
learning for proper q-colorings, where H = Kq and πG is the uniform distribution over the proper
q-colorings of the graph G. In particular, we prove Theorem 4 from the introduction: Part 1 follows
from Lemmas 14 and 13 in Section 3.2; Part 2 from Theorem 15 in Section 3.3; and we establish
Part 3 of the theorem in Appendix B.1.

3.1. A structure learning algorithm

In this subsection we introduce a general structure learning algorithm for any constraint graph H
with at least one hard constraint; i.e., H 6= K+

q . In Section 3.2, we analyze its running time and
sample complexity for proper colorings. Later in Sections 4 and E.3, we consider more general
settings where this algorithm is also efficient.

Fix H 6= K+
q and suppose {i, j} 6∈ E(H). Given independent samples σ(1), . . . , σ(L) from

πG = πHG for some unknown graph G = (V,E), the algorithm checks for every pair of vertices
u, v ∈ V whether there is at least one sample σ(k) such that σ(k)

u = i and σ(k)
v = j. If this is the

case, then the edge {u, v} does not belong to E. Otherwise, the algorithm adds the edge {u, v}
to the estimator Ê of E. This structure learning algorithm, which we call STRUCTLEARN-H, has
running time O(Ln2) and was used before in [6] for the hard-core model. The effectiveness of
STRUCTLEARN-H depends crucially on how likely are nonadjacent vertices to receive colors i and
j. For v ∈ V , let Xv be the random variable for the color of v under πG.

Lemma 13 Let H 6= K+
q and {i, j} 6∈ E(H). Suppose Pr[Xu = i,Xv = j] ≥ δ for all

{u, v} 6∈ E and some δ > 0. Let Ĝ = (V, Ê) be the output of the algorithm STRUCTLEARN-H.
Then, for all ε ∈ (0, 1), Pr[E = Ê] ≥ 1− ε provided L ≥ 8δ−1 log(n

2

2ε ).

Proof Suppose {u, v} 6∈ E and let Zuv be the number of samples where vertices u and v are
assigned colors i and j, respectively. Since E[Zuv] ≥ δL, a Chernoff bound implies

Pr[Zuv = 0] ≤ Pr

[
Zuv ≤

δL

2

]
≤ exp

(
−δL

8

)
≤ 2ε

n2
.

The result follows from a union bound over the edges.

10
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3.2. Efficient structure learning when q ≥ d+ 1

In this subsection we prove Part 1 of Theorem 4. We show that for proper q-colorings with q ≥
d+1 and any graph in G(n, d), the structure learning algorithm STRUCTLEARN-H (see Section 3.1)
requires O(qd3 log (n/ε)) samples to succeed with probability at least 1 − ε and has running time
O(qd3n2 log (n/ε)). This can be deduced immediately from the next lemma and Lemma 13, since
H = Kq 6= K+

q in this setting.

Lemma 14 Suppose that q ≥ d+ 1 and let {u, v} 6∈ E. Then Pr[Xu = Xv] ≥ 1
q(d+1)3

.

Proof Let u, v ∈ V be such that {u, v} 6∈ E, and let ∂u, ∂v denote the neighborhoods of u and v,
respectively, which may overlap. Let G′ be G with the vertices u, v removed (the edges adjacent to
u and v are removed as well). We will generate a uniformly random coloring of G using rejection
sampling as follows. Pick a uniformly random coloring of G′, a uniformly random color c1 for u,
and a uniformly random color c2 for v. If the resulting coloring is valid forG then accept, otherwise
reject. Since in every round each coloring has the same probability of being picked, the generated
coloring is a uniformly random coloring of G.

Let A(c, s, t) be the set of colorings of G′ where color c appears exactly s times in ∂u and
exactly t times in ∂v. Given a coloring in A(c, s, t) we produce a coloring in A(c, 0, 0) as follows.
List the positions where c occurs in ∂u ∪ ∂v and then re-color the vertices in the order of the list.
Note that every vertex w in ∂u ∪ ∂v has at least 2 colors that do not occur in its neighborhood
since in G′ the vertex w has degree at most d− 1 (recall that we removed u and v from G to obtain
G′). This maps at most ds+t colorings from A(c, s, t) to a coloring in A(c, 0, 0) (given the list of
positions we can recover the original coloring; there are at most ds+t lists where we first list the
vertices in ∂u and then vertices in ∂v \ ∂u). Hence we have

|A(c, 0, 0)| ≥ |A(c, s, t)|
ds+t

. (2)

Let A(c,≤ j,≤ k) :=
∑

s≤j,t≤k A(c, s, t) and let µ be the uniform distribution over the color-
ings of G′. We claim that in any coloring there exists at least q− d colors that satisfy the following:
c occurs at most once in ∂u and at most once in ∂v. Indeed, adding over all colors the number of
occurrences in ∂u and the number of occurrences in ∂v we can get at most 2d; thus at most d colors
can occur at least twice in ∂u or at least twice in ∂v. Thus

µ(A(1,≤ 1,≤ 1)) + µ(A(2,≤ 1,≤ 1)) + · · ·+ µ(A(q,≤ 1,≤ 1)) ≥ q − d,

and by symmetry µ(A(1,≤ 1,≤ 1)) ≥ q−d
q ≥ 1

d+1 . Since by definition µ(A(1,≤ 1,≤ 1)) =∑
i,j∈{0,1} µ(A(1, i, j)), from (2) we get

µ(A(1, 0, 0)) ≥ 1

(d+ 1)3
.

Therefore with probability at least 1/(d + 1)3 color 1 does not occur in ∂u ∪ ∂v in a random
coloring of G′. With probability 1/q2 we propose c1 = c2 = 1 in the rejection sampling procedure
and hence with probability at least 1

q2(d+1)3
our process accepts and produces a coloring ofG where

u, v both receive color 1. Thus in a uniformly random coloring of G vertices u, v receive color 1
with probability at least 1

q2(d+1)3
, and by symmetry the probability that they receive the same color

is at least 1
q(d+1)3

, as claimed.

11
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3.3. Identifiability for proper q-colorings

In this subsection we prove Part 2 of Theorem 4. We show that when q ≤ d there exist two distinct
graphs G,G′ ∈ G(n, d) with the same set of q-colorings (i.e., πG = πG′).

Theorem 15 Let n, q, d ∈ N+ such that q ≤ d and n ≥ q+2. Then, the structure learning problem
for q-colorings is not identifiable with respect to the family of graphs G(n, d).

Proof Let G = (V,E) be a graph with

V = {c1, . . . , cq−1, u, v, w0, . . . , wn−q−2},

where {c1, . . . , cq−1, u, v} is a clique of size q + 1 except for the one edge {u, v} that is not in E,
and {w0, . . . , wn−q+2} is a simple path from w0 to wn−q−2. G has one additional edge connecting
v and w0. Then, in every q-coloring of G the vertices u and v receive the same color, and so u and
w0 are assigned distinct colors. Hence, the graph G and the graph G′ = (V,E ∪ {u,w0}) have
the same set of q-colorings. Since both G and G′ are n-vertex graphs of maximum degree at most
q ≤ d, the structure learning for q-colorings is not identifiable with respect to G(n, d).

4. Learning H-colorings in Dobrushin uniqueness

As mentioned in the introduction, our results in Section 3 for statistical identifiability, structure
learning and equivalent-structure learning for proper colorings reveal a tight connection between
the computational hardness of these problems and the uniqueness/non-uniqueness phase transition.

In this section we explore this connection in a more general setting. For this we define the Do-
brushin uniqueness condition, which is a standard tool in statistical physics for establishing unique-
ness of the Gibbs distribution in infinite graphs.

Definition 16 Let H be an arbitrary constraint graph and let G = (V,E) be an H-colorable
graph. For w ∈ V , let

Sw := {(τ, τw) : τ, τw ∈ {1, . . . , q}|V | and τ(z) = τw(z) ∀z 6= w}.

For v, w ∈ V , let
Rvw := max

(τ,τw)∈Sw
‖πv(· | τ(∂v))− πv(· | τw(∂v))‖TV,

where πv(·|τ(∂v)) and πv(·|τw(∂v)) are the conditional distributions at v given the respective
assignments τ and τw on the neighbors of v. Let α := maxv∈V

∑
w∈∂v Rvw. When α < 1, πG is

said to satisfy the Dobrushin uniqueness condition.

We note that the Dobrushin uniqueness condition (typically) concerns soft-constraint systems on
infinite graphs. The definition we use here for hard-constraint models in finite graphs appeared in
[9]; see also [41]. The Dobrushin uniqueness condition implies the following key property.

Lemma 17 Let H 6= K+
q be an arbitrary constraint graph and suppose {i, j} 6∈ E(H). Let

G = (V,E) be a graph such that πG satisfies the Dobrushin uniqueness condition. Then, for all
{u, v} 6∈ E, Pr[Xu = i,Xv = j] ≥ (1−α)2

q2
.

Lemmas 17 and 13 imply that the STRUCTLEARN-H algorithm requires L=O(q2 log(n
2

ε )) inde-
pendent samples to succeed with probability at least 1 − ε and has running time is O(Ln2). This
establishes Theorem 5 from the introduction. The proof of Lemma 17 is provided in Appendix C.
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Appendix A. Proofs missing from Section 2

In this appendix we provide the proofs omitted in Section 2. The following lemma provides a useful
alternative definition of identifiability.

Lemma 18 A constraint graph H 6= K+
q is identifiable if and only if for any H-colorable graph

G = (V,E) and any two nonadjacent vertices u, v ∈ V there is an H-coloring of G where u and v
are assigned incompatible colors.

Proof For the forward direction we prove the contrapositive. Let G = (V,E) be an H-colorable
graph and suppose there exists two nonadjacent vertices u, v ∈ V such that in everyH-coloring σ of
G these vertices receive compatible colors. Then, the graph G and the graph G′ = (V,E ∪ {u, v})
have the same set of H-colorings. Hence, πG = πG′ and so H is not identifiable.

For the reverse direction, suppose that for every H-colorable graph G = (V,E) and every
pair of nonadjacent vertices u, v ∈ V there exists an H-coloring of G such that u and v are as-
signed incompatible colors. Suppose also that for a pair of H-colorable graphs G1 = (V,E1) and
G2 = (V,E2), we have πG1 = πG2 (or equivalently that ΩG1 = ΩG2). We show that G1 = G2.
First consider {u, v} 6∈ E1. Then, there exists an H-coloring τ ∈ ΩG1 where u and v receive in-
compatible colors. Since also τ ∈ ΩG2 , {u, v} 6∈ E2 . Similarly, if {u, v} 6∈ E2, then {u, v} 6∈ E1.
Thus, G1 = G2 and so H is identifiable.

Proof of Lemma 7 The proof is divided into two cases corresponding to whether all vertices of
H have self-loops or not.

Case 1: At least one but not all vertices of H have self-loops. Let U be the set of vertices that have
self-loops and let W = V (H)\U be the set of vertices that do not. By assumption both U and W
are not empty. Moreover, U and W are connected because by assumption H is connected. Thus,
there exist i ∈ U and j ∈W such that {i, i}, {i, j} ∈ E(H) and {j, j} 6∈ E(H). We use this gadget
to show that for any H-colorable graph G = (V,E) and any two nonadjacent vertices u, v ∈ V of
G, there exists an H-coloring σ of G where u and v are assigned incompatible colors. Then, by
Lemma 18, H is identifiable. The H-coloring σ is defined as follows: σ(w) = i for all w 6= u, v
and σ(u) = σ(v) = j. Since {i, i}, {i, j} ∈ E(H), σ is a valid H-coloring of G. Moreover, since
{j, j} 6∈ E(H), u and v receive incompatible colors and the result follows.

Case 2: All vertices of H have self-loops. Observe first that if H is connected, H 6= K+
q and every

vertex in H has a self-loop, then there exist i, j, k ∈ V (H) such that

{i, j}, {j, k}, {i, i}, {j, j}, {k, k} ∈ E(H) and {i, k} /∈ E(H).

We use this gadget to show for any H-colorable graph G = (V,E) and any pair of nonadjacent
vertices u, v ∈ V there is an H-coloring σ of G such that (σ(u), σ(v)) 6∈ E(H). Lemma 18 then
implies that H is identifiable. The H-coloring σ is given by: σ(w) = j for all w 6= u, v, σ(u) = i
and σ(v) = k. Since color j is compatible with colors i, j and k in H , σ is a valid H-coloring of
G. Moreover, u and v receive the incompatible colors i and k and so the result follows. �
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Proof of Lemma 8 Assume first that H 6= K+
q is identifiable and has no self-loops. For every

{i, j} ∈ E(H), Gij is clearly H-colorable (simply assign color k ∈ V (H) to the corresponding
vertex in Gij , color i to i′ and color j to j′). Hence, Lemma 18 implies that there exists an H-
coloring of Gij where i′ and j′ receive incompatible colors. This proves the forward direction of
the lemma.

For the reverse direction, suppose that for every {i, j} ∈ E(H) there exists an H-coloring of
Gij where i′ and j′ are assigned incompatible colors. Let G = (V,E) be an arbitrary H-colorable
graph. We show that for every pair of nonadjacent vertices u, v ∈ V in G there exists an H-
coloring of G where u and v receive incompatible colors. It then follows from Lemma 18 that H is
identifiable.

Let σ be an H-coloring of G and let us assume that σ(u) and σ(v) are compatible colors. (If
σ(u) and σ(v) are incompatible colors in H , there is nothing to prove.) We use σ to construct
an H-coloring σ′ where u and v receive incompatible colors. Let a = σ(u) and b = σ(v). By
assumption, there exists an H-coloring τ of Gab where the corresponding copies of a and b, a′ and
b′, receive incompatible colors. Define the H-coloring σ′ of G as follows:

σ′(w) = τ(σ(w)), ∀w 6= u, v; σ′(u) = τ(a′); σ′(v) = τ(b′).

It is straightforward to check that σ′ is a properH-coloring ofG. Since u and v receive incompatible
colors in σ′ (i.e., τ(a′) and τ(b′)), the proof is complete. �

A.1. Proofs missing from Section 2.1

Proof of Lemma 9 Let G = (V,E) be an F -colorable graph. Since F is tripartite with a unique
tripartition {{1, 3}, {2, 4}, I32}, then so is G. Let {V1, V2, V3} be a tripartition of G and let u, v be
any two nonadjacent vertices of G. We show that there is always an F -coloring of G where u and v
receive incompatible colors. The result then follows from Lemma 18.

If u and v belong to the same Vi, then by coloring all the vertices V1 with color 1, all the vertices
of V2 with color 2 and all the vertices in V3 with any color c from I32, we have a coloring of G
where u and v receive the same color. Since F has no self-loops u and v are assigned incompatible
colors.

If u and v belong to different Vi’s, suppose without loss of generality that u ∈ V1 and v ∈ V2.
Consider the following F -coloring σ of G where c is any color from I32:

σ(w) =



1 if w = u;

4 if w = v;

3 if w ∈ V1\{u};
2 if w ∈ V2\{v};
c if w ∈ V3.

In σ, u and v receive the incompatible colors 1 and 4. Thus, we have shown that it is always possible
to color nonadjacent vertices ofGwith incompatible colors and the result follows immediately from
Lemma 18. �

Proof of Fact 11 We prove this fact by induction. G1 has exactly one tripartition ({a1, a
′
1}, b1, c1).

Suppose inductively that (Am−1, Bm−1, Cm−1) is the only tripartition ofGm−1. Since by definition
{ai, bi−1}, {ai, ci−1} ∈ Em, am belongs to Am in any tripartition of Gm. Similar statements hold
for a′m, bm and cm as well. Therefore, (Am, Bm, Cm) is the unique tripartition of Gm. �
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Proof of Fact 12 Let A be any (possibly randomized) structure learning algorithm that given L
independent samples Γ = (σ(1), . . . , σ(L)) ∈ ΩL

G∗ from an unknown distribution πG∗ for some
G∗ ∈ Ĝ, outputs a graph A(Γ) in Ĝ. For any G∗ ∈ Ĝ, the probability that A learns the graph
correctly given L independent samples from πG∗ is

Pr[A(Γ) = G∗] =
∑

x∈ΩL
G∗

PrπG∗ [Γ = x] Pr[A(x) = G∗].

Since Ĝr is a supergraph of G∗, we have ΩĜr
⊆ ΩG∗ . Let T be the set of all sample sequences

σ(1), . . . , σ(L) such that σ(i) 6∈ ΩĜr
for at least one i; namely, T = ΩL

G∗\ΩL
Ĝr

. Note that |T | =

|ΩG∗ |L − |ΩĜr
|L. Then,

Pr[A(Γ) = G∗] =
∑

x∈ΩL
Ĝr

1

|ΩG∗ |L
· Pr[A(x) = G∗] +

∑
x∈T

1

|ΩG∗ |L
· Pr[A(x) = G∗]

≤ 1

|ΩĜr
|L

∑
x∈ΩL

Ĝr

Pr[A(x) = G∗] +
|ΩG∗ |L − |ΩĜr

|L

|ΩG∗ |L
.

Since Ĝ1 is a subgraph of G∗, we have ΩG∗ ⊆ ΩĜ1
. Thus,

|ΩG∗ |L − |ΩĜr
|L

|ΩG∗ |L
= 1−

|ΩĜr
|L

|ΩG∗ |L
≤ 1−

|ΩĜr
|L

|ΩĜ1
|L

= 1− (1− η)L ≤ Lη.

Suppose the structure learning algorithmA has success probability at least 1/r+α for anyG∗ ∈ Ĝ;
that is,

Pr[A(Γ) = G∗] ≥ 1

r
+ α, ∀G∗ ∈ Ĝ.

Then,
1

r
+ α ≤ 1

|ΩĜr
|L

∑
x∈ΩL

Ĝr

Pr[A(x) = G∗] + Lη, ∀G∗ ∈ Ĝ.

Since
∑

G∗∈Ĝ Pr[A(x) = G∗] = 1 for any fixed sample sequence x, summing up over Ĝ we get

1 + rα ≤ 1

|ΩĜr
|L

∑
x∈ΩL

Ĝr

∑
G∗∈Ĝ

Pr[A(x) = G∗] + rLη = 1 + rLη.

Hence, L ≥ α/η as claimed. �

Appendix B. Lower bounds for proper colorings

B.1. Strong lower bound when q < d−
√
d+ Θ(1)

In this subsection we prove Part 3 of Theorem 4, establishing a strong learning lower bound for
proper colorings when q < d−

√
d+ Θ(1).
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As previously defined, an equivalent-structure learning algorithm for a graph family G finds a
graph Ĝ ∈ G such that ΩG = ΩĜ, where G ∈ G is the actual hidden graph. We exhibit a family of
graphs of maximum degree q+

√
q+ Θ(1) such that every graph in the family has almost the same

set of q-colorings. This makes equivalent-structure learning hard in this family. We use this fact to
prove Part 3 of Theorem 4.

We define first a graphGm,t = (Vm,t, Em,t) and every graph in our graph family will be a super-
graph ofGm,t. For anym, t ∈ N+ with t < q, the graphGm,t is defined as follows. LetC1, . . . , Cm
and C ′1, . . . , C

′
m be cliques of size q − 1, and let I1, . . . , Im and I ′1, . . . , I

′
m be independent sets of

size t. Moreover, let s1, . . . , sm be m additional vertices. Then,

Vm,t =

m⋃
i=1

{V (Ci), V (C ′i), V (Ii), V (I ′i), si},

where V (Ci), V (C ′i), V (Ii), V (I ′i) are the vertices of Ci, C ′i, Ii, I
′
i, respectively. In addition to the

edges in the cliques Ci and C ′i for 1 ≤ i ≤ m, Em,t contains the following edges:

1. For 1 ≤ i ≤ m, there is a complete bipartite graph between Ci and Ii. That is, for u ∈ Ci
and v ∈ Ii, {u, v} ∈ Em,t.

2. For 2 ≤ i ≤ m, Ci is partitioned into t almost-equally-sized disjoint subsets Ci,1, . . . , Ci,t
of size either b(q − 1)/tc or d(q − 1)/te. Then, the j-th vertex of Ii−1 is connected to every
vertex in Ci,j .

3. Edges between C ′1, . . . , C
′
m and I ′1, . . . , I

′
m are defined in exactly the same manner.

4. For 1 ≤ i ≤ m, the vertex si is adjacent to exactly one vertex in Ii and to exactly one in I ′i;

see Figure 3 for an illustration of the graph Gm,t. The key fact about the graph Gm,t that allows us
to construct a graph family with the desired properties is the following.

Lemma 19 Let q,m, t ∈ N+ and q ≥ 3. In every q-coloring of Gm,t all cliques C1, . . . , Cm are
colored by the same set of q − 1 colors, and all independent sets I1, . . . , Im are colored with the
remaining color. The same holds for C ′1, . . . , C

′
m and I ′1, . . . , I

′
m .

Lemma 19 implies that every q-coloring of Gm,t is determined by the colors of I1, I
′
1 and those of

the vertices s1, . . . , sm.
We define next the family of graphs Gm,t. All the graphs in this family are distinct and are

supergraphs of Gm,t. For each 1 ≤ i ≤ m choose (and fix) a pair of vertices xi ∈ Ci and yi ∈
I ′i\ ∂si. (Recall that ∂si denotes the neighborhood of si.) Let

M = {{xi, yi} : 1 ≤ i ≤ m}. (3)

Let E(1), . . . , E(l) be all the subsets of M ; hence, l = 2m. We let

Gm,t = {G(j) = (Vm,t, Em,t ∪ E(j)) : 1 ≤ j ≤ l}.

The graphs in Gm,t satisfy the following.

Fact 20 If G = (V,E) ∈ Gm,t, then |V | = (2q + 2t − 1)m and the maximum degree of G is at
most

max
{
q + t, q +

⌈
(q − 1)/t

⌉
+ 1
}
.
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C1 I1 C2 I2 Im−1 Cm Im

C ′1 I ′1 C ′2 I ′2 I ′m−1 C ′m I ′m

s1 s2 sm−1 sm· · · · · ·

Figure 3: The graph Gm,t. Each of C1, . . . , Cm, C
′
1, . . . , C

′
m is a clique of size q − 1 and each of

I1, . . . , Im, I
′
1, . . . , I

′
m is an independent set of size t < q. Solid lines between two clusters mean

that every vertex from one cluster is adjacent to every vertex in the other cluster. Dashed lines
between Ii−1 and Ci mean that every vertex in Ii−1 is adjacent to roughly (q − 1)/t vertices in Ci
with no two vertices in Ii−1 sharing a common neighbor in Ci.

Using Lemma 19 and ideas similar to those in the proof of Theorem 10, we can show that both
structure and equivalent-structure learning are computationally hard in Gm,t (sample complexity is
exponential inm). This immediately implies that structure learning is also hard in G(n, d) provided
d is large enough so that Gm,t ⊆ G(n, d). However, this does not necessarily imply that equivalent-
structure learning is hard for G(n, d) which is our goal. For this, we introduce instead a larger graph
family Fm,t that contains Gm,t. Suppose d is an integer such that

d ≥ max
{
q + t, q +

⌈
(q − 1)/t

⌉
+ 1
}
,

the maximum degree of any graph in Gm,t; see Fact 20. The graph family Fm,t contains all the
graphs in G(n, d) that have the same set of colorings as some graph in Gm,t. Namely,

Fm,t = {G ∈ G(n, d) : ΩG = ΩG′ , G
′ ∈ Gm,t},

and Gm,t ⊆ Fm,t ⊆ G(n, d) by definition.
The next theorem establishes a lower bound for any equivalent-structure learning algorithm

for Fm,t. We will later see that this lower bound applies also to the graph family G(n, d), which
establishes Part 3 of Theorem 4.

Theorem 21 Let q,m ∈ N+, q ≥ 3 and t = d
√
q − 1 e. Any equivalent-structure learning

algorithm for proper vertex q-colorings and the graph family Fm,t that succeeds with probability at
least q · exp

[
−m/(2(q − 1))

]
requires at least exp

[
m/(2(q − 1))

]
samples.

The following generalization of Fact 12 will be used in the proof of Theorem 21.

Fact 22 Let H be an arbitrary constraint graph and let F1, . . . ,Fr be r families of distinct H-
colorable graphs. Suppose that for all 1 ≤ i ≤ r every graph in the in Fi has the same set of
H-colorings ΩFi . Assume also that ΩFi 6= ΩFj for i 6= j and that ΩFr ⊆ ΩFi ⊆ ΩF1 for all
1 ≤ i ≤ r. Let F̂ = F1 ∪ · · · ∪ Fr and let

η = 1− |ΩFr |
|ΩF1 |

.
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If there exists an equivalent-structure learning algorithm for H and F̂ , such that for any G∗ ∈ F̂ ,
given L independent samples from πHG∗ as input, it outputs a graph G satisfying ΩG = ΩG∗ with
probability at least 1/r + α with α > 0, then L ≥ α/η.

Note that Fact 12 corresponds to the special case where each family Fi contains a single graph, and
thus it follows immediately from Fact 22. We are now ready to prove Theorem 21.

Proof of Theorem 21 Let G(1) = Gm,t and G(l) = Gm,t ∪M where M is as in (3) and l = 2m.
Let Fj be the class of graphs that contains all the graphs in Fm,t that has the same set of colorings
as G(j). (Recall that Fm,t is the set of graphs in G(n, d) that have the same set of colorings as some
graph in Gm,t.) Let ΩFj = ΩG(j) for all j. Note that ΩFl ⊆ ΩFj ⊆ ΩF1 for all 1 ≤ j ≤ l. Let

η = 1− |ΩFl |
|ΩF1 |

.

We establish a lower bound η and then apply Fact 22 to prove the theorem.
By Lemma 19 each q-coloring of Gm,t (i.e., of G(1)) is determined by the colors of the inde-

pendent sets I1, I
′
1 and of the vertices s1, . . . , sm. Then, the number of q-colorings of G(1) where

all vertices in I1 and I ′1 receive the same color is equal to q(q − 1)m[(q − 1)!]2m, since there are q
choices for the color of I1 and I ′1, q − 1 choices for the color of each si, and (q − 1)! colorings for
each Ci and C ′i. Similarly, the number of colorings where I1 and I ′1 receive distinct colors is equal
to q(q− 1)(q− 2)m[(q− 1)!]2m. Thus, the probability that in a uniform random q-coloring of G(1)

the vertices in I1 and I ′1 have the same color is

q(q − 1)m[(q − 1)!]2m

q(q − 1)m[(q − 1)!]2m + q(q − 1)(q − 2)m[(q − 1)!]2m
= 1− (q − 2)m

(q − 1)m−1 + (q − 2)m

≥ 1− (q − 1)
(q − 2

q − 1

)m
≥ 1− (q − 1) e

− m
q−1 .

Let σ be a q-coloring of G(1) where I1 and I ′1 receive the same color. Then, Lemma 19 implies
that σ(xi) 6= σ(yi) for all 1 ≤ i ≤ m, since Ci and I ′i have distinct colors. (Recall that xi ∈ Ci
and yi ∈ I ′i\∂si are the vertices used to define the graph family Gm,t). Therefore, σ is a proper
q-coloring of G(l); hence σ ∈ ΩFl and

|ΩFl |
|ΩF1 |

= PrπF1 [σ ∈ ΩFl ] ≥ PrπF1 [σ(I1) = σ(I ′1)] ≥ 1− (q − 1) e
− m
q−1 .

(Note that πF1 = πG(1) = πGm,t .) Then,

η = 1− |ΩFl |
|ΩF1 |

≤ (q − 1)e
− m
q−1 . (4)

Every graph in Gm,t is a distinct supergraph of Gm,t and |Gm,t| = 2m. Moreover, for any
G = (V,E) ∈ Gm,t and any 1 ≤ i ≤ m such that {xi, yi} 6∈ E, there are q-colorings of G where
xi and yi are assigned the same color. Consequently, for any G,G′ ∈ Gm,t, we have ΩG 6= ΩG′

wheneverG 6= G′. Then, ΩFi 6= ΩFj for any i 6= j, and by definition all the graphs inFi are distinct
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for each i. Therefore, Fact 22 implies that to equivalently learn any G ∈ Fm,t with probability at
least 2−m + α, the number of random samples needed is L ≥ α/η. Setting

α = q e
− m

2(q−1) −2−m > 0,

we get that to equivalently learn a graph G ∈ Fm,t with success probability at least q e
− m

2(q−1) , we
require

L ≥ q e
− m

2(q−1) −2−m

(q − 1) e
− m
q−1

≥ q e
− m

2(q−1) − e
− m

2(q−1)

(q − 1) e
− m
q−1

≥ e
m

2(q−1)

where the second inequality follows from 2 ≥ e
1

2(q−1) when q ≥ 3. �

The following corollary of Theorem 21 corresponds to Part 3 of Theorem 4.

Corollary 23 Let q, n, d ∈ N+ such that 3 ≤ q < d−
√
d+ Θ(1) and n ≥ 2q + 2d

√
q − 1 e − 1.

Then, there exists a constant c > 0 such that any equivalent-structure learning algorithm for q-
colorings and the graph family G(n, d) that succeeds with probability at least exp(−cn) requires
at least exp(cn) samples.

Proof Let k = 2q+ 2d
√
q − 1 e− 1. If k divides n, then take m = n/k. By Fact 20, every graph in

Gm,t has n = mk vertices and maximum degree q + d
√
q − 1 e+ 1 and so Gm,t ⊆ Fm,t ⊆ G(n, d)

provided d ≥ q + d
√
q − 1 e+ 1. Theorem 21 implies that there exists c = c(q) > 0 such that any

equivalent-structure learning algorithm forFm,t with success probability at least exp(−cn) requires
exp(cn) samples. By definition, the set of q-colorings of any graph in G(n, d)\Fm,t is distinct from
the set of q-colorings of any graph inFm,t. Since alsoFm,t ⊆ G(n, d), equivalent-structure learning
in G(n, d) is strictly harder than in Fm,t. Specially, any equivalent-structure learning algorithm for
G(n, d) with success probability at least exp(−cn) requires at least exp(cn) samples. Note that
d ≥ q + d

√
q − 1 e+ 1 implies q < d−

√
d+ Θ(1).

The result follows in similar fashion when k does not divide n, but we are required to modify
slightly the graph families Gm,t and Fm,t. Suppose n = km + r where 1 ≤ r ≤ k − 1 and let
W = {w0, . . . , wr−1} be a simple path. For every G ∈ Gm,t, add W and the edge {sm, w0} to G to
obtain a graph Ĝ. Let Ĝm,t be the resulting graph family. Every graph in Ĝm,t has exactly n vertices
and maximum degree q + d

√
q − 1 e + 1. Moreover, every q-coloring of G ∈ Gm,t corresponds to

exactly (q − 1)r colorings of Ĝ ∈ Ĝm,t. Define F̂m,t as before; i.e., F̂m,t is the set of all graphs
in G(n, d) that have the same set of colorings as some graph in Ĝm,t. The argument in the proof
of Theorem 21 and Fact 22 imply that any equivalent-structure learning algorithm for F̂m,t with
success probability at least exp(−cn) requires exp(cn) independent samples, where c = c(q) > 0
is a suitable constant. Since we have Ĝm,t ⊆ F̂m,t ⊆ G(n, d) for d ≥ q + d

√
q − 1 e+ 1, the result

follows.

We conclude this section with the proofs of Lemma 19, Fact 20 and Fact 22.

Proof of Lemma 19 Let σ be a q-coloring of Gm,t. For 1 ≤ i < m, since every vertex in Ii is
adjacent to every vertex in Ci, all vertices in Ii have the same color in σ, which is the one color not
used by Ci. Moreover, every vertex in Ci+1 is adjacent to a vertex of Ii, and so Ci+1 is colored with
the same set of q − 1 colors as Ci in σ. Then, every clique C1, . . . , Cm is colored with the same set
of q − 1 colors and every independent set I1, . . . , Im is colored with the one remaining color in σ.
The same holds for C ′1, . . . , C

′
m and I ′1, . . . , I

′
m as well. �
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Proof of Fact 20 The number of vertices in Gm,t is m(|C1| + |C ′1| + |I1| + |I ′1| + 1) = (2q +
2t− 1)m. The degree of the vertices in the cliques Ci or C ′i is at most q − 2 + t+ 1 = q − 1 + t.
Moreover, the degree of the vertices in the independent sets Ii or I ′i is at most q−1+d(q−1)/te+1 =
q + d(q − 1)/te. Thus, the maximum degree of Gm,t is no more than

max
{
q + t− 1, q +

⌈
(q − 1)/t

⌉}
.

Therefore, the maximum degree of any graph in Gm,t is at most

max
{
q + t, q +

⌈
(q − 1)/t

⌉
+ 1
}
. �

Proof of Fact 22 Let A be any (possibly randomized) equivalent-structure learning algorithm
that, given L independent samples Γ = (σ(1), . . . , σ(L)) ∈ ΩL

Fi from an unknown distribution
πFi = πG∗ for some G∗ ∈ Fi, outputs a graph A(Γ) in F̂ . For any G∗, the probability that A
equivalently learns the graph given L independent samples from πFi is

Pr[A(Γ) ∈ Fi] =
∑
x∈ΩLFi

Pr[Γ = x] Pr[A(x) ∈ Fi].

Recall that by assumption ΩFr ⊆ ΩFi . Let T be the set of all sample sequences σ(1), . . . , σ(L) such
that σ(j) 6∈ ΩFr for at least one j; namely, T = ΩL

Fi\Ω
L
Fr . Note that

|T | = |ΩFi |L − |ΩFr |L.

Then,

Pr[A(Γ) ∈ Fi] =
∑
x∈ΩLFr

1

|ΩFi |L
· Pr[A(x) ∈ Fi] +

∑
x∈T

1

|ΩFi |L
· Pr[A(x) ∈ Fi]

≤ 1

|ΩFr |L
∑
x∈ΩLFr

Pr[A(x) ∈ Fi] +
|ΩFi |L − |ΩFr |L

|ΩFi |L
.

Since ΩFi ⊆ ΩF1 , we get

|ΩFi |L − |ΩFr |L

|ΩFi |L
= 1− |ΩFr |

L

|ΩFi |L
≤ 1− |ΩFr |

L

|ΩF1 |L
= 1− (1− η)L ≤ Lη.

Suppose the equivalent-structure learning algorithmA has success probability at least 1/r+α, then

Pr[A(Γ) ∈ Fi] ≥
1

r
+ α.

Hence,
1

r
+ α ≤ 1

|ΩFr |L
∑
x∈ΩLFr

Pr[A(x) ∈ Fi] + Lη.

Since
∑r

i=1 Pr[A(x) ∈ Fi] = 1 for any fixed sample sequence x, summing up over i we get

1 + rα ≤ 1

|ΩFr |L
∑
x∈ΩLFr

r∑
i=1

Pr[A(x) ∈ Fi] + rLη = 1 + rLη.

Hence, L ≥ α/η as claimed. �
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u v

w1 w2 w3

w

C

I

· · · · · ·

Figure 4: The graph G where C = Kq−3 and I is an independent set of size d− q + 1.

B.2. General lower bound for proper q-colorings

When d−
√
d+ Θ(1) ≤ q ≤ d structure learning for q-colorings is not identifiable, and the strong

lower bound from Part 3 of Theorem 15 (i.e., Corollary 23) does not apply either. In this subsection
we establish a weaker but more general lower bound for proper colorings that applies in this regime.
Specifically, we provide a family of graphsF ⊆ G(n, d) such that the number of random q-colorings
required to learn any graph in F with success probability at least 1/2 is exp(Ω(d− q)).

Theorem 24 Let d, q, n ∈ N+ such that 3 ≤ q < d and n ≥ d+ 2. Then, any equivalent-structure
learning algorithm for G(n, d) with success probability at least 1/2 requires at least exp(Ω(d− q))
samples.

Let d, q, n ∈ N+ such that 3 ≤ q < d and n ≥ d + 2. Let C be a clique of size q − 3, let I be an
independent set of size d− q+1 and let W = {w1, . . . , wn−d−1} be a simple path. Also, let u, v, w
be three additional vertices that are not in C, I or W . Define the graph G = (V,E) such that

V = V (C) ∪ V (I) ∪ {w1, . . . , wn−d−1} ∪ {u, v, w},

where V (C) and V (I) are the vertices in C and I , respectively. In addition to the edges in C and
W , G has the following edges:

1. every vertex in C is adjacent to every vertex in I;

2. u and v are adjacent to every vertex in C and I;

3. w,w1 are adjacent to v;

see Figure 4.
Let

G = {G1 = G,G2 = (V,E ∪ {uw}), G3 = (V,E ∪ {uw1}), G4 = (V,E ∪ {uw, uw1})}.

Note that every graph in G is an n-vertex graph of maximum degree at most d and so G ⊆ G(n, d).
Furthermore, for 1 ≤ i ≤ 4 let Fi be the family of all graphs in G(n, d) that have the same set of
q-colorings as Gi and let F =

⋃4
i=1Fi. The following theorem immediately implies Theorem 24.

Theorem 25 Let d, q, n ∈ N+ such that 3 ≤ q < d and n ≥ d+2. Then the number of independent
random q-colorings required to learn any graph in F with probability at least 1/2 is exp(Ω(d−q)).
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Proof If u and v receive distinct colors in a q-coloring of G, then the clique C will be colored by
q−3 of the q−2 colors not used by u and v and the number of available colors for every vertex in I
is only 1. Thus, the number of colorings of G where u and v receive distinct colors is q!(q− 1)n−d.
Otherwise, if u and v receive the same color in a coloring of G, then C will use q − 3 of the q − 1
available colors and every vertex in I has 2 available color choices. Hence, the number of such
colorings is q!(q − 1)n−d · 2d−q. Any q-coloring of G where u and v receive the same color is also
a proper q-coloring of G4. Therefore, we get

|ΩF4 |
|ΩF1 |

=
|ΩG4 |
|ΩG|

≥ q!(q − 1)n−d · 2d−q

q!(q − 1)n−d + q!(q − 1)n−d · 2d−q
= 1− e−Ω(d−q) .

Thus, it follows from Fact 22 that any equivalent-structure learning algorithm for F that succeeds
with probability at least 1/2 requires

L ≥
(1

2
− 1

4

)(
1− |ΩF4 |
|ΩF1 |

)−1
= eΩ(d−q)

samples.

Theorem 24 follows immediately from Theorem 25 and the fact that F ⊆ G(n, d).

Appendix C. Proofs missing from Section 4

Proof of Lemma 17 For u ∈ V we show first that Pr[Xu = i] ≥ (1−α)/q. If σ is anH-coloring
of G sampled according to πG, we may update the color of any vertex w ∈ V by choosing a new
color for w uniformly at random among the available colors for w given σ(V \ w). The resulting
H-coloring after this update has distribution πG.

Suppose σ0 is an H-coloring of G sampled according to πG, and let τ0 be the color assignment
that agrees with σ0 everywhere except possibly at u, where we set τ0(u) = i. (Note that τ is not
necessarily a valid H-coloring.)

Let ∂u = {v1, . . . , vl}. We update the configuration in v1, then in v2 and so on, in both σ0 and
τ0; then we update the color of u. Let σk and τk be the configuration after updating vk in σk−1 and
τk−1, respectively. The color of vk in both σk−1 and τk−1 is updated using the optimal coupling νk
between the distributions πvk(·|σk−1) and πvk(·|τk−1) as follows. Sample (ak, bk) from νk and let
σk(V \ vk) = σk−1(V \ vk), σk(vk) = ak, τk(V \ vk) = τk−1(V \ vk) and τ(vk) = bk. After
updating ∂u = {v1, . . . , vl} in this manner, σl has law πG. Moreover,

Pr[σl 6= τl] ≤ Prνl [σl 6= τl|σl−1 = τl−1] + Pr[σl−1 6= τl−1]

≤
l∑

k=1

Prνk [σk 6= τk|σk−1 = τk−1]

=
l∑

k=1

‖πvk(·|τk−1)− πvk(·|τk−1)‖TV

≤ α,
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where the last inequality follows from the definition of the Dobrushin condition. Hence, with prob-
ability at least 1− α, σl = τl. If this is the case, then color i is compatible with σl(V \ u) and thus
when u is updated it receives color i with probability at least 1/q. Thus, we get

Pr[Xu = i] ≥ (1− α)

q
.

Finally, let v ∈ V such that v 6∈ ∂u. Using the procedure described above to update the
configuration in ∂u ∪ u, and then in ∂v ∪ v we obtain

Pr[Xu = i,Xv = j] ≥ (1− α)2

q2
. �

Appendix D. Approximate-structure learning of H-colorings

In addition to structure learning (exact recovery of the hidden graph G) and equivalent-structure
learning (learning a graph with the same set of H-colorings), we may consider the corresponding
approximation problem of finding a graph Ĝ such that πĜ is close to πG in some notion of dis-
tance, such as total variation distance or Kullback-Leibler divergence. Apparently, this task is much
simpler for hard-constraint systems.

In this section we consider this approximation variant of structure learning for hard-constraint
systems with respect to total variation distance. Specifically, given L samples σ(1), . . . , σ(L) from
πG, we consider the problem of finding a graph Ĝ such that∥∥πG − πĜ∥∥TV

< γ,

where γ > 0 is a desired precision.

Theorem 26 SupposeH 6= K+
q and let Ĝ be the output of the STRUCTLEARN-H algorithm. Then,

for all ε ∈ (0, 1) and γ ∈ (0, 1),

Pr
[∥∥πG − πĜ∥∥TV

< γ
]
≥ 1− ε

provided L ≥ 4γ−1n2 log(n
2

2ε ).

Recall that the running time of STRUCTLEARN-H is O(Ln2), so from Theorem 26 we get an algo-
rithm for approximate structure learning with running time O(γ−1n4 log(nε )).

Proof of Theorem 26 Let Ĝ = (V (Ĝ), E(Ĝ)). Recall that {u, v} /∈ E(Ĝ) if and only if u, v
receive incompatible colors in one of the samples σ(1), . . . , σ(L) from πG. Hence, Ĝ is a supergraph
of G and so ΩĜ ⊆ ΩG. Moreover,∥∥πG − πĜ∥∥TV

=
∑

σ∈ΩG\ΩĜ

1

|ΩG|
=
|ΩG| − |ΩĜ|
|ΩG|

= Pr
[
σ /∈ ΩĜ

]
,

assuming σ is an H-coloring of G chosen uniformly at random (i.e., σ is drawn from πG). If we let
Γ = E(Ĝ)\E(G), then

Pr
[
σ /∈ ΩĜ

]
= Pr

[
∃{u, v} ∈ Γ : {σu, σv} /∈ E(H)

]
≤

∑
{u,v}∈Γ

Pr
[
{σu, σv} /∈ E(H)

]
(5)
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by a union bound.
Now, for γ > 0 let

Mγ =

{
{u, v} 6∈ E(G) : Pr

[
{σu, σv} /∈ E(H)

]
≥ 2γ

n2

}
.

LetZuv be the number of samples σ(1), . . . , σ(L) where vertices u and v receive incompatible colors.
A Chernoff bound implies that, for any {u, v} ∈Mγ ,

Pr[Zuv = 0] ≤ Pr

[
Zuv ≤

γL

n2

]
≤ exp

(
−γL
4n2

)
≤ 2ε

n2
.

A union bound then implies that with probability at least 1 − ε all edges in Mγ are not in E(Ĝ).
Hence, with probability at least 1− ε, all edges in E(Ĝ) satisfy:

Pr
[
{σu, σv} /∈ E(H)

]
<

2γ

n2
.

Plugging this bound into (5), we get

Pr
[∥∥πG − πĜ∥∥TV

< γ
]
≥ 1− ε

as desired. �

Appendix E. Learning weighted H-colorings

In this section we consider the more general setting of weighted H-colorings. We restrict our
attention to constraint graphs with at least one hard constraint, which corresponds to spin systems
with hard constraints.

E.1. Spin systems with hard constraints

LetG = (V,E, θ) be an undirected weighted graph with weights given by the function θ : E∪V →
R+. (For definiteness we only consider a positive weight function θ.) A spin system on the graph G
consists of a set of spins [q] = {1, . . . , q}, a symmetric edge potential J : [q] × [q] → R ∪ {−∞}
and a vertex potential h : [q] → R. A configuration σ : V → [q] of the system is an assignment of
spins to the vertices of G. Each configuration σ ∈ [q]V is assigned probability

πG(σ) =
1

ZG
exp

 ∑
(u,v)∈E

θ(u, v)J(σu, σv) +
∑
u∈V

θ(u)h(σu)

 , (6)

where ZG is the normalizing constant called the partition function. If J(i, j) = −∞ for some
i, j ∈ [q], then {i, j} is a hard constraint; otherwise i and j are compatible.

Unweighted H-colorings, which were considered in Sections 2, 3 and 4, correspond to the
special case where θ = 1, h = 0 and

J(i, j) =

{
1 if (i, j) ∈ E(H);

−∞ if (i, j) /∈ E(H).
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In this section we consider the structure learning problem for a class of models known as per-
missive systems. This is a widely used notion in statistical physics for spin systems with hard con-
straints; see, e.g., [19, 36, 15]. There are several different notions in the literature, but we consider
here the weakest one (i.e., the easiest to satisfy). Roughly, the condition says that for any boundary
condition there is always a valid configuration for the interior.

Definition 27 A spin system is called permissive if for any A ⊆ V and any valid configuration τ
on V \A, there is at least one valid configuration σ on A such that π(σ|τ) > 0.

Independent sets, and more generally the hard-core model, are examples of permissive models since
we can assign spin 0 (unoccupied) to the vertices in A.

E.2. Structure learning for spin systems with hard constraints

We first formalize the notion of structure learning for the setting of weighted constraint graphs.
Suppose we know the number of spins q, the edge potential J ∈ Rq×q and the vertex potential
h ∈ Rq of a spin system S . Consider the family of graphs

G(n, d, α, β, γ) = {G = (V,E, θ) : |V | = n,

∆(G) ≤ d,
α ≤ |θ(u, v)| ≤ β for all {u, v} ∈ E,
|θ(v)| ≤ γ for all v ∈ V },

where ∆(G) denotes the maximum degree of the graph G. Suppose that we are given L inde-
pendent samples σ(1), σ(2), . . . , σ(L) from the distribution πG where G ∈ G. A structure learning
algorithm for the spin system S and the family G(n, d, α, β, γ) takes as input the sample sequence
σ(1), σ(2), . . . , σ(L) and outputs an estimator Ĝ ∈ G(n, d, α, β, γ) such that Pr[G = Ĝ] ≥ 1 − ε,
where ε > 0 is a prescribed failure probability.

E.3. Learning permissive spin systems

In this section we analyze the running time and sample complexity of the STRUCTLEARN-H algo-
rithm for permissive spin systems.

Let γ̂ = γ ·maxi∈[q] |h(i)| and β̂ = β ·maxi,j∈[q] |J(i, j)|. Recall that for v ∈ V , Xv denotes
the random variable for the color of v under πG. We show that for permissive systems, the running
time of STRUCTLEARN-H is polynomial in the size of the graph, but depends exponentially on γ̂, β̂
and its maximum degree.

Theorem 28 Let G = (V,E) ∈ G(n, d, α, β, γ) and suppose that S is a permissive spin system
with at least one hard constraint. Then, if the structure learning algorithm receives as input

L ≥ 8q2(d+1)e4(2β̂d2+γ̂) log

(
n2

2ε

)
independent samples from πG, it outputs the graphG with probability at least 1−ε and has running
time O(Ln2).
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Theorem 28 yields a structure learning algorithm for the hard-core model for all λ > 0; thus it
generalizes the algorithmic result of [6]. We observe also that the running time of our algorithm for
permissive systems is comparable to the running time of the optimal structure learning algorithms
for soft-constraint systems in [32].

Theorem 28 is a direct corollary of the following lemma and Lemma 13.

Lemma 29 Suppose that S is a permissive spin system with at least one hard constraint {i, j} ∈
[q]× [q] on a graph G = (V,E) ∈ G(n, d, α, β, γ). Then, for all {u, v} 6∈ E

Pr[Xu = i,Xv = j] ≥ 1

q2(d+1)e4(2β̂d2+γ̂)
.

In the proof of Lemma 29 we use the following fact.

Fact 30 Let R ⊆ V and let τ be a configuration on ∂R. If Ωτ (R) 6= ∅ is the set of valid configu-
rations on R given τ , then for any σ ∈ Ωτ (R)

Pr[XR = σ | X∂R = τ ] ≥ 1

q|R|e2(β̂d|R|+γ̂)
.

We are now ready to prove Lemma 29.

Proof of Lemma 29 For any A ⊆ V and any spin configuration σ of A, with a slight abuse of
notation we use {σ} for the event {XA = σ}.

Let u, v ∈ V such that {u, v} 6∈ E and let N1 and N2 be the set of vertices at distances one and
two, respectively, from {u, v}; i.e., N1 = ∂u ∪ ∂v and N2 = {w ∈ ∂N1 : w 6= u,w 6= v}. Let Ω1

and Ω2 be the set of valid configurations for N1 and N2, respectively. Then,

Pr[Xu = i,Xv = j] ≥ min
τ2∈Ω2

Pr[Xu = i,Xv = j | τ2]. (7)

Since the spin system is permissive, for any τ2 ∈ Ω2 there exists τ1 ∈ Ω1 such that

Pr[τ1 | τ2, Xu = i,Xv = j] > 0.

Then,

Pr[Xu = i,Xv = j | τ2] ≥ Pr[Xu = i,Xv = j | τ1] Pr[τ1 | τ2] ≥ 1

q2e2(2β̂d+γ̂)
Pr[τ1 | τ2], (8)

by Fact 30. Now,

Pr[τ1 | τ2] =
∑
a,b∈[q]

Pr[τ1 | Xu = a,Xv = b, τ2] Pr[Xu = a,Xv = b | τ2].

Since |N1| ≤ 2d, by Fact 30, Pr[τ1 | Xu = a,Xv = b, τ2] ≥ 1

q2de2(2β̂d
2+γ̂)

. Together with (7) and
(8) this implies

Pr[Xu = i,Xv = j] ≥ 1

q2(d+1)e4(2β̂d2+γ̂)
. �

Remark 31 A simplified version of this argument can be used to show that in a permissive H-
coloring, for any hard constraint {i, j} 6∈ E(H), Pr[Xu = i,Xv = j] ≥ 1/q2d. From this we
obtain a structure learning algorithm for permissiveH-colorings with running timeO(q2dn2 log n)
via Lemma 13.

We conclude this section with the proof of Fact 30.
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Proof of Fact 30 For σ ∈ Ωτ (R) let

w(σ) = exp

[∑
u∈R

∑
v∈∂u∩R

θ(u, v)J(σu, σv) +
∑
u∈R

∑
v∈∂u∩∂R

θ(u, v)J(σu, τv) + θ(u)h(σu)

]
.

Then,

Pr[XR = σ | X∂R = τ ] =
w(σ)

ZR,τ
,

with ZR,τ =
∑

σ′∈Ωτ (R)w(σ′). Observe that for all σ′ ∈ Ωτ (R), e−β̂d|R|−γ̂ ≤ w(σ′) ≤ eβ̂d|R|+γ̂ .

Hence, ZR,τ ≤ q|R|eβ̂d|R|+γ̂ and

Pr[XR = σ | X∂R = τ ] ≥ 1

q|R|e2(β̂d|R|+γ̂)
. �

E.4. Identifiability for weighted H-colorings

We prove next an analog of our characterization theorem (Theorem 2) for identifiability of weighted
H-colorings. The edge potential J corresponds to the weighted adjacency matrix of a weighted
constraint graph HJ = (V (HJ), E(HJ)), where V (HJ) = {1, . . . , q}, {i, j} /∈ E(HJ) iff
J(i, j) = −∞, and the weight of {i, j} ∈ E(HJ) is J(i, j). As before, we say that a graph G
is HJ -colorable if there is a valid HJ -coloring for G. If {i, j} /∈ E(HJ) we call {i, j} a hard
constraint. The notion of identifiability extends to the weighted setting as follows.

Definition 32 A weighted constraint graph HJ is said to be identifiable with respect to a family
of HJ -colorable graphs G if for any two distinct graphs G1, G2 ∈ G we have πG1 6= πG2 . In
particular, when G is the set of all finite HJ -colorable graphs we say that HJ is identifiable.

(Definition 1 is the analog definition in the unweighted setting.)
In our characterization theorem we consider the supergraphsGij’s introduced in the unweighted

setting; see Definition 6 and Figure 1.

Theorem 33 Let HJ be a weighted constraint graph with at least one hard constraint. If HJ has
a self-loop, then HJ is identifiable. Otherwise HJ is identifiable if and only if for each {i, j} ∈
E(HJ) there exists an HJ -coloring σ of Gij such that

J(σi, σj) + J(σi′ , σj′) 6= J(σi′ , σj) + J(σi, σj′).

(Recall that i′ and j′ are the copies of the vertices i and j in Gij .)

Proof For clarity, we shall assume in this proof that the underlying graphG = (V,E) is unweighted
and that there is no external field; i.e., θ = 1 and h = 0. The same proof generalizes to spin systems
on weighted graphs with external field.

Henceforth we use H for HJ to simplify the notation. We consider first the case when H has
no self-loops. For the forward direction we consider the contrapositive. Suppose that there exists
{i, j} ∈ E(H) such that for every proper H-coloring σ of Gij we have

J(σi, σj) + J(σi′ , σj′) = J(σi′ , σj) + J(σi, σj′).
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Figure 5: A constraint graph H , its supergraph G2
12 and the graphs F1 and F2.

Under this assumption we construct two distinct H-colorable graphs F1, F2 such that πF1 = πF2 ;
this implies that H is not identifiable, which would complete the proof of the forward direction.
For this, for each {i, j} ∈ E(H) let us define the supergraph G2

ij of H that is the result of creating
two copies i′, i′′ of vertex i and two copies j′, j′′ of vertex j, with no edges between i′, i′′, j′, j′′.
Formally, for each {i, j} ∈ E(H), we define the graph G2

ij = (V (G2
ij), E(G2

ij)) as follows:

1. V (Gij) = V (H) ∪ {i′, i′′, j′, j′′} where i′, i′′, j′, j′′ are four new colors;

2. If {a, b} ∈ E(H), then the edge {a, b} is also in E(G2
ij);

3. For each k ∈ V (G2
ij) \ {i′, i′′, j′, j′′}, the edges {i′, k} and {i′′, k} are in G2

ij if and only if
the edge {i, k} is inH , and similarly {j′, k}, {j′′, k} ∈ E(G2

ij) if and only if {j, k} ∈ E(H);

see Figure 5 for an example.
Let σ be an H-coloring of G2

ij . Since the subgraphs induced by V (G2
ij) \ {i∗, j∗} with i∗ ∈

{i′, i′′} and j∗ = {j′, j′′} are all isomorphic to Gij , our assumption implies

J(σi, σj) + J(σi′ , σj′) = J(σi′ , σj) + J(σi, σj′), (9)

J(σi, σj) + J(σi′′ , σj′′) = J(σi′′ , σj) + J(σi, σj′′), (10)

J(σi, σj) + J(σi′′ , σj′) = J(σi′′ , σj) + J(σi, σj′), (11)

J(σi, σj) + J(σi′ , σj′′) = J(σi′ , σj) + J(σi, σj′′). (12)

Since the sum of the right-hand sides of (9) and (10) is equal to the sum of the right-hand sides of
(11) and (12), we get

J(σi′ , σj′) + J(σi′′ , σj′′) = J(σi′′ , σj′) + J(σi′ , σj′′). (13)

Now, let

F1 = (V (G2
ij), E(G2

ij) ∪ {{i′, j′}, {i′′, j′′}}),
F2 = (V (G2

ij), E(G2
ij) ∪ {{i′′, j′}, {i′, j′′}});

see Figure 5. Then, using (6), for any H-coloring σ of G2
ij we have

πF1(σ)

πF2(σ)
=
Z−1
F1

exp
(
J(σi′ , σj′) + J(σi′′ , σj′′)

)
Z−1
F2

exp
(
J(σi′′ , σj′) + J(σi′ , σj′′)

) =
ZF2

ZF1

,
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which is a constant independent of σ. By (13), πF1 and πF2 have the same support. Moreover, any
H-coloring of F1 or F2 is also anH-coloring ofG2

ij . Hence, we conclude that πF1 = πF2 , implying
H is not identifiable. This completes the proof of the forward direction.

For the reverse direction suppose that for all {i, j} ∈ E(H) there exists an H-coloring σ of Gij
where

J(σi, σj) + J(σi′ , σj′) 6= J(σi′ , σj) + J(σi, σj′).

Consider two H-colorable graphs G1 = (V,E1) and G2 = (V,E2) such that πG1 = πG2 . We
show that for any u, v ∈ V , {u, v} ∈ E1 iff {u, v} ∈ E2 and thus G1 = G2. This implies that H is
identifiable.

Let u, v ∈ V and let τ be an H-coloring of G1. Since πG1 = πG2 , then τ is also an H-coloring
of G2. Suppose i = τ(u) and j = τ(v). If i and j are not compatible, then {u, v} 6∈ E1 and
{u, v} 6∈ E2. Thus, let us assume i and j are compatible. Let σ be an H-coloring of Gij such that

J(a, b) + J(a′, b′) 6= J(a′, b) + J(a, b′),

where a = σi, b = σj , a
′ = σi′ , b

′ = σj′ ; we know such an H-coloring exists by assumption.
Now consider the conditional distribution πτG1,uv

on the vertices u and v of G1 given the con-
figuration τ(V \ {u, v}). Then,

p1(G1) := πτG1,uv(Xu = a,Xv = b) =
1

Zcond(G1)
exp[ha + hb + 1({u, v} ∈ E1)J(a, b)]

p2(G1) := πτG1,uv(Xu = a′, Xv = b′) =
1

Zcond(G1)
exp[ha′ + hb′ + 1({u, v} ∈ E1)J(a′, b′)]

p3(G1) := πτG1,uv(Xu = a′, Xv = b) =
1

Zcond(G1)
exp[ha′ + hb + 1({u, v} ∈ E1)J(a′, b)]

p4(G1) := πτG1,uv(Xu = a,Xv = b′) =
1

Zcond(G1)
exp[ha + hb′ + 1({u, v} ∈ E1)J(a, b′)],

where Zcond(G1) is the normalizing factor for πτG1,uv
,

ha =
∑
w∈∂u

J(a, τ(w)),

hb =
∑
w∈∂v

J(b, τ(w))

and ha′ , hb′ are defined in similar manner. This gives

p1(G1)p2(G1)

p3(G1)p4(G1)
= exp

[
1({u, v} ∈ E1)(J(a, b) + J(a′, b′)− J(a′, b)− J(a, b′))

]
Since by assumption J(a, b) + J(a′, b′) − J(a′, b) − J(a, b′) 6= 0, {u, v} ∈ E(G1) if and only
if p1(G1)p2(G1) 6= p3(G1)p4(G1). Moreover, πG1 = πG2 and thus pk(G1) = pk(G2) for k ∈
{1, 2, 3, 4}. Hence,

p1(G1)p2(G1)

p3(G1)p4(G1)
=
p1(G2)p2(G2)

p3(G2)p4(G2)
.

This implies that {u, v} ∈ E1 iff {u, v} ∈ E2 and so G1 = G2. This completes the proof of the
reverse direction when H does not have self-loops. When H has at least one self-loop then using
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the argument in the proof of Lemma 7, which generalizes straightforwardly to the weighted setting,
we get that H is identifiable.
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