Journal of Machine Learning Research 1 (2018) 1-26 Submitted 4/00; Published 10/00

A Better Resource Allocation Algorithm with Semi-Bandit Feedback

Yuval Dagan YUVAL.DAGAN @ CS.TECHNION.AC.IL
Department of Computer Science, Technion, Haifa, Israel

Koby Crammer KOBY @EE.TECHNION.AC.IL
Department of Electrical Engineering, Technion, Haifa, Israel

Editor:

Abstract

We study a sequential resource allocation problem between a fixed number of arms. On each itera-
tion the algorithm distributes a resource among the arms in order to maximize the expected success
rate. Allocating more of the resource to a given arm increases the probability that it succeeds, yet
with a cut-off. We follow Lattimore et al. (2014) and assume that the probability increases linearly
until it equals one, after which allocating more of the resource is wasteful. These cut-off values
are fixed and unknown to the learner. We present an algorithm for this problem and prove a regret
upper bound of O(logn) improving over the best known bound of O(log® n). Lower bounds we
prove show that our upper bound is tight. Simulations demonstrate the superiority of our algorithm.

1. Introduction

We study a sequential resource allocation problem for a fixed number of arms (or processes). On
each iteration ¢, the learning algorithm distributes a fixed amount of unit resource between K arms,
and pulls all the arms. The probability of each arm to succeed is proportional to the amount of
resource assigned to it (or 1, if enough resource was assigned), with slope that depends on the arm,
and unknown to the learner. The learner observes the result of all arms, and repeats the process. Her
goal is to maximize the cumulative number of successes over all K arms and all n iterations.

Formally, on time ¢ the learner assigns M} ; > 0 resource for arm k = 1...K, such that
Zszl M., < 1. The outcome of the allocation processes is X} ; = 1 if arm k succeeded and
X+ = 0if it fails. The probability of arm k to succeed given My is Pr{Xy; =1 | My, =
min{1, My, /vy } for some fixed unknown values vy . .. vg. The goal of the learner is to maximize
Zk,t X t-

The problem was first suggested by Lattimore et al. (2014), who proposed an algorithm and
a corresponding regret bound inspired by the upper confidence interval (UCB) algorithm of Auer
et al. (2002) for the stochastic multi-armed bandit problem. The algorithm of Lattimore et al. (2014)
maintains high probability lower bound estimates on the parameters v, . . ., vx. On every iteration
t, the arms are prioritized by these bounds, from the lowest to the highest, each arm getting an
amount of resources which equals its lower bound, until no resource is left. Using this technique,
the best arms get almost all the resource they require, hence, their probability of success is close to
1, and their outcomes have a low variance. This enables the authors to estimate v, with an expected
error of © (%) after ¢ allocations. Yet, the proof requires the constructed lower bound estimates to
hold throughout all the n iterations, which implies that their failure probability has to be low. This

(©2018 Yuval Dagan and Koby Crammer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://Jmlr.org/papers/vl/Dagan.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/Dagan.html

DAGAN AND CRAMMER

high confidence requirement weakens the tightness of this estimate: it is far by ©(logn /t) from the
estimated parameter, yielding a regret of O(log2 n).

We propose a new algorithm that utilizes both probabilistic lower bounds and deterministic
lower bound estimates, utilizing the fact that the error is one-sided: if arm k is allocated with M
resources and terminates in failure, we know that v, > M with probability 1. We analyze this
algorithm and prove a regret of O(logn). Besides having a lower regret bound than Lattimore et al.
(2014), our algorithm does not have to know the horizon 7 in advance (without using a doubling
trick). Simulations we performed demonstrate the superiority of our algorithm (by a considerable
gap), and a matching 2(log n) lower bound is obtained.

This problem is a special case of stochastic partial monitoring problems, first studied by Rajeev
et al. (1989). These are exploration vs. exploitation problems, where the user performs actions and
obtains a stochastic reward based on them, and on an additional hidden parameter. Lattimore et al.
(2014) surveyed relevant literature on this topic, including the work by Broder and Rusmevichien-
tong (2012). The model discussed in our paper was generalized by Lattimore et al. (2015), to enable
multiple resource types. They discuss the relation to stochastic linear bandits (Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013) and online combinatorial optimization (Kveton et al., 2015).

2. Single Arm Problem

We start our discussion in a setting with only a single arm. On each iteration 1 < ¢ < n an algorithm
assigns some amount M; > 0 of a resource to the arm and pulls that arm. It then obtains an indi-
cation of success (denoted by X; = 1) or failure (X; = 0). The arm is associated with a threshold
parameter v such that the probability of success given an allocation of M; equals min(1, M;/v), as
in the multi-armed setting. Each allocation incurs a cost of My, and the total reward on iteration ¢
equals X; — M;.

Fig. 1 illustrates the expected reward as a function of the allocated amount: it is a piecewise
linear function, maximized at M; = v, with a reward of 1 — v. The regret of the algorithm on
iteration ¢ is defined as the difference between the maximal expected reward, and the actual reward,

thl—y—(Xt—Mt),

and the total regret equals R(™) = oy Re.

Fig. 2 summarizes our algorithm for the single-arm resource allocation problem, that invokes
the arm for n rounds, when n (and of course v) are unknown in advance. The algorithm maintains a
guaranteed lower bound on v. On each iteration it allocates a slightly higher amount of resource than
the lower bound. If the machine fails, the amount of resource which was allocated is insufficient,
and the lower bound is increased. Its new value is set as the amount of resource allocated just before
failure.

Specifically, the lower bound is initialized to vy <— 0. On iteration ¢ = 1... the algorithm
allocates M; « v, + % After pulling the arm and observing X; the algorithm increases the
current lower bound and sets v, <— M; after failure (X; = 0) and does not modify the lower bound
after a success (X; = 1), thatis, v, < v,_;.

The algorithm suffers a regret of 4(logn + 1):

Theorem 1 Assume the alg. of Fig. 2 is invoked for n iterations, and interacts with some arm with
parameter 0 < v < 1. Then
ER™ < 4(logn + 1)



A BETTER RESOURCE ALLOCATION ALGORITHM

0.4 \ 2: forallt € {1,2,...} do
\ 3 My«vuvy +2

03 \\ 4 Grant the arm with M; resources
02 \. 5:  X; < success status of the arm

' \\ 6: if X; = 1 then
0.1 \\\ 7 Yy = Y

\\ 8: else
0 A\ 9 Yy < M;
0 02 04 06 08 1 100 endif
11: end for

Figure 1: Reward as a function of the resource for v = 0.6

Figure 2: Single Arm Algorithm

The proof appears in App. A. It consists of two parts: first, we show that the algorithm does not
waste many resources compared to allocating v on every iteration:

Z(Mt —v) = Z <Vt1 + % - 1/) < Z% < 2(log +1).

t=1 t=1 t=1

Secondly, we bound the expected error E[v — v,] of the lower bound estimate on iteration ¢, using
the simple recursive inequality: E[v—v,] <E[v—v,_,] (1 — 2)+ t%. One obtains that E[v —v,] =
O(1/t), which, in tern, implies a low number of failures: E[> " | (1 — X;)] < 2(logn + 1). A
bound on the regret is obtained by combining these two bounds. The proof holds for a more general

and adversarial setting, as discussed in Remark 2.

Remark 2 The algorithm of Fig. 2 and the analysis in Thm. 1 hold for the following gemeral setting
where the success probability of the arm has two restrictions: (1) if My > v, then Xy = 1 with
probability 1, and (2) for any values of t, My, ..., M; and X, ..., X;_1 for which M; < v,
we have, Pr[X; =0 | My --- My X, --- X;_1] > v — M. The second restriction ensures that the
optimal allocation is always M; = v.

3. Multi-Arm Problem

We address the following problem presented by Lattimore et al. (2014), as we describe briefly. There
are K arms denoted by 1,2, ..., K. On each iteration ¢ an algorithm divides a resource between
the arms, such that arm % receives My, ; > 0 of it. We assume that the total amount of resource is
bounded, » , M}, ; < 1. The success probability of each arm given M}, ; is min(1, My, ¢/vy), where
vy is a fixed unknown parameter associated with arm k. If the amount allocated Mj, ; is greater than
this threshold vy, then the arm will succeed with probability 1. Otherwise, it will succeed with prob-
ability proportional to the amount allocated: Mj, ;/vy,. Finally, define v = (v, ..., vk ), and assume
that v; < --- < vg (the algorithm does not know this ordering). Denote the success indicator by
X} and set Xy ; = 1 if the arm succeeds and 0 if it fails. The goal of the algorithm is to maximize
the number of success pulls after n iterations, called the reward and given by > )" , Zle Xt
Lattimore et al. (2014) described an algorithm to find the optimal allocation when the thresholds
v1,. ..,V are known. This allocation is obtained by prioritizing the arms according to the amount of



DAGAN AND CRAMMER

resource they require (). First, the arm with the lowest requirement is allocated with the minimal
amount required to succeed with probability 1, that is M| = v4, then the second lowest, and so on,
until either there is no resource left, or all arms receive the amount they require. Formally, this opti-
mal allocation is defined recursively, and arm k is allocated with, M} = min ( v, 1 Zk ' M *)

Let ¢ be the number of arms k for which M}, = v. It holds that forall 1 < k < ¢, M = v;. If
¢ < Kthen0 < M/, < vpy and deﬁne S* = My, ;. The expected reward from this optimal
allocation is E [}, X| = € + 1o<x 7, where 14 denotes an indicator for A.

Assuming the executed algorlthms do not know the parameters of vy, ..., Vi neither their or-
dering, they are expected to obtain less reward than the optimal allocation. We call the difference
between an algorithm’s actual reward and the optimal expected reward (over all randomizations) by
regret given by,

RM(A, ZRt_n<£+1e<K> ZZX’”’

t=1 t=1 k=1
where A denotes the algorithm. The goal of any algorithm is to minimize the expected regret.

Our Contribution: =~ We describe in Fig. 3 an algorithm that receives a parameter ¢ > 2 as input,
and operates in the above setting, with a regret O(logn), and constants depending on the threshold
parameters v. This improves over the previous bound of O(log?n) of Lattimore et al. (2014). We
also present a lower bound showing that the dependence in n cannot be improved. It is impossible
to get a polylogarithmic regret independently on the problem parameters as shown by Lattimore
et al. (2014).

Besides having a lower regret bound compared to the algorithm of Lattimore et al. (2014), our
algorithm does not have to know the value n in advance (without having to rely on a doubling
trick), and has a lower initialization cost. Also, whenever K < ¢ + 1, our algorithm shows a great
superiority in the simulations, and it performs considerably better in general. In the next theorem
we state an upper bound on the regret of the presented algorithm (Fig. 3).

Theorem 3 Fix some ¢ > 2, and let A. denote the algorithm of Fig. 3 invoked with the parameter
c. Fix an integer K > 0, and a vector v € Rf and an integer n. > 1. Then,

IER(”)(AC, v) < Cllogn + Cylogn + Co,
where C' > 0 is a constant that depends only on ¢, and

K
clzc.<”ﬂ+1+z”k>

Vi1 — k—t12 Vi — Vit1
1
Cy=C- <(£+ 1) max(1,log —) +KlogK> :
41

The bound has better dependence in n and the constants are compared with the bound of Lattimore
et al. (2014) with regret of the form, ¢log® n+logn Zsz 042 %7”71’2}“, plus some terms independent
on n.

Next, we present a lower bound of ©(¢n) on the regret. The proof appears in Sec. C, and a
different lower bound is presented and proved in Sec. D.



A BETTER RESOURCE ALLOCATION ALGORITHM

Theorem 4 Fix an integer r > 0 and define K = 2r. Let D be the following probability space

overvectors v € RE: vy, ... v, are picked uniformly and independently from [%, %], and vyy1 =
= Uy = % Then, forv ~ D and H(n) = Y1, % any algorithm A satisfies,

ER™(A,v) > — (H(n —1) G
v) > — -1)—-—=).

=g (T 12
Here is an intuition for the proof. For any ¢ > 1, the total variation distance between the first ¢
successes (X 1 --- Xy ) of an arm with paramter v and the successes of an arm with parameter
V' is at most O(t|1/v — 1/v/]). Hence, t = Q(1/|1/v — /11/|) rounds are required to distinguish
between v and v/. This roughly implies that under the distribution D in Thm. 4, one can estimate
V1i,. ..,V with an additive error not lower than ©(1/(rt)), hence the regret incurred at round ¢ by
misallocating any arm & is ©(1/¢). Summing over arms 1 < k£ < r and over all rounds 1 < ¢ < n,
one obtains a regret of (7 logn).

4. Algorithm

In this section, we present the algorithm and an intuition to its construction. Recall the optimal
allocation algorithm which knows the parameters v - - - v and allocates resource to the arms in an
escending order of v: arms 1 to ¢ are fully allocated, arm ¢ 4+ 1 receives the remaining resource
and the rest of the arms receive no resource (ussuming wlog that 1y < ... < vg). The algorithm of
Lattimore et al. (2014) uses the same algorithm, replacing the real parameter v, by a lower bound
estimate vy, , ; obtained on iteration ¢: the arms receive resource in an escending order of the lower
bound estimate, each arm k receiving v, resource, until no resource is left. Their estimates
vy, ¢—1 converges to vy, which implies that the allocations in their algorithm converge to the optimal
allocation.

One would suggest using the scheme of Lattimore et al. (2014) while replacing their lower
bound estimate with the one suggested in Sec. 2, however, there are some obstacles which enforce
the solution to be more involved. Recall that in Sec. 2 the arm was allocated with M; = v,_; + ¢/t
resources where ¢ = 2 (in the multi armed algorithm we allow c¢ to be any constant greater than
2). Since there are multiple arms, this solution would be wasteful: one would possibly allocate a
redundant amount of ¢/t per arm. Similarly to Thm. 1, one can show that an allocation of M}, ; =
v,_1 + e/t is sufficient. Since vy, is unknown, it is replaced with its lower bound estimate, denoted
ch:lﬂf—l'

Here is another issue: one cannot allocate g%t_l + vic/t resources on any iteration due to
two reasons. First, one replaces v with gg 1> a bound which may be inaccurate, at least on
the beginning. Secondly, due to a lack of resources, it may happen that one, for instance, would
allocate an amount higher than g%t_l and lower than g‘,it_l + g‘,it_lc/ t. Due to this issue, the

solution of allocating g‘,}: o1 T g‘g t_lc/ t would not work. The value vic/t is replaced with an
amount which depends on all previous allocations: one sets s%t = Zigt max{0, My, ; — Zg,i—l}l
and rp; = cv, | exp (—sg 1/ (cggt_l», and allocates My, = v, | + 7y, if there are
sufficients resources. This definition makes sense: the sequence aj,asz,... defined by a; = cig

and a; = cv exp (— Sitai) (cuk)> satisfies a; &~ cvy/t. Hence, have the two issues described

1. This sum does not include the initialization rounds defined below.



DAGAN AND CRAMMER

in the beginning of this paragraph not existed, the new allocation scheme would have allocated an
amount similar to gg i1 T Clk /t.

An algorithm based only on g‘,i . would not achieve the desired regret. A tipical situation is
that the algorithm allocates any arm k € {1, ..., ¢} with an amount similar to v/, and only a small

amount of resource remains for the next arm, an amount insufficient for improving the estimate:
one can improve v¢, over ¢, | only when My, > v, ,. Without being able to improve the
estimates on the rem’aining arrﬁs, one cannot accurately decide which arm should get the remaining
resource. For that reason, we create another estimate, inspired by the estimate of Lattimore et al.
(2014) and by the UCB algorithm of Auer et al. (2002). It is denoted by gg’t, as it is probabilistic,

while g‘,it is a deterministic bound. This bound relies on the fact that E [ X} ; | My ] = My +/vg
whenever M}, ; < vj,. It estimates 1/22,7: ~ (> Xki)/ (>, My;) where the sum is over all 7 < ¢
such that My, ; < gg ;1 for these values of ¢ it is guaranteed that M}, ; < 1. The actual estimate
is slightly lower as one requires that th < v;, with high probability. See Fig. 3 a full definition of

vy ,. The resource is allocated to the arms in an ascending order of max (gg . g% t).

One gets into the following dilema: what happens if, at some point, the remaining resources is
higher than gg 1 and lower than gg +—1 T Tk, where k is the next arm to be allocated. Here are
two unsuccessful solutions:

e Allocating all the remaining resources to arm k: as a result, the estimate gg , may improve
d : : _d
over v, 4, however, not as good as the improvement when allocating My, ; = v} ;1 + iz

Additionally, the estimate v} , cannot improve after allocating more than v§, | resource,

hence it does not improve. This slow improvement of max(g% . gz ;) could imply that the

arm will get a priority it does not deserve for many rounds, taking resources which could
better be utilized by other arms.

o Allocating g‘,i ,_1 resources: as a result, the estimate gi , will improve over ZI/:; +_1» however

g% . will not. Since only gg ;1 Tesources are allocated rather than all remaining resources,

arm k may get stuck, receiving the same amount of resources on every iteration, while the
remaining resources are given to inferior arms.

One can solve this problem by making sure that both gzt and g% , are improved with constant
probability, tossing an unbiased coin to decide between allocating all the remaining resources to
arm k and allocating gg ;1 resources.

Due to the definition of 7, our allocation scheme requires th to be positive. In order to
obtain an initial positive estimate gg +» a different allocation scheme is performed, similarly to the

initialization phase of Lattimore et al. (2014): each arm k is allocated with 2—(t-1) /K resources on
every iteration ¢ until it fails (X ; = 0). Then, gg , 18 set as the amount M), ; allocated at failure,
and the normal allocation scheme is used from then.

The algorithm appears in Fig. 3. As one may notice, it may be implemented using O(K)
memory and O(K log K) time per iteration?. The authors did not find a simple way to implement
such an efficient algorithm using existing tools. For instance, one may suggest discretizing the space
of all possible allocations, and learning an allocation from this space using a standard multi armed
bandit (Auer et al., 2002). However, in order to achieve a polylogarithmic regret, Q(n)K different

2. The algorithm contains sums over ¢ = 1, ..., t, however, one can calculate this sum given the sumup to¢ — 1



A BETTER RESOURCE ALLOCATION ALGORITHM

1: Get as an input a parameter ¢ > 2
2: Setgg’o — Oandgzo +—Oforallk € {1,...,K}.
3: forallt + 1,2,... do
4:  resource < 1
s forallk € {1,---, K} in an increasing order of max(g‘,i?t_l,ggt_l) do
Sd . .
6: Tkt < cg‘,i i1 €Xp (—V(i”lc> 1fg‘,3, +—1 > 0 otherwise 7 ¢ < 0
’ Zkt—1 ’
. e d _
7: ifvg, 1—Othen
M, < 2,5 e {Case I}
: else if resource > gk +—1 T Tk, then
10: Myt + g(,i i1+ 7 {Case A}
11: else ifg(,i 1 < resource < g% +—1 T Tk, then
12 Draw an unbiased coin to decide whether M, ; < gg 1 Or My ; < resource {Case B}
13: else
14: My, < resource {Case C}
15: end if
16: resource <— resource — M, ¢
17:  end for

18: Observe X1 ¢,..., Xk
19: g%’t < MaxX;<t: X, ;=0 M, ; if the max is over a nonempty set, otherwise g%’t +~—0

. d _
20: Sk,t—Zigt:ggi >OmaX{M;“ 1/,“ 1,0}

2 g=t3K 1 (\/ +\/1/2—loget>

. . p .
22: Sk t = 2<t Myi<vf ; kit = qu Myi<vd,_ Xk
. Gt ,t
23: yk t < /25 R Sp > if sk > 0 otherwise Vk e 0
24: end for

Figure 3: Resource-allocation algorithm for the multi-armed problem.

arms are required, which is high even for the setting with X' = 1. Another suggestion it to estimate
Vi, ..., VK using a maximum likelihood estimator, calculating

t
arg max Pri{Xpi- - Xpe|lvgMy - My,] = arg max (1 — Xpy —min {Mp,/vg,1}) (D)
Vi > v >
=1
for any arm k. However, it seems that any simple implementation requires that My ;/v, < 1, a
solution offered by Lattimore et al. (2014)* which suffers a higher regret. Otherwise, the authors
think that there is no simple way to calculate this estimate for all £ without storing M, ; and X}, ; in
memory for all 7 < .

3. Lattimore et al. (2014) used confidence intervals instead of a maximum likelihood estimator.



DAGAN AND CRAMMER

5. Proof Outline of Theorem 3

In this section the outline of Thm. 3 is presented together with the main lemmas, where ¢ > 2 is the
constant parameter given as an input to the algorithm. Recall cases A, B, C and I from the algorithm

in Fig. 3. We start by splitting the iterations into two types. Let v, = max (gg . g27t> and let T’
be the set of “good iterations”, for which 0 < vy, < v for all k. The core of the proof relates
to iterations ¢ € T', while the number of iterations ¢ ¢ T' can be bounded: first, by observing case I
of the algorithm, one can show that after a short number of iterations, for all 1 < k < K, g}i?t > 0.
Secondly, it always holds that g‘g,t < vg. Lastly, the estimate g};t is constructed such that y};t <
with high probability.

Lemma 5 The expected number of iterations t ¢ T is bounded by C max (log 7117 1), for some
constant C' > 0, depending only on c.

From now focus on iterations ¢ € 7. Note that on any iteration ¢ € T, no arm is allocated
according to case I. Let A} be the set of all arms processed in the loop over the arms in line 5 of
Fig. 3 on iteration ¢ before encountering an arm k which is not allocated according to case A. Let k]
be the first arm processed not according to case A. If the arm £ is allocated according to case B then
set B, = {k;},C; = () and if according to case C then C] = {k;}, B, = 0. If k; is undefined then

! = C} = (). Define the sets Ay, B; and C; as the sets of all arms of A}, B; and C] (respectively)
which are among the first £ + 1 arms processed on iteration ¢. If B; # (), define by r; the difference
between the amount of resource left for &} and g‘é;ﬁ .- Note that if B; # () then arm ; is of case
B, hence it will either be allocated with My, ; = ggg’ ¢—1 or with My, = ggg’ .1 + 1, each with
probability 1/2. The sets A;, By and C} are defined this way only for iterations ¢t € T, and they are
defined at emptysets for ¢ ¢ T'.

Define by Z; the random variable which contains all the history up to the point where all
Mi¢41,..., Mk 41 are defined and just before observing Xy ;41 --- X 441 (it contains the val-
ues { X} ;}i<k<K i<¢ and the random coins tossed in case B of the algorithm up to and including
iteration ¢ + 1). The expected regret on iteration ¢ given Z;_1 equals

s & M,
B[Ry | Zia] =0+ 1xop—— — > B[Xpy | Zia] = ( t) :
Ver1 15 Vi1

The next lemma bounds E[R; | Z;_1], and decomposes it in terms of A;, B; and C}.

Lemma 6 Lett € T. It holds that

o My
E[R; | Zi—] < Z (1 - mln( o ,1>> 2

keA:
/
Tt
Yy 3)
ke A, k, t—1 keB; Zk,t—1

N Z min( V(ki;t 1 M) (1 vepr — 1/ vg) ’At‘zg.
mln(ygt M) (1 ve —1/vy) |Ae| < €

“)

keBUC:



A BETTER RESOURCE ALLOCATION ALGORITHM

The proof of Lem. 6 matches between the allocations by the optimal allocation, and those by the
algorithm. The amount in line (2) relates to the difference between the reward of arms 1,. .., | A
in the optimal allocation, and the reward of the members of A; in the algorithm. The amount in
line (3) relates to possibly allocating 3, A, Tkt T r} resource to the wrong arms. Line (4) stands
o1 M, k{”t) resources to arms in B; U Cy, instead of
allocating it either to arm ¢ or to arm ¢ + 1. One can bound the total regret of the algorithm by
summing the bound obtained in Lem. 6 over ¢ € T" and changing the order of summation:

ERM™ =>"ER, =» ER +» ER, =) E[E[R | Z 1|+ > ER
t=1

teT t¢T teT t¢T

a . My,
SZ Z E[l—mm( ” ,1)] )

k=1t: keA;

for the regret incurred from allocating min( gg,
t

n

K
FE| Y Ry ©®
k=1

v v
t: k‘EAt 7k7t_l t: keBt 7k7t_l

n iE Z {min(yg,t—luMk,t)(l/Vg+1 —1/u) A =¢ -
k=1

| t: keBUC, min(z(l:cl,t—l’ Mk,t)(l/yz - 1/Vk) ‘At| <t

+(n—E|T))({+1), ®)

where the term in line (8) is obtained from Et¢T ER; by the fact that the reward of the optimal
allocation is at most £+ 1, hence the regret on any iteration is at most £+ 1. The regret is decomposed
into four parts, appearing in lines (5), (6), (7) and (8), each bounded separately, where the amount
in line (8) is bounded by Lem. 5.

First, we bound the amount in line (5).

Lemma 7 There exists a constant C' > 0, depending only on c, such that for every arm k:
E| Y (1—min(l, Mg/v))| < C(logn +log K).
t: keA;

To give an intuition, recall that whenever k € A, there is a sufficient amount of resource for arm k,
and one allocates My, ; = gg +—1 + Tkt Note that whenever k € Ay,

d

. My Vg — Myt Vg — Vgt 1

1—m1n( ~ 1l =max | ——=,0) < ————,
Vk Vg Vg,

Similarly to the corresponding claim in the single armed problem, one can roughly show, by a poten-

tial function calculation, that after m iterations when & € Ay, it holds that E ( v, — gg t_l) Jvk =

O(1/m). Hence, one can roughly bound the amount in line (5) corresponding to any arm k by
>or_10(1/m) = O(log n). The actual proof is inductively by a potential function.
Next, we bound the amount in line (6), which corresponds to the redundant resource given to

the arms.



DAGAN AND CRAMMER

Lemma 8 There exists some constant C' > 0, depending only on c, such that for every arm k:

E| D g+ 2

t: ke Ay fkt 1 ¢ keBy k, t—1

< C(logn +log K).

We give an intuition for the proof. Note that if & € A; then max (O, My — gg t—l) = Tkt
and if £ € By then k is of case B, hence max (0, My — gg t—l) = r} with probability 1/2 and
max (0, Myt — g% t_1> = 0 with probability 0. Therefore, one can bound

E Z Tkt + Z 7“2 < 2E

t: keA; t: keB:

i max (O, My ¢ — V%,t—l)] . )

t=1

Note that by the definition of the algorithm,

Zf;% max (O My, — Zk,i—l)
Cﬂk,z‘—1

t—1
> ;_p max (0 My — V,“ 1)
< cypexp | — ,
cvy,

max (0, My — 1], ) < e = vl gcexp | = (10)

where the last inequality follows from the fact that g%Fl < v, and the fact that ze~ /% is
monotonic nondecreasing in x for « > 0 and x > 0% One can show that this implies that
> o, max (0 M+ — th 1) < 30 ag, where a1 = vy and a; = cvy exp ( Zf;% ai/(cyk))
for all t > 1. It holds that a; =~ cvy,/t, which implies that > ;" | a; = O(vglogn). Combining the
last inequalities, one obtains a bound of v, log n on the left hand side of Eq. (9). This concludes the
proof since g%t_l = Q(vy) for most values of ¢.

Lastly, we bound on the amount in line (7), inspired by Lattimore et al. (2014) and Auer et al.
(2002).

Lemma 9 There exists some constant C' > 0, depending only on c, such that for every arm k:

C logn k=/¢+1.

. d CVk W 1logn k>f+1
E > {mln(l/k,t—p My )L vegr = 1/ve) - Ad =L _ |
min(yd M, 1/vy—1/v Al < | — uk w

(e M) (U ve—1/m) A 0 k<41

teT: ke BiUCy

We give an intuition for the proof, ignoring the dependency on v ---vi for simplicity. Re-
call that 1/ g‘,; ;1 1s estimated roughly by the number of successes divided by the total resource,
(2, Xki) /S My.; over iterations i < t — 1 for which Mj,; < v, |. For a single 4 in the sum,
expectation of X}, ;/Mj, ; is indeed 1/vy, and a relative Chernoff bound can show that if > Myis

4. Note the sum in the right hand side of line (10) is over all ¢ < ¢ — 1. While the definition of rj, ; requires the sum to
be over all 7 < ¢ — 1 such that 22,141 > 0, we ignore this requirement, for simplicity of presentation.

10



A BETTER RESOURCE ALLOCATION ALGORITHM

80000

== LCS
== OUR

8000

-

80
18 180 1800 18000

regret

iteration #

Figure 4: Regret vs n for two algorithms (log scale).

sufficiently large then this estimate is close to 1 /v with high probability. Fix some & > ¢+ 1 and if
> i My, ; = Q(log n) for a sufficiently large constant, then Hi,t—l > vypy1. If t € T this implies that
gz’t_l > Vg4l 2 Vyg—1s- - > Yey14—1 and K is not one of the first £ + 1 arms processed on iteration
t. Hence, k is not in B; U Cy from that point onwards, which implies that E ), M}, = O(logn),
where the sum is over iterations 1 < ¢ < n such that M, ; < Zg,t—l and k € B; U C;. Since B; and
C contain arms of cases B and C respectively, whenever k € C} it holds that M}, ; < Z%,t—l and
whenever k € B; then M}, ; < Zg,t—l with probability 1/2. In particular, this implies that

: d : d
E E min(vg g, My,) | < 2E E min(vy,; g, Mi) | = 2E E M 4
t: ke BUC} t: ke BsUC: t: ke B:UC:
Mk,tgﬂ(];l’t,1 Mk,tSZ(]i’t71

The last term is O(log n), which concludes the lemma for any arm & > ¢ + 1. One can similarly
bound the amount corresponding to k = ¢ + 1, while the amount corresponding to £ < ¢ is non-
positive since 1/vy — 1/v < 0.

6. Simulations

We conducted simulations to evaluate the merits of our methods, each for 100 executions. First, we
followed the choice of Lattimore et al. (2014) and used a problem with K = 2 and vy, = 0.4, =
0.6 as a problem where the regret contains only a term of the form £ log? n, and indeed found out that
the regret behaves as 451og® n. We remind the reader that the main improvement of our algorithm
is by replacing the ¢log? n term with ¢log n. This term corresponds to the regret obtained from the
fact the algorithm does not know the exact requirements (1) of the top ¢ arms. We experimented
with logon = 1,2,...,18, and ¢ = 2.5, and the regret behaves as 3.5 log n with high confidence.
For n = 2'8 this is an improvement from 7053 to 43.

While our main improvement in the regret corresponds to reducing the term ¢log? n to £ log n,
the other main term, logn ZkK:g 12 Vk_”#, which corresponds to arms k£ > ¢ + 1, appears in
both papers. Hence, one expects that the greatest difference between the algorithms would be in
situations where K // is low. Indeed, this is the case, as shown in our simulations.

We also performed experiments where the arm parameters v, are uniformly spanned. One
execution was performed with K =50, and v = % for k=1,...,50. That is, 1 :2/252, VUs0 =

11



DAGAN AND CRAMMER

1500 2500
1000 2000
1500
500 1000
500
0 0 o—o—
0 5 10 15 20 0 5 10 15 20
(a) 100 arms (b) 50 arms

Figure 5: Regret of the algorithm in Fig. 3 as a function of logy n

100/252=4/25, and /=24. The regret vs n is plotted in Fig. 4. In each of the 100 executions, we
ran one copy of our algorithm as it is any-time, yet multiple-copies of the algorithm of Lattimore
et al. (2014): one for each value of the horizon n. For n=2'* our algorithm suffers a regret of 721
compared to 27, 681 by their algorithm.

Similar trends were observed with other choices of the parameters. For example, with K = 100,

and v, = % for k = 1,...,100. Here ¢ = 99, therefore only the term ¢ log n takes part, and for
n = 2'® our algorithm suffers a regret of 1167 compared to 352, 173 by their. Another example is
when we set K = 50 and v, = % for k = 1,...,50 (therefore ¢ = 9). For a horizon of n = 2'%

our algorithm suffers a regret of 1,544 compared to the 21, 665 by the benchmark. The regret of
our algorithm in these two experiments as function of n is drawn in Fig. 5, where the z-axis is in
logarithmic scale and the y axis is in a normal scale. One can see that in the first experiment, the
regret is a linear function of log n, while in the second experiment, the regret is a linear function of
log n for any value n > 2% (we executed up to n = 220).

7. Summary

We described an algorithm for the multi-resource allocation problem and proved both upper and
lower regret bounds of ©(logn), an improvement compared to the regret of O(log? n) of the pre-
vious algorithm by Lattimore et al. (2014). Additionally, we discussed a related settings, where
there is only a single-arm. Simulations we performed showed the supervisory of our algorithm.
Future directions are extending our results to the multi-resource problem (Lattimore et al., 2015), to
the contextual case where algorithms receive instance dependent side information, and to the case
where the parameters or total amount of resource drifts in time. Lastly, we believe that the algorithm
can be modified to handle non linear bandits, similarly to the generalization of the one arm problem
in Remark 2.

References

Yasin Abbasi-Yadkori, David Pél, and Csaba Szepesvari. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312-2320, 2011.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In ICML (3), pages 127-135, 2013.

12



A BETTER RESOURCE ALLOCATION ALGORITHM

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235-256, 2002.

Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice
model. Operations Research, 60(4):965-980, 2012.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pages 493-507, 1952.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for
stochastic combinatorial semi-bandits. In AISTATS, 2015.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4-22, 1985.

Tor Lattimore, Koby Crammer, and Csaba Szepesvéri. Optimal resource allocation with semi-bandit
feedback. In UAI, pages 477—486. AUAI Press, 2014.

Tor Lattimore, Koby Crammer, and Csaba Szepesvari. Linear multi-resource allocation with semi-
bandit feedback. In Advances in Neural Information Processing Systems, pages 964-972, 2015.

A Rajeev, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically efficient adap-
tive allocation schemes for controlled iid processes: Finite parameter space. IEEE Transactions
on Automatic Control, 34(3), 1989.

Appendix A. Proof of Theorem 1

The proof is for the general setting discribed in Remark 2

Assume that the allocation rule of the algorithm is M; < v,_; + % for some ¢ > 1 (2 is replaced
by c), and bound the expected regret by Cc_—Ql(logn + 1). Fix some arm, and let v be its resource
requirement.

We divide the expected regret into two parts:

ER™ =E |n(1 —v) — En: (X, — Mt)]
t=1
=E zn:(Mt —v)| +E zn:(l —Xt)] . (an
t=1 t=1

We start by bounding the first term of (11). Since the lower bound v, is always correct, namely,
vy < v, it holds that:

n

S (M; - v) :Z(%Jrgt,l—u) <> <cllogn +1). (12)

t=1 t=1 t=1

Next, we bound the second term of (11). Define e; = v — v,. This is a random variable, since
v, is also a random variable. We will start by bounding E[e,].

13



DAGAN AND CRAMMER

Lemma 10 Forany 0 <t <n,

2
C 1
E < —_
[Et]* c—1t+1

Proof We start by bounding the conditional expectation E[e;|e;_1], for any 1 < ¢ < n. Fix some
1<t <nand0 < e <1, and assume that e;_; = €. The problem definition assumes that the
probability that X; = 0 is at least
c c c
—M: — —_— =& 1 — - = _ -
v t=V =V q ; t—1 ; € :
Denote p = Pr[X = 0O[e;—1 = ¢|. As we have just showed, p > ¢ — 7. By the definition of the
algorithm, with probability p, v, = M;. At that case,
c c c

€t:1/—zt:V—Mt:V—Zt_1—¥:€t—1—¥:E—?

With probability 1 — p, v, = v,_;. At that case,

Et=V—V; =V —V;_ 1 =E_1=E

Therefore,
c c c.c c 2
Eleiler—1 = €] = p(e — Jt(d-pe=e-—pr<e-—(e-1) =e—e +5
Writing it differently, this means that E[e;|e; 1] < &;1(1 — §) + f—;
We conclude the lemma by induction on 0 < ¢ < n. Fort =0,
c? c? 1

Eleo] =E[v —py)l =v<1<c< = :
eo] =Elv —w] =vslses o9 =975

Forl <t <mn,
Ele;] = E[Ele|er—1]]

= Ele1(1- ) + 5]

<

<

where the last inequality follows since (¢ — 1)(t + 1) = t? — 1 < ¢2, [

14



A BETTER RESOURCE ALLOCATION ALGORITHM

The algorithm implies that v, = v,_; + %(1 — Xy), for all 1 <t < n. Therefore,
c
e1—e=W-v ) - (V-uy)=v, -y ;= g(l — Xi).

This implies

El-X;]=E |:t(€tlc_ Et):| _ t(Ee;_1 — Eey)

Summing over 1 <t < n,

C
t=1 t=1
n—1
Eeg Ee; nkEe,
C C C
t=1
n—1
E&t
g -
C
t=0
n—1 2

IN
(SR
—~
(@}
|
—_
~ O
—
~
_|_
—_
N—

< (logmn + 1). (13)

Equations (11), (12) and (13) conclude that:

n

> (M, —v)

t=1

n

Z(l - Xt)] < c(logn+1)+

t=1

C 62

1 1) =
c—l(Ogn+ ) c—1

ER™ =R +E (logn+1).

This is minimized at ¢ = 2, with a value of 4(logn + 1).

Appendix B. Proof of Theorem 3

This is section contains a proof for the lemmas appearing in the proof outline in Section 5. Sec. B.1
contains a list of all definitions, Sec. B.2 presents the proof of Lemma 6, Sec. B.3 presents the proof
of Lemma 7, Sec. B.4 presents the proof of Lemma 8, Sec. B.5 presents the proof of Lemma 5, and
Sec. B.6 presents the proof of Lemma 9.

B.1 Table of definitions

Below is the table of all definitions.

e Z;: contains everything the algorithm has seen up to and including iteration ¢. It includes the
values of X ; forall1 < k < K and 1 <t < n. The only difference between Zj and Z; is
that Z; contains the result of the random coin tossed by the algorithm on iteration ¢ + 1, while
Z; does not.

15



DAGAN AND CRAMMER

T0: MaxXi<p<k Tk,o- Lhe first iteration where all arms have positive lower bound.
B(+): equals min(1, -).

n: number of iterations the arms are invoked.

K: number of arms.

v1,..., VK. these parameters determine the success probability of the arms. Given a resource
of M, arm k succeeds with probability min (1, %

¢: the number of arms that are fully allocated under the optimal allocation. The highest
number of ¢ > 0 such that Z;Zl v; <1.

M, ;- the amount of resource allocated to arm k on iteration ¢.
X}, ¢+ the indicator of the success of arm & on iteration ?.

gg ;- the deterministic lower bound of v, calculated by the algorithm at the end of iteration
t.

gi ,+ the probabilistic lower bound of v, calculated by the algorithm at the end of iteration .
. d . p
Vp gt max(vy ,, vy ).

c: a parameter given to the algorithm, that has to get a positive value greater than 2. It takes
part in the calculation of 7 ;.

(+)+: equals max(0, -).

d . o4
Sk equals 3 ;. g‘,é.i>0(Mkﬂ Vhio1)+

d
Sk,t—1

d . .
o > Equals My — vy, if there are sufficient resources

Tt equals cgg 11 €XP <—

for arm £ on iteration ¢.

=1

D .
Sy.¢: equals doi<i<t: Myi<ud, My, ;.
D .
., equals Elgigt: Mii<rd, X i-
T': the set of “good” iterations. Equals {1 <t <n: 0 <y, ; <Vl <k < K}
. c—2
p: equals 5 =.

kit,...,kKks: thearms 1,..., K, by the order which they were iterated on the loop over the
arms in line 5 of the algorithm, on iteration ¢.

£4: the highest value of ¢ such that forall 1 < j <, My, = g(,ij,ut,l + g

3,tte

Ay {kl,u kz,t, S kmin(ft,f+1),t-

16



A BETTER RESOURCE ALLOCATION ALGORITHM

B — {ki} A <min(f+1,K) AND 1 -7 4 My, > Z(Iig,t—l
0 otherwise 7

o {{k;} [Ad] < min(0+1,K) AND 1 =370y Mee < vy,

0 otherwise

/.
kt-/ﬂAt\H,t-

r = 1 - ZkeAt My, — Egé,t—l B, 75 1]
S By =10

Z,:the random variable that contains everything the algorithm has seen up to and just before
the point it gets to see the success statuses of the arms on iteration ¢ 4+ 1. It contains all the
success statuses Xy ; for any arm 1 < k& < K and any iteration 1 < 4 < ¢, in addition to all
the randomness of the algorithm up to and including iteration ¢ + 1.

R;: the regret on iteration .
RM:3"" Ry
T, 0:the lowest value of ¢ for which g% . > 0.

. Vk_ﬂg_’t
€k t- T

Tk,1: the lowest value of ¢ such that e, ; < p.

h . (Mk,tszyt_l)'ﬁ’
k,t- Thit

Z;: contains everything the algorithm has seen up to and including iteration ¢. It includes the
values of X ; forall1 < k < K and 1 < ¢ < n. The only difference between Zj and Z; is
that Z; contains the result of the random coin tossed by the algorithm on iteration ¢ + 1, while
Zj does not.

To: MaxXi<p<k Tk,o- Lhe first iteration where all arms have positive lower bound.

B(+): equals min(1, -).

B.2 Proof of Lemma 6

Here is a result which appears in the original work of Lattimore et al. (2014).

Lemmall Fixt € T, and 1 < j < K. Then, Vhjyt—1 < vj, namely, the arm with priority j on
iteration t has a lower bound of at most v;.

17



DAGAN AND CRAMMER

Proof For any arm k& < j, it holds that v, < v} < v;, where the first inequality is due to the
fact that ¢ € T, and the second inequality follows from our assumption that v; < --- < vg. This
implies that the list vy ;_;,..., v, has at least j values lower or equal to v;. Therefore, if we
sort the list vy 41, ...,V ;1 In an increasing order, the value on place j (counting from the start)
is at most v;. This value is exactly Yk yt—10 by definition of k; ;. |

It holds that E [ X}, ; | Zi—1] = B (My+/vg), forall 1 <k < K. If |A;| = min(¢ + 1, K), then

K

B[Ry | Zi1) <€+ 1xse— Y B (Miy/vi)
k=1

K
< |A¢| - Zﬁ (Myi/vg)

k=1

<A = B (Mg /i)

keAq

= > (1= B (My/my))

keA

Therefore, the proof follows for this case.

Assume next that |4;| < min(¢ + 1, K). Let h: [0,00) — R be a function such that for all
1<k <K,h(x) =1/ in the range = € [Zf;ll vi, Zle v;),and h(z) = 0 for all x > Z
It holds that h(x) is monotonic non-increasing, and its integral function H(x) = fy oh(y )dy
satisfies that H (1) is the award achieved by the optimal policy in round ¢. Therefore,

K
E[R; | Zi1] )= > B(Myi/vi). (14)
k=1

Leta = ‘,f:t‘l v and b = IAt 1Yk + D pea, Tkt + 1. Using equality (122),

B[Ry | Zia) < | H(a) = Y B (Myy/vi) (15)
keA,
+ (H(b) — H(a)) (16)

+ (H(l) —H(b) -8 (Ai’:”)) . 17)

We will bound each of these three terms separately.
The right hand side in (123) is bounded by

|At|
ka — > B(Myg/vp) = Y (1= B (My1/wy)). (18)

keAy keAs

18



A BETTER RESOURCE ALLOCATION ALGORITHM

We proceed to bounding the quantity in (124). Lemma 32 implies that any & € A, U {k;} =

{k1ts- s kja |41, satisfies g‘,it_l < V| 4,|+1- Therefore,
|
HO) - H@ < [
a V|At|+1
ViA+1
/
Tk}t T
<> (19)

ked;, Zhi—1 Y

Lastly, bound the quantity in (125). Lemma 32 implies that

| Al | Al
d d
keA; j=1 k=1
This implies that
| Al
> Mpe= > (Wi +mee) D vkt Y Tha (20)
kEA; kEA; k=1 kEA;
‘We will show that
. d
b>1-— mm(Mk;’t,ng’t_l). 20

First, assume that B; = (). Inequality (128) implies that

: d
b Z E Mk,t =1- ng,t =1- mln(ngyt,Zkg’t_l).
ke A,

If B, # O, then v = 1= 304, My — v, . and

I d _ : d
b> Z Mpi+r,=1-— Vi1 = 1-— mm(ﬂkg,t—p ng,t)a
keA

which concludes the proof of Equation (129). This implies that

1
H(1) — H(b) = /:bh(x)dm
< (1—1b)h(d)

< min(Vy ;. Mg )h(D). (22)

If |[Ay| = ¢, then b > Zi:l vg. Therefore, h(b) < #H, which implies, together with Equa-
tion (130), that

: 1
H(1) = H(b) < min(ry, , Mk;’t)ﬁ. (23)

19



DAGAN AND CRAMMER

If |A;| < ¢, then, we know that Vi1 < YA+ < Ve which implies, together with equa-
tion (129) that
. d
b>1— mln(gk£7t71,Mk£,t) >1- l/k/t 1> 1—v.

Therefore,
1
h(b) < h(1— 1) < —
Vﬂ
This implies, together with Equation (130), that
. 1
H(1) = H (b) < min(vfy , My 1) (24)
Additionally,
B (Mkﬁ/yké) > A (mln(uk/ 10 My, )/y;%) = mm(uk, o1 My, )/yké. (25)

Equations (131), (132) and (133) imply that

min(vfy oy, My ) (1/vess — 1/vy) A = ¢

) (26)
mln(yk, . 1,Mk/ (1 /vy — l/ykg) |As| < ¥

Hm—H@—B@%Mw)é{
Equations (123), (126), (127) and (134) conclude the proof.

B.3 Proof of Lemma 7

We present the lemmas required for the proof, together with an intuition for the proof. Define the

_,,d
error of arm k on iteration ¢ by €, ; = Vf’“t . We would like to bound the convergence rate of €, ;

to 0. The rate is in terms of the number of iterations: how many iterations it takes for ¢, ; to get below
some threshold? Optimally, when there are sufficient resources, arm k is allocated with gg i1 T Tkt

resources. However, if there are insufficient resources and one allocates My, ; < gg ;_1» then one
knows that gzt will not improve, namely, g%t = g% ,_1- Hence, one should not count iterations
when M}, ; < g‘g .1 While estimating the number of iterations it takes for th to get below some
threshold. One might ask: if iterations where My, ; = g% +_1 T+ Tk, are counted as 1 and iterations
where M}, ; < gg’Fl are counted as 0, how should iterations where V%t 1 < My < g‘,i i1 T Tkt

be counted? The answer is that these iterations are counted as (Mkt th 1) /7%t Combining

(Mk,t_ﬂk,t,1)+
. . . . . Tk:7t . . . .
In pal‘tlcular, every iteration that kf is case A is counted as 1, every iteration that ]{7 is case B is

counted as some positive number less than 1, and iterations that k is case C' are counted as 0.
Define 7, as the lowest value of ¢ for which th > 0 (equivalently, the last iteration that k is

everything together, every iteration ¢ is counted as hy, ; := , where ()4 = max(0, -).

allocated according to case 1), and define p = % We start by bounding the number of iterations
(weighted by hy, ;) that pass from 74 o up to the point that the error € ; is at most p (equivalently,
from the first iteration that g‘,}: ;> 0 to the first iteration that g‘,ﬁt > (1 — p)vg). This number is

1 . . . . d . .
bounded by O (log (7;@ f i”o’“ >, which implies that the estimate v} , grows exponentially fast in the
beginning.

20



A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 12 Fix 1 < k < K. Fixy < (1 — p)vg. Let T be the first iteration t that gg’t > . Then

El Y hielmoo v, <:C7<kg 7 ) ,
kaO +

Tho<t<T
where C' > 0 is some constant, depending only on c.

In order to give an intuitive reason to this exponential growth, recall the definition of 7, ; in Fig. 3.
Fix some ¢ and assume that uk 1< < (1 —=p)vyand 14 ;/vy, < p/2forall i < t. Then, foralli < ¢,

My ; v T
E[l — Xpi|Mp] >1— =2t >q1 - Rl B> 09
Vi Vi
This implies that
_ t—1
. [l/(kj:,t—l . Zfzik . Zgi — Z(Ii ie1 g Zi:‘rkyo (Mk i Vk Ji— 1)+ (1 - Xk,i) o p/2
d o t—1 o t—1 B .
Skt—1 Z,:,.M (Mkz V;H 1>+ Zi:m,o (Mk,i - Z%,i—1)+
Hence,
Tkt Sg t—1
T =cexp | ——I— =Q(1)
Vi i—1 Clt—1
with high probability, which implies that
vd v+ (1= Xgp) (Mkﬂf — vy tfl) P 4m
E| 2t | _g . £ = 14E[L = Xg] 5550 = 1401y
Vit Vit Vit

This implies that Z%,t is indeed growing exponentially fast (with respect to hy ), however, recall
we assumed that 7, ; /v, < p/2 for all ¢ < t. This assumption was made in order to ensure that
E[1 — X} ;] is sufficiently large, so that X}, ; = O sufficiently often. However, one does not need
this assumption: if X}, ; = 1 for a sufficiently large constant number of times, 7, ; shrinks and gets
below p/2. The formal claim is proved inductively using a potential function.

Define by 7 1 the first iteration that g‘,i ;> (1 — p)vg, or, equivalently, the first iteration that
€kt < p. The next lemma bound the number of iterations that pass from 71 until €, ; < n by

O(1/n) plus another term which depends on 527_’_&1, for any n > 0.

Lemma 13 Fix an integer k, 1 < k < K. Fix some number 0 < n < 1. Let T be the first iteration
t such that ¢, < 1. Then, there exists a numerical constant C > O depending only on c, such that

E 5 h d <C 43%@; +1
kt| Tk, Sk, < exp — 1.
t=Tk,1+1 T Cyk(l - p) n

One would expect the term O(1/n), since the estimate z/k .+ behaves as the estimante vy, in the
single armed problem, which requires roughly O(1/7) iterations to bet below 7. However, since the

21



DAGAN AND CRAMMER

algorithm for the multi armed setting involves some complications not existant in the single armed
algorithm, the proof is obtained by induction using a potential function.

We add two comments. Firstly, one may ask why the sum in Lem. 13 begins with 751 + 1
instead of 7y, o or 1. Since the construction of 7y, ; uses g%,t_l to approximate v, one requires this
approximation to be accurate in order for the lemma to hold. Secondly, note the term 527 S in the

bound in Lem. 13. If this term is very large, 71 ; would be small, and the estimate gg , would not be
able to improve fast. However, one can bound this term. As explained in the intuition for Lem. 12,
Thit/ gg . 1s expected not to be low in the beginning, which implies that 5% , is not high. We present
the lemma which bounds this term. The formal proof is by induction usiné a potential function, and
requires some case analysis.

Lemma 14 Fix some arm 0 < k < K. Then, for some constant C > 0 depending only on c,

E |[ex 7282’”’1
P cvg(1l —p)

Sec. B.3.1 and Sec. B.3.2 present auxiliary lemmas, Sec. B.3.3 presents the proof of Lem. 12,
Sec. B.3.4 presents the proof of Lem. 13, Sec. B.3.5 presents the proof of Lem. 14 and Sec. B.3.6
concludes the proof.

<C.

B.3.1 LEMMA 15

This lemma bounds the number of iterations before gg . > 0, for any arm k.

Lemma 15 Foranyl1 < k < K,

E [logQ de ] < max(2,logy (v K)) + 1.

7k7Tk,0

Additionally
1
E[To] < max (1, {logQ —+ B—D .
V1

Fixk,1 <k < K. Lett' = max UlogQ (ﬁ) + 1] ,0). At iteration ¢’ it holds that

1 1
<
K2t'=1 = [ 2logs(1/(Kvy))

= V.
Therefore, for any ¢ > ¢/, assuming that gg +—1 = O it holds that
Privg, > 0| i,y = 0] =Pr[Xp, = 0| vj, = 0] =1— 5 (M /vn)

1 1 1
>1/2.

=1 - — - -
K2t=1y, — 2 K2t -1y, —

Therefore, for any iteration ¢ > t, Pr[ryo = t | T4 > t — 1] > 1/2. Therefore, given that

Tro > t', E[Ty 0] —t' equals at most the expectancy of a geometric random variable with parameter
1/2, which implies that

1
Elrko] <t +2 < max <log2 <> + 2,0) + 2.
' KVk

22



A BETTER RESOURCE ALLOCATION ALGORITHM

We calculate the expected value of log, —s2-—. Tt holds that
Zk,rk70

E |log, dyik =F [logz (VkK2T’“v0*1)] = E [logy (Ve K) + 70 — 1]

| 4
7]{:97']6,0

1
< logy (v, K') + max(logs Ton +2,0) + 1 = max(2,logy (v K)) + 1.
k

Lastly, let ' = max (0, {10g2 711 + 2} ) For any ¢ > t' it holds that

1 1 V1
TS T g L1 2K "
K2 K2 0og2 Z1

This implies that for any 1 < k < K, for any ¢t > ¢, it holds that whenever gg o1 = 0, My, =
My, ¢

# < 2”71( Therefore, it holds that X}, ; > 0 with probability at most < QLK Therefore,
given that ¢ > t' and that 7o > t — 1, the probability that there exists 1 < k < K such that
y‘é’tfl =0and Xj; > 0,isatmost ) . v, =0 ﬁ < 1/2. This implies that for any ¢ > ¢/, given
that 79 > ¢ — 1, it holds that with probabiliiy at least 1/2, 7o = t. This implies that conditioned on
7o >t — 1, it holds that 7o — (¢’ — 1) is bounded by a geometric random variable with parameter
2. Therefore,

Elro—(t'=1)|ro>t —1] <2.

Thus,
Ef[ro] <t —1+2=1¢+1.
B.3.2 LEMMA 16

Lemma 16 There exist constants C, C' > 0, depending only on ¢, such that for any k, 1 < k < K,

% (M, — Zg,t—l)-F
Tkt

E <ClogK + C". 27)

t:Tk70+1

Start by assuming that v, < ﬁ. From Lemma 12, it holds that there exist a constants c¢;, ¢} >

d
0, such that for any values of 7 ¢ and L2

Tk, (M |
kot — Vit 1)+ 1—py
E Z uzi Tko, zgﬂ_m < cylog (dﬂ +cj. (28)
t=Tr.0+1 Tk, Ykrro
From Lemma 15, there exists a constant ¢ such that
1% 1
Elog, — k < (logy K +logy k) + + c2 < logy K + logy - + co. (29)
Zvak,D -

Together, Equalities (28) and (29) conclude the proof for the case v < ﬁ.

23



DAGAN AND CRAMMER

Next, assume that v, > ﬁ. Let 7 be the first iteration ¢ such that v&, = 1. For any t,

. My s~ . . .
1<t <n,if gg ,—1 = 1, then Mot )+ = 0. This, together with Lemma 15, imply that
’ Tk,t
T
= (Mpt — Zg,t—l)‘f‘ d
E Z r Tk0s Yk
t=Tr o+1 kit
k,0
T (Mg — v, y)
=E Z L Tk0s Ykrpp
t:‘l'k’o—‘rl it
< clog 3 +d). 30)
Zkv"-k,o

Lemma 15 implies that

1
E |log — ]:E[log dyk ]—logykglogK+log1/k+cz—logykzlogK—l—@. (31

v
=k, Tk,0

v
=k, Tk,0

Equations (30) and (31) suffice to complete the proof.

B.3.3 PROOF OF LEMMA 12

Fix some integer k£, 1 < k < K. Given any t > T} o, define

We will prove by induction on m > 0 that for all ¢ > 7, o, whenever g% +—1 < 27, it holds that

(Myi — v, 1)+

Tk,i

Zia| < oW1 wie1),

El D

t<i<t+m: xi_1<7vy

where 5
d(u,w) =w+ ayln % + as(co — w) 4,
and
2c
1= —,
b
co = c1 + 2,

24/p+1
( c

c3 = max(4clog(2¢), 2¢q,12/p, exp ))s

N _ 6/p+cloges +1
"= Toa(T + c/cs)

g = 2.

24



A BETTER RESOURCE ALLOCATION ALGORITHM

For the base of induction, assume that m = 0. Since we assumed that v/, | < 2+, the potential
function is non-negative.

For the step of induction, assume that m > 0. Fix some ¢t > T, and fix Z;_;. Assume that
Zg,t—l < 7y, otherwise the bound is trivially correct. Denote shortly u© = g,‘it_l, s = s%t_l and
w = w¢_1. Let h be the value such that

hcu
(Mgt — H%,t—l)—&- = hrge = v

Let ¢ = Pr[Xy; = 0| Z;—1]. It holds that

d d hCU
Spt = Skp—1 +hrge =s+ w
and
d . u Xk,t = 1
T\ My, =u b b X, =0
kt = U+ =7 kt =

Let (9 and u(!) be the corresponding values of gg?t given the value of X}, ;, namely

0 oy MU0y,
w

u(

Let w(® and w™) be defined similarly, and denote s(?) = s(1) = s. It remains to prove the following
inequality:
g(u”,w @) + (1= @p(u, wt)) + h < p(u, w). (32)

We use the following shorthand definitions:
»0 = d)(u(o),w(o)), oD = gb(u(l),w(l)), d(u, w) = ¢.
We proceed by proving some inequalities which will be required in the proof.
Proposition 17 Forall a > 1, and all y > 2alog a, it holds that y > alogy.
Proof Start by setting y = 2aloga, and b + 1 = log a. It holds that
y = 2aloga = a(log a+b+1) > a(log a+log(b+1)+1) = a(log a+logloga+1) = alog(2aloga) = alogy,

using the inequality x > log(z+1) for all z € R. Next, note that the function y — a log y monotonic
increasing in y for all y > a, therefore the inequality indeed holds for all y > 2a log a. |

Lemma 18 Let u, s, w be defined as above. The following inequalities hold:

1. Ifw < cs, then
—(s/u+1)(ag — 1) + ag log(1 +¢/c3) > 6/p.

2. Ifw > c3, then
w > ca+ s/u.

25



DAGAN AND CRAMMER

3. Ifw > c3, then B > 3.

4. Ifw > c3, then 2%4—1.

S

u

Proof Note that clogw = 7. Start with proving item 1. Whenever w < cs, it holds that
—(s/u+1)(ag — 1) + ajlog(l +c¢/c3) = —(clogw + 1) 4+ aq log(1 + ¢/e3)

> —(cloges+1)+6/p+ 3cloges
6/p.

Next, we prove item 2. It is clear that w/2 > ¢3/2 > co. Proposition 17 implies that for all
w > c3 > 2(2¢) log(2c) it holds that w > 2clogw = 2s/u by substituting a = 2¢. Therefore,

w=w/2+w/2>cy+s/u

as required.
Items 3 and 4 trivially follow from the definition of c3, and the equality clogw = . |

Lemma 19 Ler w, w(o), w(l), s, uw and h be defined as above. Then
o w® <w< w®,
° w+h§w(1) < w + 2h.
* h
-1
w— (s/u—1)h < w® < max [ w/2,w— (s/u=Dh .
2(1 4 c¢/w)

Proof The upper bound for w() is as follows:

EOR 5+ fhew
w) = eea® = exp w | = el < w(1l 4 2h/w) = w + 2h, (33)
cu

using the inequality exp(y) < 1 4 2y for all 0 < y < 1. The lower bound is calculated similarly:
w = we" > w1+ hjw)=w+ h, (34)

using the inequality e¥ > 1 + y forall y € R.
Next, we calculate the inequalities regarding w'

(0)
0) — 5
o (22)

< s+ chu/w )
—exp| ——

cu+ cZhu/w

o ()

0)

26



A BETTER RESOURCE ALLOCATION ALGORITHM

= exp

(8/(CU) + (s/u)(h/w) — (s/u — 1)(h/W)>
1+ ch/w

_ (s/u—1)(h/w)

= exp (s/(cu) T ixau )

(L1221

wexp (—(s/u—1)(h/w))
w(l = (s/u—1)(h/w)) (35)
w— (s/u—1)h,

where (35) follows from the inequality e¥ > 1+ y, forall y € R.
Before calculating the upper bound on w), we first show that s > w, by proving that s%t >

vy, forall ¢ > 7. For t = 7}, it holds that sf} , = vt , = My ;. For t > 74 it holds that

AVARAVARIY]

d d d d d d
Vit = Vg1 = My — Vi 1) +(1 = Xiy) < (Mig — Vi po1)+ = Skt — Ski—1-

Next, we proceed to bounding w©),

W wexp( (s/u—1)(hjw) >

1+ ch/w
B A
< wmax (1/2, 1— (3/7“(‘1 - C/ZU/)w ) (36)

where (36) follow from the inequality e < 1 — /2 whenever 0 < x < 1 and e~* < 1/2 when-

ever x > 1. It cannot happen that (s/u=1)(h/w) < 0 since, as we explained s > u, and this confirms

1+c/w
that w(©) < w. [ |
Lemma 20 Ifw < c3 then
d)(l) d) > Gh
D
Proof We start with an inequality:
1 1 u(0) u ~+ heu/w
log ——log — =log —— = log ————— = log (1 + hc¢/w) > hlog(1l4c/w) > hlog(1+c/c3),
u®) 1(0) u)
(37
using the inequality log(1 + az) > alog(l + z),forxz > 0and 0 < o < 1.
Next, we prove
(c2 —w )y — (cg —wM)y < w® —w®, (38)

27



DAGAN AND CRAMMER

Lemma 19 states that w) > w(©), Whenever w(?) < ¢y it holds

1) 0)

(c2 —w)y — (cg —wM)y = w —w®,

And whenever w) > ¢, it holds

(c2 = w®)y = (c2 —wM)y = (ca =)y <™ — @,
which confirms the validity of inequality (38).
Thus,
6 — 60 = M 4 a(cy — wM), — 0 — ag(er — w®)y + a1 (log —— — log ——
u() 1u(0)
> (w® —wM) (g — 1) + hay log(1 + ¢/c3) (39)
> —(s/u+ 1)h(az — 1) + haq log(1 + ¢/c3) (40)
> (1)

where line (39) follows from inequalities (37) and (38), line (40) follows from Lemma 19, and
line (41) follows from Lemma 18.1. [ ]

We start by proving inequality (32) for the case w < ¢;. From Lemma 19, wh) < w42 <
¢1 + 2 = ¢y, which implies that (c; — w(M), = ¢y — w(). Therefore,

090" — (1= )0V —h =6~ ¢ —h+q(6") — ¢

>¢— ¢ —h (42)
= w4+ az(cs —w)y —w —ag(eg —wM), —h
= w4+ az(cy —w) —w —ag(cy —wV) —h
= (wM —w)(ag—1) —h
> h(ag—1)—h (43)
>0,

where inequality (42) follows from Lemma 20 and the fact that w < ¢; < c¢3, and inequality (43)

follows from Lemma 19.
Whenever w > cj, the following inequality holds:

g>1 - Mt
Vk
S u + hew/w
Vk
> 1 (1— p)(1+ he/w) (44)
>p—c/w
> p/2, (45)

28



A BETTER RESOURCE ALLOCATION ALGORITHM

where inequality (44) follows from the fact that v = Z%,t—1 <7y <(1-p)u.
Next, we prove (32) for the case ¢; < w < c3. Therefore

0= g0 — (1 =)W —h =6 - oW —h+q(e") — %)

6h
>¢— ¢l —h+a(o5) (46)
>¢— oM~ h43h (47)
>w—wY — h+3h
>0 (48)

where inequality (46) follows from Lemma 20, inequality (47) follows from inequality (45), and
inequality (48) follows from Lemma (19).

Lastly, we prove inequality (32) for w > c3. The bounds on w(®) and w), and Lemma 18.2
imply that

w® >w > w® >w— (s/u—1)h > ca. (49)
Thus,
¢—q0® — (1— )¢V —h > w—qu® — (1 - g)uw® — h (50)
_pb o _(1_PY,0 _
> w— L (1 2)w h (51)
p (s/u—1)h p
(52)
Zw—gmax(w/Q,w—W) — (1—§)w—2h—h
(53)
> P min (w/Q,(S/u_l)h> —2h —h
2 4
> 0. (54)

where inequality (50) follows from inequality (49), line (51) follows from (45), line (52) follows
from Lemma 19, line (53) follows from the fact that w > ¢; > ¢, and line (54) follows from
Lemma 18.3-4.

B.3.4 PROOF OF LEMMA 13

Fix aninteger k, 1 < k < n.Foranyt, 1 <t < mn,let

We will prove by induction on m > 0 that for any ¢ > 7 1,

. mln(f ™) (Mk,i_zk,i—l)

1=t

+
Zii—1| < O(Whyi—1, €ki—1), (55)
Tk,i

29



DAGAN AND CRAMMER

where
2 c1 n
cwetcy (F —w), +c (7_7) €> 5
plw,e) =1 ° @)t 2
0 €< 3.
and
co=1
Al —p)+7
3= ———"——
c(l—p)—2
cp=c3+2

¢y =14 ca(2c3 + 2)
c5 = cqcq(log ey + 3).

The proof is by induction on m. If m = 0 then inequality (55) holds since ¢(w,e) > 0.
Assume therefore that m > 0. Fix some values of ¢ > 7y 1, and fix Z;_1. If €¢,;—1 < 7, then
T < t, and inequality (55) holds since ¢(w,€) > 0. Assume therefore that €;;—; > 7. Denote
W= Wgt_1, € = €1 and u = Z%,t—l‘ Let wo be the value that wy, ; gets if X ; = 0, and let
(Mk,t—zﬁ,t,l)Jr

Tk,t

wy be its value if X}, ; = 1. Similarly define €, €1, ug and u;. Denote h = Let

q = Pr[X}+ = 0| Z;_1]. To complete the proof, it is sufficient to prove that

gb(w, 6) > h+ (1 — q)qﬁ(wl, 61) =+ Q(b(w(), 60). (56)

We can replace €; with ¢, since they are equal.

Lemma 21 The following hold:

1.
2
w~+h < w; §w+h+?.
2. .
wo = (wy) .
3.

wy < w < wy.

Proof Start by proving item 1. It holds that

d d d d
Skt Sgi—1 T hry Ski—1 T hﬂk,t—lc/wt—l h/w
wy =exp| — | =exp | =———" | =exp = we".
d d
cuy CV 1 Clp i1

Since 0 < g < 1, applying the inequality 1 + = < exp(z) < 1 + 2 + 2 which holds whenever
0 < z < 1, suffices to complete the proof of item 1.

We proceed to proving item 2. The value of sg ; 1s defined by Z;_1, and does not depend on
X}, ¢ Therefore, 7

vl

d d \ u o
Skt Skt ) © 8761;”’“
wop=exp| —= | =exp | — = (wy) G0k |
cug cuq

30




A BETTER RESOURCE ALLOCATION ALGORITHM

which completes the proof of item 2.
Item 3 is proved in Lemma 19. |

Proposition 22 The function ¢(w, €) is monotonic non-decreasing in e.

Proof Follows immediately from the fact that c; > c1¢4. |

Lemma 23 It holds that

P(wo, €0) — p(w1, €0) < caci(loger + 2) (1 — 1) )

€ €
Proof If ¢y > 1/2 then ¢(wy, €9) — p(w1, €9) = 0. Otherwise, since wy < wy,

d(wo, €0) — p(w, €0) = caeo ((wo)* — (w1)?) + ca ((c1/e0 — wo) 1 — (c1/e0 — w1)+)
< cs ((e1/€0 — wo)+ — (c1/€0 — wi)4) - (57)

We will show that
d—e
57) < 04(01/60 — 01/6) + 64(01/6 — (cl/e) 1—¢p ) (58)
If wy > c1/¢€p then this inequality holds since (57) = 0. If wy < ¢;1/€ < w; then

(57) = cac1/e0 — cawp

=cy(c1/e0 — c1/€) + ca(c1/e — wp)

264(61/60—61/6)4‘64(01/6—1011750) 59)

< cy(ci/eg —c1/€) + calci /e — (61/6)11_;:0),

where inequality (59) follows from Lemma 21.
If wy < ¢1/€ then

(57) = ca(wy — wo)

= C4 <’U)1 — U)ll:o> (60)
< ¢y (cl/e—(cl/e)ﬁ>, (61)

where equality (60) follows from Lemma 21, and inequality (61) follows from the fact that the
function x — z“ is monotonic increasing in z, assuming a fixed 0 < « < 1. This completes the
proof of inequality (58).

To conclude the proof, it is sufficient to show that

(c1/e — (c1/€)T70) < (1/eg — 1/€)e1 (log(cr) + 1). 62)

31



DAGAN AND CRAMMER

Let v = €/¢y — 1. Bounding
1— (e1/e)=9/A=0)=1 _ 1 _ (¢ /¢)(c0=9)/(1=e0)
— 1 — ¢log(er/e)(co—€)/(1—€0)
— 1 — ¢ log(c1/e)yen/(1—€o)
< 1 — e~ los(er/eo)veo/(1~co)

— 1 — ¢~ log(c1)yeo/(1—€0)—log(1/€0)veo /(1—€0)

< 1 — ¢ logle)y=37/(—c0) 63)
< 1 — ¢ Uogle)+1)y (64)
< (log(e1) +1)7, (65)

%, therefore 12060 < 1, and from the

fact that ¢g log L < 1 foran €o > 0; inequality (64) follows from the fact that g < p < 1. and
€0 2 y q y 3

where inequality (63) follows from the fact that ¢ < p <

inequality (65) follows from the inequality e™* > 1 — x which holds for all x € R.
Thus, we conclude the proof of inequality (62) and the proof of this lemma:

crfe(aaf i = 2 (1- (2) )

< < (log(er) + 1)y (66)
= (1/eg — 1/€)c1(log(er) + 1).

where inequality (66) follows from inequality (65). [ |

We start by proving (56), assuming that we < c3. Let A = w; — w. Lemma 21 states that
h < A < 2h. Therefore,
wie<cg+2=c. (67)

This implies that

P(w,€) — ¢p(wr, €) = ca(w? — wi)e + ca(er/e — w) — ca(er/e —wy)
= coe(—2wA — A?) + 4 A

> —ca(2e3A + 2A) + c4 A (68)
= A(—c2(2c3+2) +c4)

=A (69)
> h, (70)

where (68) follows from the assumption ew < c3 and the inequality A < 2; and (69) follows from
the definition of ¢y4.
If €9 < 1/2, then

Pp(w,€) —h — (1 = q)p(w1, €) — gp(wo, €o)
= (¢(w, €) — p(w1,€)) — h — q(p(w1, €0) — d(w1,€)) — q(d(wo, €0) — P(w1, €0))

32



A BETTER RESOURCE ALLOCATION ALGORITHM

> h—h—q(¢(wi,€0) — p(wi, €)) — q(p(wo, €0) — G(wi, €)) (71)
> —q(p(wo, €0) — d(w1, €0)) (72)
=0, (73)

where inequality (71) follows from inequality (70), inequality (72) follows from Proposition 22, and
inequality (71) follows from the fact that ¢y < 7/2.
If g > n/2, then

P(w1, €0) — p(wr,€) < caler/eo — wil4 + 52/ — 1/€0]+ — caler/eo — wil+ — e5[2/n — 1/ €0+
= ca(c1/e0 —w1) +¢5(2/n — 1/eo) — caler/e —wi) — c5(2/n — 1/€)
(74)

= (cac1 — ¢5)(1/e0 — 1/€) (75)
where inequality (74) follows from inequality (67) and the fact that €g > 2. Thus,

p(w, €) —h — (1 — q)p(wi, €) — gp(wo, €0)

= (¢(w, €) — ¢p(wi,€)) — h — q(d(wi, €0) — (w1, €)) — q(Pp(wo, €0) — (w1, €0))  (76)
>h—h+(c5s —cqc1)(1/eg — 1/e) — (1/eg — 1/€)cicq(log(er) + 2)

= (c5 — caci(log(er) +3))(L/eg — 1/e)

=0,

where inequality (76) follows from inequalities (70) and (75), and Lemma 23. This concludes the
proof of inequality (56) for the case ew < cs.
Next, assume that we > c3. Therefore,

p(w1,€) — d(w, €) < cawie — crw’e

= c2(2wA + A?)e
< e(2w(h + h? Jw) + (2h)?)e
= co(2wh + 6h)e, (77)
using Lemma 21.
Since ew > c3 > ¢, it holds that
h h
I/k—Mk,t:Vk—u—cu:Vk<e—Cu)zyke(l—c>>0. (78)
w WY}, we
Therefore, ug = My = u + hwﬂ This implies that
h h
1ty uwtlchw/w _ - chu (79)
Vi 4% vew

Since t > T, 1, it holds that u > (1 — p)vy, therefore, inequality (79) implies that

1—
Eozei@<eiu‘

< (80)
14%% w

33



DAGAN AND CRAMMER

Additionally,

eoze—Cthe—c}l:e<l—Ch)Ze<l—C)Z;>g. 81)

This implies that

$(wi, €) — p(wi, €9) = cowi (e — o) + ca((c1/e —wi)4 — (e1/e0 — wi)+) + c5(1/eg — 1/e€)
> cow?(e — €) + calc /e — c1/€0) +cs5(1/eg — 1/€)
> cowhe(l —p) + (c5 — cac1)(1 /€9 — 1/€). (82)

where inequality (82) follows from inequality (80).
Additionally, inequality (78) and inequality (81) imply that

Q—6026<1—C>. (83)

To complete the proof:

p(w, €) —h — (1 = q)p(wi,€) — gp(wo, €0)
= (¢p(w,€) — d(wi,€)) — h+ q(p(w1, €) — (w1, €0)) + q(P(w1, €0) — P(wo, €0))

1 1 1 1
> —c2(2wh + 6h)e —h +¢q (czwhc(l —p) + (c5 — cacq) < - >> — qeqer(log ey + 2) ( - >

€0 € €0 €
(84)
= —c2(2wh + 6h)e — h + g (cawhe(1 — p))
> —cp(2wh 4 6h)e — h + € <1 - CC) (cowhe(1 — p)) (85)
3

:weh<—2—2—£6+<1—;)0(1_17)>

201 —
> weh <—2—7—|—c(1—p) — M)
we C3

> weh <c(1 —p)—2— 613(7-1-02(1 —p))>

where inequality (84) follows from inequality (77), inequality (82), and Lemma 23; and inequal-
ity (85) follows from inequality (83).

B.3.5 PROOF OF LEMMA 14

Fix some integer k, 1 < k < K. Define the values

d = 2
c(l1—py’
1 1—-p/4\1—-p
=1lo
r=log| i 7 | 5

34



A BETTER RESOURCE ALLOCATION ALGORITHM

1
S0 = max (cz/k log (2¢/p) , vkcln > ,
v
A" =4d/p.

Let 7 be the first iteration ¢ such that s¢ , > so.

Proposition 24 Fixt > T, let x = (M — g%tfl)Jr. It holds that:

1.

exp(c'z) < (1 —p/4)/(1 —p/2).

Proof First, we prove item 1:

Vgp
7 < e = e exp(—sne 1 /0 10)) < cvnexp(—so/(nie) = evy exp(— log(2e/p) = AL

Next, we prove item 2. Start by bounding x:
x < cvpexp(—so/(vie)) < evg exp(logy) = cvyry.

To complete the proof, we estimate

2 1—p/4\ 1— 1—-p/4
exp(cr) < exp [ —————cuy log p/ Py _ p/ .
el —pvg 1-p/2) 2 1—p/2
[ |
We prove by induction on m > 0, that for any 7 < ¢ < 7y 1 it holds that
I [exp (Cl (Sg,min(wm,m,l) - 5%,75)) ‘chcl,t} < exp (C”(Vk - Z%,t)) : (86)

The base of induction is clear: whenever m = 0 the left-hand side equals 1, and the right-hand
side is at least 1. If ¢ = 73,1 then, from the same reason the inequality holds.
For the induction step, assume that m > 0, and take some 7 < ¢ < 7, 1. Proposition 24 implies
that y
My i1 < (My g1 — v )+ + Ui, < ]% +ve(l—p) = (1—-p/2)v

Therefore,
M,
Pr[Xp 1 =0/=1-2 <’;}:“> >1-(1-p/2)=p/2.
Let
z = (Mpgs1 — V)4
It holds that

d _
vl = Vi1 T8 Xpip1 =0
Vit - .
IRy Xy =1

35



DAGAN AND CRAMMER

Therefore, by induction hypothesis, it holds that

/[ d d d
E [exp (C (Sk,min(ter,‘rk,l) - Sk,t)) ’Zk,tv ‘T}

1 _
- Z Pr[Xk7t+1 = b]E exp <CI <Sg,min(t+m,‘rk,1) - S%,t)) ‘Zg,b €, Xk,tJrl = b]
b=0 i

1 i
= Z Pr[Xj++1 = bE |exp(d'z) exp (c' (52,min(t+m,m,1) - 527t+1)> ‘g‘é,t, z, Xg 141 = b}
b=0 i

< ZPT[Xk,t+1 = bE _eXp(Clw) exp (C”(Vk - zﬁ,tﬂ)) ’Zg,t, T, X1 = b}

= Pr[X) 11 = 0] exp(d'z) exp (c"(yk — 2(13,1; — a:)) + Pr[Xg++1 = 1] exp(c'z) exp (C//(I/k — g%t))
< Z%exp <c"(1/k - gi,t —x)+ c’:L‘) +(1- g) exp (C”(l/k - g27t) + c’:n) :

We would like to show that
gexp (c”(yk — H(Ii,t —x)+ c’x) +(1- g) exp (c”(uk — gﬂ’t) + c/x> < exp <c"(yk - Z(ki:,t)) ,

which is equivalent to showing that the function

o(y) = g +(1- g) exp ("y) —exp ((" = )y) , (87)

satisfies ¢(z) < 0. It trivially holds that ¢(0) = 0, and we will show that %(y) < 0 for all
0 <y < x. This will imply that ¢(z) < 0. Indeed,

jj@) = (1— p/2)" explyc”) — (' — &) exp((c” — Yy)
— exp(cy) (

1—p/2)c" — (" — ) exp(—cy
< exp(c’y) ( T

)
) (88)

—~ T~
—_
|
e
~
[\
~—
oL
I
|
—
oL
|
@)
~
@
i
o]
—
|
oL

where inequality (88) follows from Proposition 24.2.
This proves that

/ d d d " d
E [exp (C (Sk,min(t—l—m,rk,l) - Sk,t)) ‘Zk,ﬂ ‘T} < exp (C (Vk - Zk,t)) ’

and this inequality holds for every possible value of x, therefore the proof of inequality (86) is
concluded.

To conclude the proof, note that

4c
d d d
Sk,‘r = sk,‘l’*l + (Mk’-,- - Ek,T*l)“F S 30 + /r'kﬂ- S 30 + Cyk S CVk(lOg %)

36



A BETTER RESOURCE ALLOCATION ALGORITHM

Thus,

E [exp(c’sgﬂ.l)] =E [GXP(CIS%T) exp(C’S%,n - s}i,.)]

4
< exp(c’cyk(log i))E [exp(c’sg T S%T)i|
vp ' '
4c

< exp <(13p)> j;eXp ((529(18—p)>'

B.3.6 CONCLUDING THE PROOF

Fix anarm k, 1 < k < n. It holds that:

> A=BMig/v)) < Y. (1= B(Myy/wi))

teT: kGAt t>"'k,0! keAt
= > (1 — B(Miye/vi)) (89)
t: Tk,0<tSTk,1a ke Ay
+ Z (1= B(Mpt/vr)). (90)

t:t>Tg 1, keAy

We will start by bounding the amount in the equation line marked (89) and proceed in bounding the
amount in (90).

(Mk,t*zﬁ,z—l)

For any iteration ¢t where k € Ay, . * — 1. Therefore,

Yoo 0=BMgm) < > 1

Tro<t<Tg1: Tro<t<Tg1:
ke Ay ke A

Z (Mk,t _Z%,tfl)-&-

Tkt

Tro<t<Tp1:
keA

<Ch logK—FC{, 91

for some constants C'1,C] > 0 depending only on ¢, where the last inequality follows from
Lemma 16.
_.d
We proceed by bounding the amount in (90). Denote €, ; = kaif’” For any value of 0 < < 1,

let T;C 0 be the first iteration ¢ that €, ; < 7. Lemma 13 implies that there is a constant, Cy >0,
depending only on c, such that

Thon M., — 4 254
kit — Vi 1)+ Sk, 1
E Z ( kit ) Tk, Z;.k | SO | exp ST RS
i Tkt ’ cvp(l—p) ) n
=Tk,1

37



DAGAN AND CRAMMER

d

2s
Lemma 14 bounds the expected value of E |exp w:(lff;)ﬂ by another constant, C'3 > 0, de-

pending only on c. Combining these two results, we get that

o zkf (M _Z(Ii,t—l)—i- < Cy

—, 92)
Tkt n

t=7,1+1

for some constant Cy > 0 depending only on c.

Let wy, , be the number of iterations ¢, 741 < t < T% w for which k € A;. Equation (92)
implies that

Ewy,, = E Z 1

t: Tl <t§‘r;€’n, k€A

(My — v )
) Zkt—1/+
=E > |
! Tkt
te T <t<T) k€A
T/
k,m (M _ d
kit — V4 )+
< E Z kit—1
t=Tp,1+1 Tkt
Cy
O (93)
n
Therefore,
d
S A-BMm) < S (=B /)
t2Tp1+1: k€A t27p1+1: k€A
tZTk,’l-i-].: keA
n
— Z €rt—1+ Z €k t—1
m=1 tZTk,l+1: tZTk,l+1:
keA; ke Ay
ﬁ<€k,t—l§% Ek,t—lﬁﬁrl
n 1 1
<> —+
m n—+1
m=1  t>7p1+1: t2>7p,1+1:
ke Ay k€A
mil <Ek,t71S% €k,t71§n+1
< L2 TEL Tri/m <USThi/(m+1) B € At m+n+1
m=1
n 1
< (Wi 1 /(m+41) — wk,l/m)a +1
m=1
-1
< + nz: . ~) +1
< —wg w — 1 w
k, = k,1/m m—1 m n—1 k,n

38




A BETTER RESOURCE ALLOCATION ALGORITHM

<2 "Zl wl;’;/m + 3. (94)
m=2
Inequality (93) implies that
n—1 1 n—1
E Zka,l/anQ <y 222;?2 < Cy(logn +4).
m= m=

B.4 Proof of Lemma 8

Define 7" =T N{rro+1,--- ,7k1},and T" =T N{7p1 +1,--- ,n}. We will divide the sum
that we have to bound into two summands: one over 7" and one over T"”.
Start with 7”.

Bl Y e Y

v |4
teT’: ke Ay =kt—1 teT”: ke By =k,t—1

d
Tkt (Mt — Zk,t—1)+
=E| Y 42 ), 3 (95)
teT’: keA; Y1 teT’: kEB; V-1
s M, , - . _
kot — Vip—1)+
<2E .
> S
_t:Tk,0+1 *k,t—l |
S . z
’ M, —v
<9E Z ( k.t —k,t—l)-ﬁ-
t=1 Tk’t
L k’0+1 -
< CilogK + Cj. (96)

for some constants C'1,C] > 0, depending only on c. Inequality (95) follows from the fact that
conditioned on k € By, k is allocated according to case B, hence M}, ; equals either g%’Fl or
gg .1 + 7, each with probability 1/2; inequality (96) follows from Lemma 16.

N ext, bound the sum that relates to 7”. Similarly to the calculation in Equality (95):

5 I SR S

teT”: ke As Vet—1  tern, keBy Vi1

<2E

d _

Z (Mk,t - Zk,t—l)-‘r
d

teT! Zk,t—l

<2E

Z (Mk,t B 22,75—1)-&-

e =P

2
< 1 —E E (M — Zg,t71)+
(1= pvi p
1<t<n: Zk7t—1>0

39



DAGAN AND CRAMMER

= (1_2kaE |:S(;37n} .

To conclude the proof, we prove by induction on ¢, 1 < ¢t < n, that 32 < ey H (t — 1), where

H(t) = Y_t_, % is the harmonic sum. Trivially spy = 0= H(0). Assume that this statement holds
for ¢ and prove for ¢ + 1.

d d d
Skl S Skt T CUL 4Tk t4+1

Sgt
= sy T vk exp | ——

Cl ¢

d

s
< s,‘ﬂt + cvp exp ( k’t>
’ CVj
H(t—-1
< cypH(t — 1) + cvpexp <_cuk()> 97)
CVL

<cyH(t—1)+ cvpe” 108t (98)

= e H(t).

where Inequality (97) follows from induction hypothesis, and from the fact that the function z +
aexp (—2) is monotonic non-decreasing in z, for z > 0 and @ > 0, and Inequality (98) follows
from the fact that H(¢ — 1) > logt, for all ¢ > 1.

B.5 Proof of Lemma 5

We use the following variant of Azuma’s inequality.

Lemma 25 Let Y1, Yo, ... be an infinite sequence of random random variables, and let X1, Xo, . ..
be random variables getting values from {0, 1}. Assume that X; is a function of Y1, ...,Y; for all

1 > 1. Forany i > 1, let P; be a random variable which is a function of Y1, ...,Y;—1 and equals
Pr[X; =1|Y1,...,Yi_1]. The following statements hold:

1. Fi)g a number r, and let T, be the random variable denoting the last number i such that
> i1 Pj < 1. Assume that there exists some constant m such that it always holds that

7, < m. Then, forany 0 < § <1,
< 52r
exp| —— .
=~ €exp 3

2. Fix a number r, and let T, be the random variable denoting the first number i such that
2;21 P; > r. Assume that there exists some constant m such that it always holds that
7 < m. Then, forany 0 < § <1,

Pr [in <(1- 5)r] < exp (—522T> .

i=1

Tr
Pr|> X > (1+0)r

=1

This is a martingale version of the following bound on the relative error of independent random
variables by Chernoff (1952).

40



A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 26 Let X, ..., X, be independent random variable getting values from {0,1}. Let X =
Sy Xi. Then, forall 0 < 6 < 1,

1.
2
PriX > (1+6)EX] < exp (—5 I§X> :
2. )
Pr[X < (1-90)EX] <exp <—5 12EX> .

First note that we can assume in Lemma 25.1 that Z;;l P; = r. Then, the proof is almost
identical to the proof of Lemma 25, inductively bounding Eexp (¢t Y7, X;) < exp (r(e — 1)).
Lemma 25.2 is proved similarly.

Before proving the following lemmas, extend the values of My, ;, Xy ¢, si,t and xzvt fort > n,
by defining, for all £ > n,

M.+ = min(vg, 1),

X — 1 with probability Mj, ; /vy,
"7 00 with probability 1 — Mj,, /vy’
Skt = St + Mt (99)

and
P _ P
Ty =Tpy gt Xt

Here is an auxiliary lemma.

Lemma 27 Fix some armk, 1 < k < K. Then,

7T2

of[fos <t n}] < o

Proof Fix some arm k. Fix some s, ( > 0. Regard the inequality

14 \/ 14

for all positive x and v. This is a quadratic inequality in the parameter \E , which holds if and only

if
1 ¢ ¢ =
\ES\/;WQJS‘

In particular, whenever = > % — 5/ 25@“ , it holds that

-2
¢ /¢ =
v > (\/;—I— 25+s> . (100)

41



DAGAN AND CRAMMER

Define forany ¢ > 0 and ¢ > 0,
-2
/_¢ ¢ Tyt p
ZCp,k,t = ( 23£,t . 2Szt * Sl}zt) Sk’t >0 .
P _
0 Sk 4

p _ b
Note that Ve, kit = Ykt

For any integer s’ > 0, let 7 be the first iteration ¢ that s}: ;> §'vy. From the way we extended

the values of sg , tot > n in equation (99), it holds that for any s’, 7 is bounded by a constant.
Forall t > 0,

Pr [gg’t > yk] =Pr [ﬂg,kz,t > I/k:|

< Pr [Elz' >0: sf;i < ty, th,k,z' > I/k}

t—1
< Z Pr [Hz >0: sy, < sk < (' + Vg, ng,,k,z‘ > yk}
s'=0

Eolse]

€T, .
:ZPr di > 0: sz/k<sk s—l—ll/k, C; + C; + p’Z
25 25ki Sk

- -2

t—1
< P >
_s/z:—o g \/ s+1 \/ s—l—l ( +1)Vk vk

<SP fap, <D D (101)

s ]jk l/k

t—1
< Z Pr [m%_rsl <s <1 —V2G /s + sl’>]
t—1 1 2
<) exp (—s <\/2Ct/s — ) ) (102)

< Z exp <—Ct + 2Ct/3/>
s'=1

< texp (=G +v24)

=texp(—In(1/e))
=t 2K

where inequality (101) follows from (100) by substituting s = (s" + 1)vg, v = v, & = xi and

s/

¢ = (; and inequality (102) follows from Lemma 25, by substituting X; = xk ; xk i1 Y, = Z;,

Y —sP
. Tk, k,i—1 ! _ / 1
Pz—iyk , T =S8 al’ld(S—\/2Ct/ e

42



A BETTER RESOURCE ALLOCATION ALGORITHM

This implies that

71.2

n n o
1 1
. P p _
E H{O <t<niy,> yk}H < ;1 Prlv}, > ] < ;1 - < ;1 KOk

To conclude the proof, note the following: the expected number of iterations ¢ that there exists k
such that v, , = 0, is at most the expected number of iterations that there exists & such that g%’t =0.
This quantity is bounded by E[7(] = O(max(1, log u%))’ by Lemma 15.

The expected number of iterations ¢ such that there exists & that v, , > v, is bounded by the
expected number of iterations that there exists & that Z}Z , > Vg, which is bounded by a constant,
from Lemma 27. This concludes the proof. ’

B.6 Proof of Lemma 9

We begin with a lemma:

Lemma 28 Fix an integer k and real numbers a and v such that 1 < k < K, 0 < a < 1, and

1 > 1ta 1pen,
v Vg

1029¢
E|l > Lo pswg,  Mit| < V( 22 n)

b Vg SV

Proof Assume that sgt and ajzt are defined also for ¢ > n, as defined in equation (99). Let
o= (%2)2, and let
s’ = [1+ada].

First, for any s > &/, and for any = < s + 1/3slogn, it holds that
¢ ¢ i N
n n r -5 Sn Sno T
(\/2(3—1)+\/2(5—1)+5—1) _s—1< 25 © 23+3>
s ne Cn /3logn
= = +1
s—1 23+ 23+ + s

2

<
s G [ \F
S @* 2s TPV
2
s Cn Cn \/?
S3—1 \/;+\/\/;+1+ s
NN A
S n n n
Ss—1<\/;+2\/;+2\/j+1> (103)

43



DAGAN AND CRAMMER

—1ta (104)

where inequality (103) follows from the fact that /1 + 2z < 1+ % for z > 0.
For any integer s > &', let T, be the last ¢ such that s} , < s, and A, be the event

2

|G G hor, 1
2(s—1)v * \/2(3 -1 * (s—1)v = v

s
1+a

Substituting x = xi’ . and s = in inequality (104), we obtain that whenever x};, . < 24

— 14a

317, logn, A, does not hold.

. . Sp =Sk
Applying Lemma 25 with X; = ap, —ap, |, Yy = Z;, P, = B B= r = 2o and

§ = /28N it olds that

s s 6%s 1
Pr[A,] < Pr |2P —_— 3 1 < — | ==
rlAs] < r[xkﬂ's>1—|—a+\/ 11a 2" _exp< 3(1+a)) n

This suffices to complete the proof:

Bl X sy, Me
1<t<n: —4—>1
- Ypt—1—V
=E Z 1Mk,t§£‘,§7t_1Mk»t +E Z 1Mk,t§227t_1Mk’t
: . 1 1 : . 1 1
1<t<min(n,7y +1): Theo1 > min(n, 7y +1)<t<n: Pren >
n—1
<vs+E > Ly, cpa 1 1 1My,
kt=Zk -1 yp g~ w ’
s=s'+1 t: ’
L (s—=Dvp<sy ,_ 1 <svg
n—1
SVS +E 1A51Mk't<'/(]3;t le,t
s=s'4+1 t: '
L (s=Dvp<sy ,_ <svg
n—1
<vs +E E 2v - 14,
Li=s'+1

<wv(s +2).

44



A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 32 implies that for any j, 1 < 7 < K, and forany ¢t € T, if g% .1 > vj then there are
at least j arms ¢ for which v, < v; <wy ;. Therefore,

Z min@%,t—la M) (1/vegr — L/vg) A =4
e o, \min(d Ly M) (/= 1) A< ¢
< > min(y g, Mig)(1/ver — 1/m)
teT: k€ BtUCk
Z%t,lél/e-u

+ > min(, o M) (/v — 1/w). (105)
teT: ke BiUCY
Z(Ii,tflgye

Take some k' < k. Let a = min (1, U”—:/ - 1). Then

: d
E g min (v, 1, M) (106)
teT: ke BtUC:
Vg g1 Syt

d
=E| D, | FE| D Lyay, M

teT: kEB; teT: keCy
V-1 SVp Vi -1V

d
= QE Z ]_Mk,t:ﬂz’tflzkvtfl + E Z ]_Mk,tgﬂg’t,le’t (107)

teT: keB; teT: keCy
LWk, i1 SVps Vi t—1 SV

=2E Z 1Mk,t§£27t,1Mk7t +E Z 1Mk,t§2(;i’t,1Mk’t (108)

teT: keB; teT: keCy
[ Yk t—1 SVt Vi t—1 SVt

< >

< 2E le,tSzﬁ,t,levt
£ 1<t<n

Yk e —1 Vgt

1029¢,
af ), (109)

< 2up(

where inequality (107) follows from the fact that if k£ € B; then k is allocated according to case B,
and the probability that M}, ; = H%,tq conditioned on k € By is 1/2, independently on Z%,tfl; (108)
follows from the fact that whenever k € By, it never holds that M}, ; < gg ;1> and inequality (109)
follows from Lemma 28. ’

45



DAGAN AND CRAMMER

If a < 1 this implies that

. 2058
Bl min( e Med (o — 1) | < (PN (1 — 1)
teT: ke BtUC:
Z(li,tqﬁl’k'
2058
< (25 (1o~ 1)
20586,
a
_ 2058¢,
N I/k/l/k/ -1
If a = 1, then
. 2058¢
E Z mln(g‘g7t_1,Mk7t)(1/uk/ —1/v) | <wp( 2 Y1 vp — 1/1)
teT: ke BsUC:
Z(li,tﬂfl’k’

— 2058, (1 — )

Vg
< 2058(,.
Therefore, for any value of a,
. 2058
E Z mln(gg’t_l, M) (/v —1/vg) | < 7@11 + 2058¢,
teT: ke B,UC, Ui/ Vi =
t t
Zg,t—lgyk’

— 2058¢,—2F

Vi — Vg

This, together with inequality (105), conclude the proof.

Appendix C. Proof of Theorem 4

Take an algorithm A, and we can assume that it is deterministic, since we are bounding an expected
regret over all inputs. Notice that the optimal allocation strategy is to fully allocate all the arms
1,...,r, and additionally allocate some of the arms » + 1,...,2r. Therefore, the expected regret

on iteration ¢ satisfies

r 1 r
E[Rt | Ml,t"'MKvt] > Z ’Mk,t—yk’§+ Z ‘Vk_Mk,t <Vk_2
k<r: My 1>vy k<r: My <vg

T
,
> 2; vl — Myl

46



A BETTER RESOURCE ALLOCATION ALGORITHM

where the sum over My, ; > v}, corresponds to over-allocation of arms £ < r, and the sum over
My, + > vy, corresponds to under-allocation of these arms.

The idea of the proof is to show that on any iteration ¢, and for any arm k£ < r, the algorithm
cannot estimate the value of vy with an error lower than Q(1/(rt)), therefore, the expected value of
| — My, | will be ©(1/(rt)), and (110) will imply that the regret on iteration ¢ will be (7 /t).

We start by giving a definition of a distance between two distributions. Let €2 be a finite sample
space, and 1, 2 be distribution measures over 2. The fotal variation distance between p; and pa
is defined as

A, 1i2) = 5 3 i (@) — p2()] = max | (5) - 2(S)]
we -

This distance is subadditive in terms of a Cartesian product, as stated in the following lemma.

Lemma 29 Let 21, ..., be sample spaces, and let 2 = Q1 X - - - X Q. Let i and 1 be measures
over (), and let p; and n; be the Q;-marginals of 1 and n respectively, for all 1 < ¢ < t. Fix an
€ > 0. Assume that for any 1 < i < t, and for any w1 € Q1,...,wi—1 € Qi_1, (Wilwi, ..., wi—1)
and (n;|w1, . ..,w;—1) have a distance of at most €, where (u;|wi, ... ,w;i—1) is u; conditioned on
Wi, ... wi—1, and (n;|wi, ..., wi_1) is defined similarly. Then, d(u,n) < te.

Additionally, if f: 2 — R is a function, and p1, i are measures over €2, we can bound E,,, f —
E,., f in terms of d(u1, p12), as described in the following lemma:

Lemma 30 Ler Q) be a sample space, let a > 0, let f: Q — [0, a] and let j11, 12 be measures over
w. Then

Ewrw,ul f(W) - Ewwuzf(w) < ad(,ub ,u2)'

Proof It holds that
B f(@)~Ef@) = 3 (@) -m@)f@) < > (uw) -pw)a < ad(u, p).

weh w: p1(w)Zp2(w)

Fix0 <t <mn, k < r, and let {0, 1}tK be a sample space that contains vectors
1

(ri)i1<k<k, 1<i<t- Given two values 5 < a<b< % let 1 be a distribution over €2, which
equals the distribution over (X}, ;)1<k<k, 1<i<t When v is drawn from (D | v, = a). Formally, for
any x € (2,

u(x) = PTD[Xk,z‘ =zap,;foralll <i<t,1<k< K|y, =al (111)
U~y

Similarly, let 7 be the corresponding distribution conditioned on v, = b. We can apply Lemma 29
by substituting t = ¢, € = (1 — %), and substituting €2; with the marginal of 2 on the coordinates
{(k,i): 1 < k < K}, forall 1 < i < ¢. The lemma implies that d(u,n) < ¢ (1 — %), and this
quantity is at most 2¢r(b — a). Note that for any = € (2, the value of M}, ;1 is deterministically
defined given that x occurs. Therefore, we can define a function f: Q — [0,b — a] by

0 if My 441 < agivenx
fx) =X« if My 141 =a+ a givenz, forsome 0 <o <b—a.
b—a if My > bgivenx

47



DAGAN AND CRAMMER

Lemma 30 implies that

Eull My i1 — vill + Eq[|Mi 11 — viel] = Bul| M 41 — al] + Eq[[ My 141 — 0]
E:JcN,uf( ) (( - a) - mwnf( ))
(b—a)—(b—a)d(u,n)
(b—

a)(1 — 2tr(b— a)).

AVARAVARIY]

Therefore, for any ¢ > 1,

2E,p[| M t41 — vil]

1

=2 2r/ E,p[|Myt+1 — vi| | v = alda
a

T art
> 2r/ 1 <Eu~D[|MkJ,t+l — vkl [ vk = al + Epp [|Mk,t+1 = vl
.

o [0 (100 ) da
a=L Art 4rt

1 1
C8rt 16rt?
Combining with inequality (110), this implies that

an nlr r 71'2
SCTS SRS SRy (TR

2
12t t164t 2

1
uk—a—l—u]>da

-+
I

Appendix D. Regret Lower Bound with respect to the parameters v, - - - v

Theorem 31 Fix integers K and { such that K > { + 1, and fix numbers v1, ..., vy, such that
v1 + -+ vy < 1. Let B be the set of all vectors v = (vy,...,vi) € RE, such that: (1) For all
k < ¢, it holds that v, = vy, and (2) For all { < k < K, it holds that v, > 1. For anyv € B,
define v* = ming <<k V. Additionally, define D(p||q) = plog% +(1- )log p . Assume an
anytime algorithm A, such that for all v € B, and for all a > 0, lim,,_,o, ER™ (A, v)/n® = 0.

—1)2 —1
Define C'(a) = max (4(41(11121) )+1, —4log(1 = )). Then, for all v € B,

fminf BEOAY) S s W e e %
n—00 logn b Lr1<hek, vov D(1/vg|[1/v*) bt (41<k<K, vptvt F v

(112)

The proof follows the same steps taken in the proof of Theorem 2 in the paper by Lai and
Robbins (1985), yet it is simpler to rewrite it instead of stating all the differences. All asymptotic
notations correspond only to n, and consider the other parameters of the problem as constants.

For any k > ¢+1, and any integer n, let T,,(k) be the random variable which equals > ;" | M, ;.

It holds
ER™(A,v) > Z ET,, (k) (1 — 1) . (113)

v* Vk
k: v >v*

48



A BETTER RESOURCE ALLOCATION ALGORITHM

Fix some £ such that v, > v*, and we will prove that

T, 1
lim inf (k) >

114
n—oo logn — D(1/vF||1/v*)’ (114

and this, together with inequality (113) completes the proof of the left inequality (112). Let 0, = i,

and let 0* = L. Fix any § > 0. Fix some A such that 6* < X and |D(0;||\) — D(6;]|6)| <
5D (0;||0%). Let v € R be a vector defined as

T i=k
=1t
{Vi Z%]{?

Fix a, 0 < a < §. It holds that

(1-9¢)logn

(n — O(logn)) Py [Tn(k) < D(0k[|N)

} < Ey(n —Tyn(k)) = o(n®). (115)

Given a value of 0, and an integer ¢, let Zy ; be the random variable which equals M}, ;0 if X}, ; = 1
and 1 — My, ;0 otherwise. Namely, Zy ; is the probability that X}, ; had to get its value given Mj, ;
and the parameter of arm k. Let

L o - Ztgkﬂf
n = Zlog—.
t=1

Iy

Let ( 51

1—4)logn }

Cp=_Tyk)< —2"°" L, <(l—a)logny.
180 < S = los

It follows from (115) that

Pr(C,) = o(n®1). (116)

ol

Note that for any » > 0,

~Z
Pr [T, (k) =r,L, < (1 —a)logn| = / Y’ P,
v

(T (k)=r,Ln<(1—a) logn) j—1 Z0i.t
> exp(—(1 —a)logn)Pr[T, (k) =r,L, < (1 —a)logn].
(117)

Since C), is a disjoint union of events of the form {T,,(k) = r, L, < (1 —a)logn}, with r <
(1 —9)logn/D(bk||A), it follows from (116) and (117) that

lim Pr(C,) < lim n'~*Pr(C,) = 0. (118)

n—o00 v n—00 ¥

Let 7 be the first ¢ such that T (k) > (ID_(?%. The inequality D(ep|leq) < eD(pl|q) for all
0 < p,q,e < 1,implies that EL, < logn+ O(1). Therefore, using standard concentration bounds,
it holds that

lim Pr(3i <7, L; > (1 —a)logn] = 0. (119)

n—oo v

49



DAGAN AND CRAMMER

From (118) and (119) we see that

(1—4)logn ]

) ) (1—-0)logn
< 1 P
n—oo v < (1 + 5)D(9k,9*) v

T n—oo v |:Tn(k) < W

=0,

from which (114) follows. This concludes the proof of the left inequality (112).

Next, we prove the right inequality (112). Fix 0 < p < g < 1, and let € be a number such that
g = (14 €)p. Assume that € < 1. Estimating the Taylor sum of D(p||p(1 + €)) around € = 0, we
get that there exists 0 < < e such that

FPDpll(1L+ep)| €
Dl = ZPPI0 s
p=¢
:< p_ . p(-p) )62
(1+¢0)?* (I1-p—-¢Cp?) 2
2 2
p*(1-p)) e
< L S A B
- <p+ (1-9q)? ) 2
1 62p
< (1 ==
B ( +4(1—Q)2) 2
This implies that,
a—p 2 _ o 8(l-9? _ 41-9? 1+4e_ 4(1-9°  lp
D(pllg) ~ ¢ (1 + ﬁ) e(4(1-g)?+1) ~4(1-¢*+1 ¢  41-g?2+11/p—1/q
(120)
Next, assume that ¢ > 1. It holds that
1—p 1
D <(1-p)l <1 .
(pllg) < (1 —p) g, Slogy—
Therefore,
2
- 1
q—p q q q q /p (121)

D(pllq) = 4(q — p)D(pllq) & —4log(1—q)q—p —4log(l—q)1/p—1/q’

Inequalities (120) and (121) conclude the proof of the right inequality (112), replacing p = i and
1
q =

Voy1®

Here is a result which appears in the original work of Lattimore et al. (2014).

Lemma32 Fixt € T, and 1 < j < K. Then, Yk i1 < V) namely, the arm with priority j on
iteration t has a lower bound of at most v;.

Proof For any arm k£ < j, it holds that Vi1 < vk < vy, where the first inequality is due to the
fact that ¢ € T, and the second inequality follows from our assumption that ; < --- < vg. This
implies that the list vy ;_;,..., vk, has at least j values lower or equal to v;. Therefore, if we
sort the list vy 4_q,...,V 4 in an increasing order, the value on place j (counting from the start)
is at most v;. This value is exactly vy, ; 1, by definition of k;;. |

50



A BETTER RESOURCE ALLOCATION ALGORITHM

It holds that E [ X}, ; | Zi—1] = B (My+/vg), forall 1 <k < K. If |A| = min(¢ + 1, K), then

K

B[Ry | Zi1) <€+ 1xsp— Y B (Miy/vi)
k=1

K

< Ay = Zﬂ (M /vr)
k=1

<A =D B(Miy/vi)

keAq

= > (1= B (My/vy)) -

keAs

Therefore, the proof follows for this case.

Assume next that |4;| < min(¢ + 1, K). Let h: [0,00) — R be a function such that for all
1<k <K, h(zx) =1/ inthe range z € [SF =} v, S8 1), and h(x) = 0 forall z > 3K ;.
It holds that h(x) is monotonic non-increasing, and its integral function H(z) = fyxzo h(y)dy
satisfies that H (1) is the award achieved by the optimal policy in round ¢. Therefore,

K
E[R; | Z-1] )= > B (Myi/v). (122)
k=1

|At

Leta = Z‘ At and b = 1Yk + D pea, Tkt + 1. Using equality (122),

B[Ry | Zia) < | H(a) = Y B (Myy/vi) (123)
keA,
+ (H(b) — H(a)) (124)

+ (H(l) —H(b) -8 (Ai’:”)) . (125)

We will bound each of these three terms separately.
The right hand side in (123) is bounded by

|Ae|

ch =S B (M /v = S (1 8 (M /m))- (126)

ke Ay keA;

We proceed to bounding the quantity in (124). Lemma 32 implies that any k& € A; U {k}} =

{k1ts - Ky 41,0} satisfies Hg,tq < 1|4, |+1- Therefore,
b
H®) — H(a) < /
a VlAtH-l
/
 Dkea, Tht + Tt
VA +1

51



DAGAN AND CRAMMER

/
Tkt T
<y Ikt Tt (127)
|4 | 4
keA, —kit-1 =k t—1

Lastly, bound the quantity in (125). Lemma 32 implies that

| A | A
d d
Z Vi1 = Z—kﬂ,t 1= ZVJ
k€A j=1
This implies that
| Ae|
ZMk,t:Z th 1+7”]gt <Zl/k+27“kt. (128)
keA; ke Ay ke Ay
We will show that
b > 1 —min(My, t,ggg 1) (129)

First, assume that B; = (). Inequality (128) implies that

. d
b> Z My =1—My,=1- mm(Mk;,taZk;,t—O‘
k‘eAt

If By # 0, then rj = 1= 3y, My — v,y and

b> Z Myt+r,=1— I/k/ o =1- mln(uk/t 1 My 1),
keAq
which concludes the proof of Equation (129). This implies that

1
H(1)—H(b) = B h(x)dx

< (1 =b)h(b)
< min(vgy g, My )h(D). (130)

If |Ay| = ¢, then b > Zi:l Vi, Therefore, h(b) < -1
tion (130), that

H(1) — H(b) < min(ufl _, My )——. (131)
’ Vo1
If |Ay] < ¢, then, we know that Vi t1 < Vjpy+1 S Ve which implies, together with equa-
tion (129) that
b>1-— min(g2£7t_1,Mk£7 )>1-— l/k/ 121w

Therefore, ]
h(b) < h(l— 1) < —
v
This implies, together with Equation (130), that
1
H(1) = H (b) < min(vy , 4, Mké,t)yj' (132)

52



A BETTER RESOURCE ALLOCATION ALGORITHM

Additionally,
B (Mig/vig) = 8 (min(uly, s M) fvig ) = min(ull ,_y, Mg /g (133)
Equations (131), (132) and (133) imply that

min(vjy g, Mygo)(1/ven = 1/vy) Al = ¢

ok . (134)
min (v, g, My ) (1/ve = 1/vyy) A <

Hmﬂ@ﬁ@@ﬂm)g{

Equations (123), (126), (127) and (134) conclude the proof.

53



	Introduction
	Single Arm Problem
	Multi-Arm Problem
	Algorithm
	Proof Outline of Theorem 3
	Simulations
	Summary
	Proof of Theorem 1

	Proof of Theorem 3
	Table of definitions
	Proof of Lemma 6
	Proof of Lemma 7
	Lemma 15
	Lemma 16
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Concluding the proof

	Proof of Lemma 8
	Proof of Lemma 5
	Proof of Lemma 9

	Proof of Theorem 4
	Regret Lower Bound with respect to the parameters 1 @let@token K

