
Journal of Machine Learning Research 1 (2018) 1-26 Submitted 4/00; Published 10/00

A Better Resource Allocation Algorithm with Semi-Bandit Feedback

Yuval Dagan YUVAL.DAGAN@CS.TECHNION.AC.IL
Department of Computer Science, Technion, Haifa, Israel

Koby Crammer KOBY@EE.TECHNION.AC.IL

Department of Electrical Engineering, Technion, Haifa, Israel

Editor:

Abstract

We study a sequential resource allocation problem between a fixed number of arms. On each itera-
tion the algorithm distributes a resource among the arms in order to maximize the expected success
rate. Allocating more of the resource to a given arm increases the probability that it succeeds, yet
with a cut-off. We follow Lattimore et al. (2014) and assume that the probability increases linearly
until it equals one, after which allocating more of the resource is wasteful. These cut-off values
are fixed and unknown to the learner. We present an algorithm for this problem and prove a regret
upper bound of O(log n) improving over the best known bound of O(log2 n). Lower bounds we
prove show that our upper bound is tight. Simulations demonstrate the superiority of our algorithm.

1. Introduction

We study a sequential resource allocation problem for a fixed number of arms (or processes). On
each iteration t, the learning algorithm distributes a fixed amount of unit resource between K arms,
and pulls all the arms. The probability of each arm to succeed is proportional to the amount of
resource assigned to it (or 1, if enough resource was assigned), with slope that depends on the arm,
and unknown to the learner. The learner observes the result of all arms, and repeats the process. Her
goal is to maximize the cumulative number of successes over all K arms and all n iterations.

Formally, on time t the learner assigns Mk,t ≥ 0 resource for arm k = 1 . . .K, such that∑K
k=1Mk,t ≤ 1. The outcome of the allocation processes is Xk,t = 1 if arm k succeeded and

Xk,t = 0 if it fails. The probability of arm k to succeed given Mk,t is Pr [Xk,t = 1 |Mk,t] =
min{1,Mk,t/νk} for some fixed unknown values ν1 . . . νK . The goal of the learner is to maximize∑

k,tXk,t.

The problem was first suggested by Lattimore et al. (2014), who proposed an algorithm and
a corresponding regret bound inspired by the upper confidence interval (UCB) algorithm of Auer
et al. (2002) for the stochastic multi-armed bandit problem. The algorithm of Lattimore et al. (2014)
maintains high probability lower bound estimates on the parameters ν1, . . . , νK . On every iteration
t, the arms are prioritized by these bounds, from the lowest to the highest, each arm getting an
amount of resources which equals its lower bound, until no resource is left. Using this technique,
the best arms get almost all the resource they require, hence, their probability of success is close to
1, and their outcomes have a low variance. This enables the authors to estimate νk with an expected
error of Θ

(
1
t

)
after t allocations. Yet, the proof requires the constructed lower bound estimates to

hold throughout all the n iterations, which implies that their failure probability has to be low. This

c©2018 Yuval Dagan and Koby Crammer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v1/Dagan.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/Dagan.html

DAGAN AND CRAMMER

high confidence requirement weakens the tightness of this estimate: it is far by Θ(log n/t) from the
estimated parameter, yielding a regret of O(log2 n).

We propose a new algorithm that utilizes both probabilistic lower bounds and deterministic
lower bound estimates, utilizing the fact that the error is one-sided: if arm k is allocated with M
resources and terminates in failure, we know that νk > M with probability 1. We analyze this
algorithm and prove a regret of O(log n). Besides having a lower regret bound than Lattimore et al.
(2014), our algorithm does not have to know the horizon n in advance (without using a doubling
trick). Simulations we performed demonstrate the superiority of our algorithm (by a considerable
gap), and a matching Ω(log n) lower bound is obtained.

This problem is a special case of stochastic partial monitoring problems, first studied by Rajeev
et al. (1989). These are exploration vs. exploitation problems, where the user performs actions and
obtains a stochastic reward based on them, and on an additional hidden parameter. Lattimore et al.
(2014) surveyed relevant literature on this topic, including the work by Broder and Rusmevichien-
tong (2012). The model discussed in our paper was generalized by Lattimore et al. (2015), to enable
multiple resource types. They discuss the relation to stochastic linear bandits (Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013) and online combinatorial optimization (Kveton et al., 2015).

2. Single Arm Problem

We start our discussion in a setting with only a single arm. On each iteration 1 ≤ t ≤ n an algorithm
assigns some amount Mt ≥ 0 of a resource to the arm and pulls that arm. It then obtains an indi-
cation of success (denoted by Xt = 1) or failure (Xt = 0). The arm is associated with a threshold
parameter ν such that the probability of success given an allocation of Mt equals min(1,Mt/ν), as
in the multi-armed setting. Each allocation incurs a cost of Mt, and the total reward on iteration t
equals Xt −Mt.

Fig. 1 illustrates the expected reward as a function of the allocated amount: it is a piecewise
linear function, maximized at Mt = ν, with a reward of 1 − ν. The regret of the algorithm on
iteration t is defined as the difference between the maximal expected reward, and the actual reward,

Rt = 1− ν − (Xt −Mt),

and the total regret equals R(n) =
∑n

t=1Rt.
Fig. 2 summarizes our algorithm for the single-arm resource allocation problem, that invokes

the arm for n rounds, when n (and of course ν) are unknown in advance. The algorithm maintains a
guaranteed lower bound on ν. On each iteration it allocates a slightly higher amount of resource than
the lower bound. If the machine fails, the amount of resource which was allocated is insufficient,
and the lower bound is increased. Its new value is set as the amount of resource allocated just before
failure.

Specifically, the lower bound is initialized to ν0 ← 0. On iteration t = 1 . . . the algorithm
allocates Mt ← νt−1 + 2

t . After pulling the arm and observing Xt the algorithm increases the
current lower bound and sets νt ←Mt after failure (Xt = 0) and does not modify the lower bound
after a success (Xt = 1), that is, νt ← νt−1.

The algorithm suffers a regret of 4(log n+ 1):

Theorem 1 Assume the alg. of Fig. 2 is invoked for n iterations, and interacts with some arm with
parameter 0 ≤ ν ≤ 1. Then

ER(n) ≤ 4(log n+ 1)

2

A BETTER RESOURCE ALLOCATION ALGORITHM

Figure 1: Reward as a function of the resource for ν = 0.6

1: ν0 ← 0
2: for all t ∈ {1, 2, . . . } do
3: Mt ← νt−1 + 2

t
4: Grant the arm with Mt resources
5: Xt ← success status of the arm
6: if Xt = 1 then
7: νt ← νt−1

8: else
9: νt ←Mt

10: end if
11: end for

Figure 2: Single Arm Algorithm

The proof appears in App. A. It consists of two parts: first, we show that the algorithm does not
waste many resources compared to allocating ν on every iteration:

n∑
t=1

(Mt − ν) =
n∑
t=1

(
νt−1 +

2

t
− ν
)
≤

n∑
t=1

2

t
≤ 2(log +1).

Secondly, we bound the expected error E[ν − νt] of the lower bound estimate on iteration t, using
the simple recursive inequality: E[ν−νt] ≤ E[ν−νt−1]

(
1− 2

t

)
+ 4
t2

. One obtains that E[ν−νt] =
O(1/t), which, in tern, implies a low number of failures: E [

∑n
t=1 (1−Xt)] ≤ 2(log n + 1). A

bound on the regret is obtained by combining these two bounds. The proof holds for a more general
and adversarial setting, as discussed in Remark 2.

Remark 2 The algorithm of Fig. 2 and the analysis in Thm. 1 hold for the following gemeral setting
where the success probability of the arm has two restrictions: (1) if Mt ≥ ν, then Xt = 1 with
probability 1, and (2) for any values of t, M1, . . . ,Mt and X1, . . . , Xt−1 for which Mt < ν,
we have, Pr [Xt = 0 |M1 · · ·MtX1 · · ·Xt−1] ≥ ν −Mt. The second restriction ensures that the
optimal allocation is always Mt = ν.

3. Multi-Arm Problem

We address the following problem presented by Lattimore et al. (2014), as we describe briefly. There
are K arms denoted by 1, 2, . . . ,K. On each iteration t an algorithm divides a resource between
the arms, such that arm k receives Mk,t ≥ 0 of it. We assume that the total amount of resource is
bounded,

∑
kMk,t ≤ 1. The success probability of each arm givenMk,t is min(1,Mk,t/νk), where

νk is a fixed unknown parameter associated with arm k. If the amount allocated Mk,t is greater than
this threshold νk, then the arm will succeed with probability 1. Otherwise, it will succeed with prob-
ability proportional to the amount allocated: Mk,t/νk. Finally, define ν = (ν1, . . . , νK), and assume
that ν1 ≤ · · · ≤ νK (the algorithm does not know this ordering). Denote the success indicator by
Xk,t and set Xk,t = 1 if the arm succeeds and 0 if it fails. The goal of the algorithm is to maximize
the number of success pulls after n iterations, called the reward and given by

∑n
t=1

∑K
k=1Xk,t.

Lattimore et al. (2014) described an algorithm to find the optimal allocation when the thresholds
ν1, . . . , νk are known. This allocation is obtained by prioritizing the arms according to the amount of

3

DAGAN AND CRAMMER

resource they require (νk). First, the arm with the lowest requirement is allocated with the minimal
amount required to succeed with probability 1, that is M∗1 = ν1, then the second lowest, and so on,
until either there is no resource left, or all arms receive the amount they require. Formally, this opti-
mal allocation is defined recursively, and arm k is allocated with, M∗k = min

(
νk, 1−

∑k−1
i=1 M

∗
i

)
.

Let ` be the number of arms k for which M∗k = νk. It holds that for all 1 ≤ k ≤ `, M∗i = νi. If
` < K then 0 < M∗`+1 < ν`+1 and define S∗ = M∗`+1. The expected reward from this optimal
allocation is E [

∑
kXk] = `+ 1`<K

S∗

ν`+1
, where 1A denotes an indicator for A.

Assuming the executed algorithms do not know the parameters of ν1, . . . , νK neither their or-
dering, they are expected to obtain less reward than the optimal allocation. We call the difference
between an algorithm’s actual reward and the optimal expected reward (over all randomizations) by
regret given by,

R(n)(A, ν) =

n∑
t=1

Rt = n

(
`+ 1`<K

S∗

ν`+1

)
−

n∑
t=1

K∑
k=1

Xk,t ,

where A denotes the algorithm. The goal of any algorithm is to minimize the expected regret.

Our Contribution: We describe in Fig. 3 an algorithm that receives a parameter c > 2 as input,
and operates in the above setting, with a regret O(log n), and constants depending on the threshold
parameters ν. This improves over the previous bound of O(log2 n) of Lattimore et al. (2014). We
also present a lower bound showing that the dependence in n cannot be improved. It is impossible
to get a polylogarithmic regret independently on the problem parameters as shown by Lattimore
et al. (2014).

Besides having a lower regret bound compared to the algorithm of Lattimore et al. (2014), our
algorithm does not have to know the value n in advance (without having to rely on a doubling
trick), and has a lower initialization cost. Also, whenever K ≤ ` + 1, our algorithm shows a great
superiority in the simulations, and it performs considerably better in general. In the next theorem
we state an upper bound on the regret of the presented algorithm (Fig. 3).

Theorem 3 Fix some c > 2, and let Ac denote the algorithm of Fig. 3 invoked with the parameter
c. Fix an integer K > 0, and a vector ν ∈ RK+ and an integer n > 1. Then,

ER(n)(Ac, ν) ≤ C` log n+ C1 log n+ C2,

where C > 0 is a constant that depends only on c, and

C1 = C ·

(
ν`+1

ν`+1 − ν`
+

K∑
k=`+2

νk
νk − ν`+1

)

C2 = C ·
(

(`+ 1) max(1, log
1

ν1
) +K logK

)
.

The bound has better dependence in n and the constants are compared with the bound of Lattimore
et al. (2014) with regret of the form, ` log2 n+log n

∑K
k=`+2

νk
νk−ν`+1

, plus some terms independent
on n.

Next, we present a lower bound of Ω(`n) on the regret. The proof appears in Sec. C, and a
different lower bound is presented and proved in Sec. D.

4

A BETTER RESOURCE ALLOCATION ALGORITHM

Theorem 4 Fix an integer r > 0 and define K = 2r. Let D be the following probability space
over vectors ν ∈ RK: ν1, . . . , νr are picked uniformly and independently from

[
1
2r ,

1
r

]
, and νr+1 =

· · · = ν2r = 2
r . Then, for ν ∼ D and H(n) =

∑n
i=1

1
i , any algorithm A satisfies,

ER(n)(A, ν) ≥ r

32

(
H(n− 1)− π2

12

)
.

Here is an intuition for the proof. For any t ≥ 1, the total variation distance between the first t
successes (Xk,1 · · ·Xk,t) of an arm with paramter ν and the successes of an arm with parameter
ν ′ is at most O(t|1/ν − 1/ν ′|). Hence, t = Ω(1/|1/ν − /1ν ′|) rounds are required to distinguish
between ν and ν ′. This roughly implies that under the distribution D in Thm. 4, one can estimate
ν1, . . . , νr with an additive error not lower than Ω(1/(rt)), hence the regret incurred at round t by
misallocating any arm k is Ω(1/t). Summing over arms 1 ≤ k ≤ r and over all rounds 1 ≤ t ≤ n,
one obtains a regret of Ω(r log n).

4. Algorithm

In this section, we present the algorithm and an intuition to its construction. Recall the optimal
allocation algorithm which knows the parameters ν1 · · · νK and allocates resource to the arms in an
escending order of νk: arms 1 to ` are fully allocated, arm ` + 1 receives the remaining resource
and the rest of the arms receive no resource (ussuming wlog that ν1 ≤ · · · ≤ νK). The algorithm of
Lattimore et al. (2014) uses the same algorithm, replacing the real parameter νk by a lower bound
estimate νk,t−1 obtained on iteration t: the arms receive resource in an escending order of the lower
bound estimate, each arm k receiving νk,t−1 resource, until no resource is left. Their estimates
νk,t−1 converges to νk, which implies that the allocations in their algorithm converge to the optimal
allocation.

One would suggest using the scheme of Lattimore et al. (2014) while replacing their lower
bound estimate with the one suggested in Sec. 2, however, there are some obstacles which enforce
the solution to be more involved. Recall that in Sec. 2 the arm was allocated with Mt = νt−1 + c/t
resources where c = 2 (in the multi armed algorithm we allow c to be any constant greater than
2). Since there are multiple arms, this solution would be wasteful: one would possibly allocate a
redundant amount of c/t per arm. Similarly to Thm. 1, one can show that an allocation of Mk,t =
νt−1 +cνk/t is sufficient. Since νk is unknown, it is replaced with its lower bound estimate, denoted
νd
k,t−1.

Here is another issue: one cannot allocate νd
k,t−1 + νkc/t resources on any iteration due to

two reasons. First, one replaces νk with νd
k,t−1, a bound which may be inaccurate, at least on

the beginning. Secondly, due to a lack of resources, it may happen that one, for instance, would
allocate an amount higher than νd

k,t−1 and lower than νd
k,t−1 + νd

k,t−1c/t. Due to this issue, the
solution of allocating νd

k,t−1 + νd
k,t−1c/t would not work. The value νkc/t is replaced with an

amount which depends on all previous allocations: one sets sd
k,t =

∑
i≤t max{0,Mk,i − νd

k,i−1}1

and rk,t = cνd
k,t−1 exp

(
−sd

k,t−1/
(
cνd
k,t−1

))
, and allocates Mk,t = νd

k,t−1 + rk,t if there are
sufficients resources. This definition makes sense: the sequence a1, a2, . . . defined by a1 = cνk

and at = cνk exp
(
−
∑t−1

i=1 ai/ (cνk)
)

satisfies at ≈ cνk/t. Hence, have the two issues described

1. This sum does not include the initialization rounds defined below.

5

DAGAN AND CRAMMER

in the beginning of this paragraph not existed, the new allocation scheme would have allocated an
amount similar to νd

k,t−1 + cνk/t.
An algorithm based only on νd

k,t would not achieve the desired regret. A tipical situation is
that the algorithm allocates any arm k ∈ {1, . . . , `} with an amount similar to νk, and only a small
amount of resource remains for the next arm, an amount insufficient for improving the estimate:
one can improve νd

k,t over νd
k,t−1 only when Mk,t > νd

k,t−1. Without being able to improve the
estimates on the remaining arms, one cannot accurately decide which arm should get the remaining
resource. For that reason, we create another estimate, inspired by the estimate of Lattimore et al.
(2014) and by the UCB algorithm of Auer et al. (2002). It is denoted by νp

k,t, as it is probabilistic,
while νd

k,t is a deterministic bound. This bound relies on the fact that E [Xk,t |Mk,t] = Mk,t/νk
whenever Mk,t ≤ νk. It estimates 1/νp

k,t ≈ (
∑

iXk,i) / (
∑

iMk,i) where the sum is over all i ≤ t

such that Mk,i ≤ νd
k,i−1: for these values of i it is guaranteed that Mk,i ≤ νk. The actual estimate

is slightly lower as one requires that νp
k,t ≤ νk with high probability. See Fig. 3 a full definition of

νp
k,t. The resource is allocated to the arms in an ascending order of max

(
νp
k,t, ν

d
k,t

)
.

One gets into the following dilema: what happens if, at some point, the remaining resources is
higher than νd

k,t−1 and lower than νd
k,t−1 + rk,t, where k is the next arm to be allocated. Here are

two unsuccessful solutions:

• Allocating all the remaining resources to arm k: as a result, the estimate νd
k,t may improve

over νd
k,t−1, however, not as good as the improvement when allocating Mk,t = νd

k,t−1 + rk,t.
Additionally, the estimate νp

k,t cannot improve after allocating more than νd
k,t−1 resource,

hence it does not improve. This slow improvement of max(νd
k,t, ν

p
k,t) could imply that the

arm will get a priority it does not deserve for many rounds, taking resources which could
better be utilized by other arms.

• Allocating νd
k,t−1 resources: as a result, the estimate νp

k,t will improve over νp
k,t−1, however

νd
k,t will not. Since only νd

k,t−1 resources are allocated rather than all remaining resources,
arm k may get stuck, receiving the same amount of resources on every iteration, while the
remaining resources are given to inferior arms.

One can solve this problem by making sure that both νp
k,t and νd

k,t are improved with constant
probability, tossing an unbiased coin to decide between allocating all the remaining resources to
arm k and allocating νd

k,t−1 resources.
Due to the definition of rk,t, our allocation scheme requires νd

k,t to be positive. In order to
obtain an initial positive estimate νd

k,t, a different allocation scheme is performed, similarly to the
initialization phase of Lattimore et al. (2014): each arm k is allocated with 2−(t−1)/K resources on
every iteration t until it fails (Xk,t = 0). Then, νd

k,t is set as the amount Mk,t allocated at failure,
and the normal allocation scheme is used from then.

The algorithm appears in Fig. 3. As one may notice, it may be implemented using O(K)
memory and O(K logK) time per iteration2. The authors did not find a simple way to implement
such an efficient algorithm using existing tools. For instance, one may suggest discretizing the space
of all possible allocations, and learning an allocation from this space using a standard multi armed
bandit (Auer et al., 2002). However, in order to achieve a polylogarithmic regret, Ω̃(n)K different

2. The algorithm contains sums over i = 1, . . . , t, however, one can calculate this sum given the sum up to t− 1

6

A BETTER RESOURCE ALLOCATION ALGORITHM

1: Get as an input a parameter c > 2
2: Set νd

k,0 ← 0 and νp
k,0 ← 0 for all k ∈ {1, . . . ,K}.

3: for all t← 1, 2, . . . do
4: resource← 1
5: for all k ∈ {1, · · · ,K} in an increasing order of max(νd

k,t−1, ν
p
k,t−1) do

6: rk,t ← cνd
k,t−1 exp

(
− sdk,t−1

νdk,t−1c

)
if νd

k,t−1 > 0 otherwise rk,t ← 0

7: if νd
k,t−1 = 0 then

8: Mk,t ← 1
K2t−1 {Case I}

9: else if resource ≥ νd
k,t−1 + rk,t then

10: Mk,t ← νd
k,t−1 + rk,t {Case A}

11: else if νd
k,t−1 < resource < νd

k,t−1 + rk,t then
12: Draw an unbiased coin to decide whether Mk,t ← νd

k,t−1 or Mk,t ← resource {Case B}
13: else
14: Mk,t ← resource {Case C}
15: end if
16: resource← resource−Mk,t

17: end for
18: Observe X1,t, . . . , XK,t

19: νd
k,t ← maxi≤t : Xk,i=0Mk,i if the max is over a nonempty set, otherwise νd

k,t ← 0

20: sd
k,t =

∑
i≤t : νdk,i−1>0 max

{
Mk,i − νd

k,i−1, 0
}

21: εt = t−3K−1 ; ζt ←
(√

1/2 +
√

1/2− log εt

)2

22: sp
k,t =

∑
i≤t : Mk,i≤νdk,i−1

Mk,i ; xp
k,t =

∑
i≤t : Mk,i≤νdk,i−1

Xk,i

23: νp
k,t ←

(√
ζt

2spk,t
+

√
ζt

2spk,t
+

xpk,t
spk,t

)−2

if sp
k,t > 0 otherwise νp

k,t ← 0

24: end for

Figure 3: Resource-allocation algorithm for the multi-armed problem.

arms are required, which is high even for the setting with K = 1. Another suggestion it to estimate
ν1, . . . , νK using a maximum likelihood estimator, calculating

arg max
νk>0

Pr [Xk,1 · · ·Xk,t|νkMk,1 · · ·Mk,t] = arg max
νk>0

t∏
i=1

(1−Xk,t −min {Mk,t/νk, 1}) (1)

for any arm k. However, it seems that any simple implementation requires that Mk,t/νk ≤ 1, a
solution offered by Lattimore et al. (2014)3 which suffers a higher regret. Otherwise, the authors
think that there is no simple way to calculate this estimate for all t without storing Mk,i and Xk,i in
memory for all i ≤ t.

3. Lattimore et al. (2014) used confidence intervals instead of a maximum likelihood estimator.

7

DAGAN AND CRAMMER

5. Proof Outline of Theorem 3

In this section the outline of Thm. 3 is presented together with the main lemmas, where c > 2 is the
constant parameter given as an input to the algorithm. Recall cases A, B, C and I from the algorithm
in Fig. 3. We start by splitting the iterations into two types. Let νk,t = max

(
νp
k,t, ν

d
k,t

)
and let T

be the set of “good iterations”, for which 0 < νk,t−1 ≤ νk for all k. The core of the proof relates
to iterations t ∈ T , while the number of iterations t /∈ T can be bounded: first, by observing case I
of the algorithm, one can show that after a short number of iterations, for all 1 ≤ k ≤ K, νd

k,t > 0.
Secondly, it always holds that νd

k,t ≤ νk. Lastly, the estimate νp
k,t is constructed such that νp

k,t ≤ νk
with high probability.

Lemma 5 The expected number of iterations t /∈ T is bounded by C max
(

log 1
ν1
, 1
)

, for some
constant C > 0, depending only on c.

From now focus on iterations t ∈ T . Note that on any iteration t ∈ T , no arm is allocated
according to case I. Let A′t be the set of all arms processed in the loop over the arms in line 5 of
Fig. 3 on iteration t before encountering an arm k which is not allocated according to case A. Let k′t
be the first arm processed not according to case A. If the arm k′t is allocated according to case B then
set B′t = {k′t}, C ′t = ∅ and if according to case C then C ′t = {k′t}, B′t = ∅. If k′t is undefined then
B′t = C ′t = ∅. Define the sets At, Bt and Ct as the sets of all arms of A′t, B

′
t and C ′t (respectively)

which are among the first `+ 1 arms processed on iteration t. If Bt 6= ∅, define by r′t the difference
between the amount of resource left for k′t and νd

k′t,t−1. Note that if Bt 6= ∅ then arm k′t is of case

B, hence it will either be allocated with Mk′t,t
= νd

k′t,t−1 or with Mk′t,t
= νd

k′t,t−1 + r′t, each with
probability 1/2. The sets At, Bt and Ct are defined this way only for iterations t ∈ T , and they are
defined at emptysets for t /∈ T .

Define by Zt the random variable which contains all the history up to the point where all
M1,t+1, . . . ,MK,t+1 are defined and just before observing X1,t+1 · · ·XK,t+1 (it contains the val-
ues {Xk,i}1≤k≤K,i≤t and the random coins tossed in case B of the algorithm up to and including
iteration t+ 1). The expected regret on iteration t given Zt−1 equals

E[Rt | Zt−1] = `+ 1K>`
S∗

ν`+1
−

K∑
k=1

E [Xk,t | Zt−1] = `+ 1K>`
S∗

ν`+1
−

K∑
k=1

min

(
1,

Mk,t

νk

)
.

The next lemma bounds E[Rt | Zt−1], and decomposes it in terms of At, Bt and Ct.

Lemma 6 Let t ∈ T . It holds that

E[Rt | Zt−1] ≤
∑
k∈At

(
1−min

(
Mk,t

νk
, 1

))
(2)

+
∑
k∈At

rk,t

νd
k,t−1

+
∑
k∈Bt

r′t
νd
k,t−1

(3)

+
∑

k∈Bt∪Ct

{
min(νd

k,t−1,Mk,t)(1/ν`+1 − 1/νk) |At| = `

min(νd
k,t−1,Mk,t)(1/ν` − 1/νk) |At| < `

. (4)

8

A BETTER RESOURCE ALLOCATION ALGORITHM

The proof of Lem. 6 matches between the allocations by the optimal allocation, and those by the
algorithm. The amount in line (2) relates to the difference between the reward of arms 1, . . . , |At|
in the optimal allocation, and the reward of the members of At in the algorithm. The amount in
line (3) relates to possibly allocating

∑
k∈At rk,t + r′t resource to the wrong arms. Line (4) stands

for the regret incurred from allocating min(νd
k′t,t−1,Mk′t,t

) resources to arms in Bt ∪ Ct, instead of
allocating it either to arm ` or to arm ` + 1. One can bound the total regret of the algorithm by
summing the bound obtained in Lem. 6 over t ∈ T and changing the order of summation:

ER(n) =
n∑
t=1

ERt =
∑
t∈T

ERt +
∑
t/∈T

ERt =
∑
t∈T

E[E[Rt | Zt−1]] +
∑
t/∈T

ERt

≤
K∑
k=1

∑
t : k∈At

E
[
1−min

(
Mk,t

νk
, 1

)]
(5)

+

K∑
k=1

E

 ∑
t : k∈At

rk,t

νd
k,t−1

+

n∑
t : k∈Bt

r′t
νd
k,t−1

 (6)

+

K∑
k=1

E

 ∑
t : k∈Bt∪Ct

{
min(νd

k,t−1,Mk,t)(1/ν`+1 − 1/νk) |At| = `

min(νd
k,t−1,Mk,t)(1/ν` − 1/νk) |At| < `

 (7)

+ (n− E |T |)(`+ 1), (8)

where the term in line (8) is obtained from
∑

t/∈T ERt by the fact that the reward of the optimal
allocation is at most `+1, hence the regret on any iteration is at most `+1. The regret is decomposed
into four parts, appearing in lines (5), (6), (7) and (8), each bounded separately, where the amount
in line (8) is bounded by Lem. 5.

First, we bound the amount in line (5).

Lemma 7 There exists a constant C > 0, depending only on c, such that for every arm k:

E

 ∑
t : k∈At

(1−min (1,Mk,t/νk))

 ≤ C(log n+ logK).

To give an intuition, recall that whenever k ∈ At, there is a sufficient amount of resource for arm k,
and one allocates Mk,t = νd

k,t−1 + rk,t. Note that whenever k ∈ At,

1−min

(
Mk,t

νk
, 1

)
= max

(
νk −Mk,t

νk
, 0

)
≤
νk − νd

k,t−1

νk
.

Similarly to the corresponding claim in the single armed problem, one can roughly show, by a poten-
tial function calculation, that after m iterations when k ∈ At, it holds that E

(
νk − νd

k,t−1

)
/νk =

O(1/m). Hence, one can roughly bound the amount in line (5) corresponding to any arm k by∑n
m=1O(1/m) = O(log n). The actual proof is inductively by a potential function.
Next, we bound the amount in line (6), which corresponds to the redundant resource given to

the arms.

9

DAGAN AND CRAMMER

Lemma 8 There exists some constant C > 0, depending only on c, such that for every arm k:

E

 ∑
t : k∈At

rk,t

νd
k,t−1

+
∑

t : k∈Bt

r′t
νd
k,t−1

 ≤ C(log n+ logK).

We give an intuition for the proof. Note that if k ∈ At then max
(

0,Mk,t − νd
k,t−1

)
= rk,t,

and if k ∈ Bt then k is of case B, hence max
(

0,Mk,t − νd
k,t−1

)
= r′t with probability 1/2 and

max
(

0,Mk,t − νd
k,t−1

)
= 0 with probability 0. Therefore, one can bound

E

 ∑
t : k∈At

rk,t +
∑

t : k∈Bt

r′t

 ≤ 2E

[
n∑
t=1

max
(

0,Mk,t − νd
k,t−1

)]
. (9)

Note that by the definition of the algorithm,

max
(

0,Mk,t − νd
k,t−1

)
≤ rk,t = νd

k,t−1c exp

−∑t−1
i=1 max

(
0,Mk,i − νd

k,i−1

)
cνd
k,i−1

 (10)

≤ cνk exp

−∑t−1
i=1 max

(
0,Mk,i − νd

k,i−1

)
cνk

 ,

where the last inequality follows from the fact that νd
k,t−1 ≤ νk and the fact that xe−α/x is

monotonic nondecreasing in x for α ≥ 0 and x > 04. One can show that this implies that∑n
t=1 max

(
0,Mk,t − νd

k,t−1

)
≤
∑n

t=1 at, where a1 = cνk and at = cνk exp
(
−
∑t−1

i=1 ai/(cνk)
)

for all t > 1. It holds that at ≈ cνk/t, which implies that
∑n

t=1 at = O(νk log n). Combining the
last inequalities, one obtains a bound of νk log n on the left hand side of Eq. (9). This concludes the
proof since νd

k,t−1 = Ω(νk) for most values of t.
Lastly, we bound on the amount in line (7), inspired by Lattimore et al. (2014) and Auer et al.

(2002).

Lemma 9 There exists some constant C > 0, depending only on c, such that for every arm k:

E

 ∑
t∈T : k∈Bt∪Ct

{
min(νd

k,t−1,Mk,t)(1/ν`+1 − 1/νk) |At| = `

min(νd
k,t−1,Mk,t)(1/ν` − 1/νk) |At| < `

 ≤

C νk
νk−ν`+1

log n k > `+ 1

C νk
νk−ν` log n k = `+ 1

0 k < `+ 1

.

We give an intuition for the proof, ignoring the dependency on ν1 · · · νK for simplicity. Re-
call that 1/νp

k,t−1 is estimated roughly by the number of successes divided by the total resource,
(
∑

iXk,i) /
∑

iMk,i over iterations i ≤ t − 1 for which Mk,i ≤ νd
k,i−1. For a single i in the sum,

expectation of Xk,i/Mk,i is indeed 1/νk, and a relative Chernoff bound can show that if
∑

iMk,i is

4. Note the sum in the right hand side of line (10) is over all i ≤ t− 1. While the definition of rk,t requires the sum to
be over all i ≤ t− 1 such that νdk,i−1 > 0, we ignore this requirement, for simplicity of presentation.

10

A BETTER RESOURCE ALLOCATION ALGORITHM

Figure 4: Regret vs n for two algorithms (log scale).

sufficiently large then this estimate is close to 1/νk with high probability. Fix some k > `+1 and if∑
iMk,i = Ω(log n) for a sufficiently large constant, then νp

k,t−1 > ν`+1. If t ∈ T this implies that
νp
k,t−1 > ν`+1 ≥ ν1,t−1, . . . , ν`+1,t−1 and k is not one of the first `+ 1 arms processed on iteration
t. Hence, k is not in Bt ∪ Ct from that point onwards, which implies that E

∑
tMk,t = O(log n),

where the sum is over iterations 1 ≤ t ≤ n such that Mk,t ≤ νd
k,t−1 and k ∈ Bt ∪Ct. Since Bt and

Ct contain arms of cases B and C respectively, whenever k ∈ Ct it holds that Mk,t ≤ νd
k,t−1 and

whenever k ∈ Bt then Mk,t ≤ νd
k,t−1 with probability 1/2. In particular, this implies that

E

 ∑
t : k∈Bt∪Ct

min(νd
k,t−1,Mk,t)

 ≤ 2E

 ∑
t : k∈Bt∪Ct
Mk,t≤νdk,t−1

min(νd
k,t−1,Mk,t)

 = 2E

 ∑
t : k∈Bt∪Ct
Mk,t≤νdk,t−1

Mk,t

 .
The last term is O(log n), which concludes the lemma for any arm k > ` + 1. One can similarly
bound the amount corresponding to k = ` + 1, while the amount corresponding to k ≤ ` is non-
positive since 1/ν` − 1/νk ≤ 0.

6. Simulations

We conducted simulations to evaluate the merits of our methods, each for 100 executions. First, we
followed the choice of Lattimore et al. (2014) and used a problem with K = 2 and ν1 = 0.4, ν2 =
0.6 as a problem where the regret contains only a term of the form ` log2 n, and indeed found out that
the regret behaves as 45 log2 n. We remind the reader that the main improvement of our algorithm
is by replacing the ` log2 n term with ` log n. This term corresponds to the regret obtained from the
fact the algorithm does not know the exact requirements (νk) of the top ` arms. We experimented
with log2 n = 1, 2, . . . , 18, and c = 2.5, and the regret behaves as 3.5 log n with high confidence.
For n = 218 this is an improvement from 7053 to 43.

While our main improvement in the regret corresponds to reducing the term ` log2 n to ` log n,
the other main term, log n

∑K
k=`+2

νk
νk−ν`−1

, which corresponds to arms k > ` + 1, appears in
both papers. Hence, one expects that the greatest difference between the algorithms would be in
situations where K/` is low. Indeed, this is the case, as shown in our simulations.

We also performed experiments where the arm parameters νk are uniformly spanned. One
execution was performed with K=50, and νk= 2k

252
for k=1, . . . , 50. That is, ν1 =2/252, ν50 =

11

DAGAN AND CRAMMER

(a) 100 arms (b) 50 arms

Figure 5: Regret of the algorithm in Fig. 3 as a function of log2 n

100/252=4/25, and `=24. The regret vs n is plotted in Fig. 4. In each of the 100 executions, we
ran one copy of our algorithm as it is any-time, yet multiple-copies of the algorithm of Lattimore
et al. (2014): one for each value of the horizon n. For n=214 our algorithm suffers a regret of 721
compared to 27, 681 by their algorithm.

Similar trends were observed with other choices of the parameters. For example, withK = 100,
and νk = 2k

1002
for k = 1, . . . , 100. Here ` = 99, therefore only the term ` log n takes part, and for

n = 218 our algorithm suffers a regret of 1167 compared to 352, 173 by their. Another example is
when we set K = 50 and νk = 2k

102
for k = 1, . . . , 50 (therefore ` = 9). For a horizon of n = 218

our algorithm suffers a regret of 1, 544 compared to the 21, 665 by the benchmark. The regret of
our algorithm in these two experiments as function of n is drawn in Fig. 5, where the x-axis is in
logarithmic scale and the y axis is in a normal scale. One can see that in the first experiment, the
regret is a linear function of log n, while in the second experiment, the regret is a linear function of
log n for any value n ≥ 215 (we executed up to n = 220).

7. Summary

We described an algorithm for the multi-resource allocation problem and proved both upper and
lower regret bounds of Θ(log n), an improvement compared to the regret of O(log2 n) of the pre-
vious algorithm by Lattimore et al. (2014). Additionally, we discussed a related settings, where
there is only a single-arm. Simulations we performed showed the supervisory of our algorithm.
Future directions are extending our results to the multi-resource problem (Lattimore et al., 2015), to
the contextual case where algorithms receive instance dependent side information, and to the case
where the parameters or total amount of resource drifts in time. Lastly, we believe that the algorithm
can be modified to handle non linear bandits, similarly to the generalization of the one arm problem
in Remark 2.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In ICML (3), pages 127–135, 2013.

12

A BETTER RESOURCE ALLOCATION ALGORITHM

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice
model. Operations Research, 60(4):965–980, 2012.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for
stochastic combinatorial semi-bandits. In AISTATS, 2015.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Tor Lattimore, Koby Crammer, and Csaba Szepesvári. Optimal resource allocation with semi-bandit
feedback. In UAI, pages 477–486. AUAI Press, 2014.

Tor Lattimore, Koby Crammer, and Csaba Szepesvári. Linear multi-resource allocation with semi-
bandit feedback. In Advances in Neural Information Processing Systems, pages 964–972, 2015.

A Rajeev, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically efficient adap-
tive allocation schemes for controlled iid processes: Finite parameter space. IEEE Transactions
on Automatic Control, 34(3), 1989.

Appendix A. Proof of Theorem 1

The proof is for the general setting discribed in Remark 2
Assume that the allocation rule of the algorithm isMt ← νt−1 + c

t for some c > 1 (2 is replaced
by c), and bound the expected regret by c2

c−1(log n + 1). Fix some arm, and let ν be its resource
requirement.

We divide the expected regret into two parts:

ER(n) = E

[
n(1− ν)−

n∑
t=1

(Xt −Mt)

]

= E

[
n∑
t=1

(Mt − ν)

]
+ E

[
n∑
t=1

(1−Xt)

]
. (11)

We start by bounding the first term of (11). Since the lower bound νt is always correct, namely,
νt ≤ ν, it holds that:

n∑
t=1

(Mt − ν) =
n∑
t=1

(c
t

+ νt−1 − ν
)
≤

n∑
t=1

c

t
≤ c(log n+ 1). (12)

Next, we bound the second term of (11). Define εt = ν − νt. This is a random variable, since
νt is also a random variable. We will start by bounding E[εt].

13

DAGAN AND CRAMMER

Lemma 10 For any 0 ≤ t ≤ n,

E[εt] ≤
c2

c− 1

1

t+ 1
.

Proof We start by bounding the conditional expectation E[εt|εt−1], for any 1 ≤ t ≤ n. Fix some
1 ≤ t ≤ n and 0 ≤ ε ≤ 1, and assume that εt−1 = ε. The problem definition assumes that the
probability that Xt = 0 is at least

ν −Mt = ν − νt−1 −
c

t
= εt−1 −

c

t
= ε− c

t
.

Denote p = Pr[X = 0|εt−1 = ε]. As we have just showed, p ≥ ε − c
t . By the definition of the

algorithm, with probability p, νt = Mt. At that case,

εt = ν − νt = ν −Mt = ν − νt−1 −
c

t
= εt−1 −

c

t
= ε− c

t
.

With probability 1− p, νt = νt−1. At that case,

εt = ν − νt = ν − νt−1 = εt−1 = ε.

Therefore,

E[εt|εt−1 = ε] = p(ε− c

t
) + (1− p)ε = ε− pc

t
≤ ε− (ε− c

t
)
c

t
= ε− εc

t
+
c2

t2
.

Writing it differently, this means that E[εt|εt−1] ≤ εt−1(1− c
t) + c2

t2
.

We conclude the lemma by induction on 0 ≤ t ≤ n. For t = 0,

E[ε0] = E[ν − ν0] = ν ≤ 1 ≤ c ≤ c2

c− 1
=

c2

c− 1

1

t+ 1
.

For 1 ≤ t ≤ n,

E[εt] = E[E[εt|εt−1]]

= E[εt−1(1− c

t
) +

c2

t2
]

≤ c2

(c− 1)t
(1− c

t
) +

c2

t2

=
c2

(c− 1)t2
(t− c) +

c2

(c− 1)t2
(c− 1)

=
c2

(c− 1)

t− 1

t2

≤ c2

(c− 1)

1

t+ 1
,

where the last inequality follows since (t− 1)(t+ 1) = t2 − 1 < t2.

14

A BETTER RESOURCE ALLOCATION ALGORITHM

The algorithm implies that νt = νt−1 + c
t (1−Xt), for all 1 ≤ t ≤ n. Therefore,

εt−1 − εt = (ν − νt−1)− (ν − νt) = νt − νt−1 =
c

t
(1−Xt).

This implies

E[1−Xt] = E
[
t(εt−1 − εt)

c

]
=
t(Eεt−1 − Eεt)

c
.

Summing over 1 ≤ t ≤ n,

n∑
t=1

E[1−Xt] =
n∑
t=1

t(Eεt−1 − Eεt)
c

=
Eε0

c
+
n−1∑
t=1

Eεt
c
− nEεn

c

≤
n−1∑
t=0

Eεt
c

≤
n−1∑
t=0

1

c

c2

(c− 1)(t+ 1)

=
c

c− 1

n∑
t=1

1

t

≤ c

c− 1
(log n+ 1). (13)

Equations (11), (12) and (13) conclude that:

ER(n) = E

[
n∑
t=1

(Mt − ν)

]
+E

[
n∑
t=1

(1−Xt)

]
≤ c(log n+1)+

c

c− 1
(log n+1) =

c2

c− 1
(log n+1).

This is minimized at c = 2, with a value of 4(log n+ 1).

Appendix B. Proof of Theorem 3

This is section contains a proof for the lemmas appearing in the proof outline in Section 5. Sec. B.1
contains a list of all definitions, Sec. B.2 presents the proof of Lemma 6, Sec. B.3 presents the proof
of Lemma 7, Sec. B.4 presents the proof of Lemma 8, Sec. B.5 presents the proof of Lemma 5, and
Sec. B.6 presents the proof of Lemma 9.

B.1 Table of definitions

Below is the table of all definitions.

• Z ′t: contains everything the algorithm has seen up to and including iteration t. It includes the
values of Xk,t for all 1 ≤ k ≤ K and 1 ≤ t ≤ n. The only difference between Z ′t and Zt is
that Zt contains the result of the random coin tossed by the algorithm on iteration t+ 1, while
Z ′t does not.

15

DAGAN AND CRAMMER

• τ 0: max1≤k≤K τ k,0. The first iteration where all arms have positive lower bound.

• β(·): equals min(1, ·).

• n: number of iterations the arms are invoked.

• K: number of arms.

• ν1, . . . , νK : these parameters determine the success probability of the arms. Given a resource
of M , arm k succeeds with probability min

(
1, Mνk

)
.

• `: the number of arms that are fully allocated under the optimal allocation. The highest
number of i ≥ 0 such that

∑i
j=1 νi ≤ 1.

• Mk,t: the amount of resource allocated to arm k on iteration t.

• Xk,t: the indicator of the success of arm k on iteration t.

• νd
k,t: the deterministic lower bound of νk, calculated by the algorithm at the end of iteration
t.

• νp
k,t: the probabilistic lower bound of νk, calculated by the algorithm at the end of iteration t.

• νk,t: max(νd
k,t, ν

p
k,t).

• c: a parameter given to the algorithm, that has to get a positive value greater than 2. It takes
part in the calculation of rk,t.

• (·)+: equals max(0, ·).

• sd
k,t: equals

∑
i≤t : νdk,i>0(Mk,i − νd

k,i−1)+.

• rk,t: equals cνd
k,t−1 exp

(
− sdk,t−1

cνdk,t−1

)
. Equals Mk,t − νd

k,t−1 if there are sufficient resources

for arm k on iteration t.

• sp
k,t: equals

∑
1≤i≤t : Mk,i≤νdk,i−1

Mk,i.

• xp
k,t: equals

∑
1≤i≤t : Mk,i≤νdk,i−1

Xk,i.

• T : the set of “good” iterations. Equals {1 ≤ t ≤ n : 0 < νk,t−1 ≤ νk∀1 ≤ k ≤ K}.

• p: equals c−2
2c .

• k1,t, . . . , kK,t: the arms 1, . . . ,K, by the order which they were iterated on the loop over the
arms in line 5 of the algorithm, on iteration t.

• `t: the highest value of i such that for all 1 ≤ j ≤ i, Mkj,t,t = νd
kj,t,t−1 + rkj,t,t.

• At: {k1,t, k2,t, . . . , kmin(`t,`+1),t.

16

A BETTER RESOURCE ALLOCATION ALGORITHM

•

Bt =

{
{k′t} |At| < min(`+ 1,K) AND 1−

∑
k∈AtMk,t > νd

k′t,t−1

∅ otherwise
,

•

Ct =

{
{k′t} |At| < min(`+ 1,K) AND 1−

∑
k∈AtMk,t ≤ νd

k′t,t−1

∅ otherwise
.

• k′t:k|At|+1,t.

•

r′t =

{
1−

∑
k∈AtMk − νd

k′t,t−1 Bt 6= ∅
0 Bt = ∅

.

• Zt:the random variable that contains everything the algorithm has seen up to and just before
the point it gets to see the success statuses of the arms on iteration t + 1. It contains all the
success statuses Xk,i for any arm 1 ≤ k ≤ K and any iteration 1 ≤ i ≤ t, in addition to all
the randomness of the algorithm up to and including iteration t+ 1.

• Rt: the regret on iteration t.

• R(n):
∑n

t=1Rt.

• τ k,0:the lowest value of t for which νd
k,t > 0.

• εk,t:
νk−νdk,t
νk

.

• τ k,1: the lowest value of t such that εk,t ≤ p.

• hk,t:
(Mk,t−νdk,t−1)+

rk,t
.

• Z ′t: contains everything the algorithm has seen up to and including iteration t. It includes the
values of Xk,t for all 1 ≤ k ≤ K and 1 ≤ t ≤ n. The only difference between Z ′t and Zt is
that Zt contains the result of the random coin tossed by the algorithm on iteration t+ 1, while
Z ′t does not.

• τ 0: max1≤k≤K τ k,0. The first iteration where all arms have positive lower bound.

• β(·): equals min(1, ·).

B.2 Proof of Lemma 6

Here is a result which appears in the original work of Lattimore et al. (2014).

Lemma 11 Fix t ∈ T , and 1 ≤ j ≤ K. Then, νkj,t,t−1 ≤ νj , namely, the arm with priority j on
iteration t has a lower bound of at most νj .

17

DAGAN AND CRAMMER

Proof For any arm k ≤ j, it holds that νk,t−1 ≤ νk ≤ νj , where the first inequality is due to the
fact that t ∈ T , and the second inequality follows from our assumption that ν1 < · · · < νK . This
implies that the list ν1,t−1, . . . , νK,t−1 has at least j values lower or equal to νj . Therefore, if we
sort the list ν1,t−1, . . . , νK,t−1 in an increasing order, the value on place j (counting from the start)
is at most νj . This value is exactly νkj,t,t−1, by definition of kj,t.

It holds that E [Xk,t | Zt−1] = β (Mk,t/νk), for all 1 ≤ k ≤ K. If |At| = min(`+ 1,K), then

E[Rt | Zt−1] ≤ `+ 1K>` −
K∑
k=1

β (Mk,t/νk)

≤ |At| −
K∑
k=1

β (Mk,t/νk)

≤ |At| −
∑
k∈At

β (Mk,t/νk)

=
∑
k∈At

(1− β (Mk,t/νk)) .

Therefore, the proof follows for this case.
Assume next that |At| < min(` + 1,K). Let h : [0,∞) → R be a function such that for all

1 ≤ k ≤ K, h(x) = 1/νk in the range x ∈ [
∑k−1

i=1 νi,
∑k

i=1 νi), and h(x) = 0 for all x ≥
∑K

i=1 νi.
It holds that h(x) is monotonic non-increasing, and its integral function H(x) =

∫ x
y=0 h(y)dy

satisfies that H(1) is the award achieved by the optimal policy in round t. Therefore,

E[Rt | Zt−1] = H(1)−
K∑
k=1

β (Mk,t/νk) . (14)

Let a =
∑|At|

k=1 νk and b =
∑|At|

k=1 νk +
∑

k∈At rk,t + r′t. Using equality (122),

E[Rt | Zt−1] ≤

H(a)−
∑
k∈At

β (Mk,t/νk)

 (15)

+ (H(b)−H(a)) (16)

+

(
H(1)−H(b)− β

(
Mk′t,t

νk′t

))
. (17)

We will bound each of these three terms separately.
The right hand side in (123) is bounded by

H

|At|∑
k=1

νk

−∑
k∈At

β (Mk,t/νk) =
∑
k∈At

(1− β (Mk,t/νk)). (18)

18

A BETTER RESOURCE ALLOCATION ALGORITHM

We proceed to bounding the quantity in (124). Lemma 32 implies that any k ∈ At ∪ {k′t} =
{k1,t, . . . , k|At|+1,t} satisfies νd

k,t−1 ≤ ν|At|+1. Therefore,

H(b)−H(a) ≤
∫ b

a

1

ν|At|+1

=

∑
k∈At rk,t + r′t
ν|At|+1

≤
∑
k∈At

rk,t

νd
k,t−1

+
r′t

νd
k′t,t−1

. (19)

Lastly, bound the quantity in (125). Lemma 32 implies that

∑
k∈At

νd
k,t−1 =

|At|∑
j=1

νd
kj,t,t−1 ≤

|At|∑
k=1

νj .

This implies that

∑
k∈At

Mk,t =
∑
k∈At

(νd
k,t−1 + rk,t) ≤

|At|∑
k=1

νk +
∑
k∈At

rk,t. (20)

We will show that
b ≥ 1−min(Mk′t,t

, νd
k′t,t−1). (21)

First, assume that Bt = ∅. Inequality (128) implies that

b ≥
∑
k∈At

Mk,t = 1−Mk′t,t
= 1−min(Mk′t,t

, νd
k′t,t−1).

If Bt 6= ∅, then r′t = 1−
∑

k∈AtMk − νd
k′t,t−1, and

b ≥
∑
k∈At

Mk,t + r′t = 1− νd
k′t,t−1 = 1−min(νd

k′t,t−1,Mk′t,t
),

which concludes the proof of Equation (129). This implies that

H(1)−H(b) =

∫ 1

x=b
h(x)dx

≤ (1− b)h(b)

≤ min(νd
k′t,t−1,Mk′t,t

)h(b). (22)

If |At| = `, then b ≥
∑`

k=1 νk. Therefore, h(b) ≤ 1
ν`+1

, which implies, together with Equa-
tion (130), that

H(1)−H(b) ≤ min(νd
k′t,t−1,Mk′t,t

)
1

ν`+1
. (23)

19

DAGAN AND CRAMMER

If |At| < `, then, we know that νk′t,t−1 ≤ ν|At|+1 ≤ ν`, which implies, together with equa-
tion (129) that

b ≥ 1−min(νd
k′t,t−1,Mk′t,t

) ≥ 1− νd
k′t,t−1 ≥ 1− ν`.

Therefore,

h(b) ≤ h(1− ν`) ≤
1

ν`
.

This implies, together with Equation (130), that

H(1)−H (b) ≤ min(νd
k′t,t−1,Mk′t,t

)
1

ν`
. (24)

Additionally,

β
(
Mk′t,t

/νk′t

)
≥ β

(
min(νd

k′t,t−1,Mk′t,t
)/νk′t

)
= min(νd

k′t,t−1,Mk′t,t
)/νk′t . (25)

Equations (131), (132) and (133) imply that

H(1)−H(b)− β
(
Mk′t,t

/νk′t

)
≤

{
min(νd

k′t,t−1,Mk′t,t
)(1/ν`+1 − 1/νk′t) |At| = `

min(νd
k′t,t−1,Mk′t,t

)(1/ν` − 1/νk′t) |At| < `
. (26)

Equations (123), (126), (127) and (134) conclude the proof.

B.3 Proof of Lemma 7

We present the lemmas required for the proof, together with an intuition for the proof. Define the

error of arm k on iteration t by εk,t =
νk−νdk,t
νk

. We would like to bound the convergence rate of εk,t
to 0. The rate is in terms of the number of iterations: how many iterations it takes for εk,t to get below
some threshold? Optimally, when there are sufficient resources, arm k is allocated with νd

k,t−1 +rk,t
resources. However, if there are insufficient resources and one allocates Mk,t ≤ νd

k,t−1, then one
knows that νd

k,t will not improve, namely, νd
k,t = νd

k,t−1. Hence, one should not count iterations
when Mk,t ≤ νd

k,t−1 while estimating the number of iterations it takes for νd
k,t to get below some

threshold. One might ask: if iterations where Mk,t = νd
k,t−1 + rk,t are counted as 1 and iterations

where Mk,t ≤ νd
k,t−1 are counted as 0, how should iterations where νd

k,t−1 < Mk,t < νd
k,t−1 + rk,t

be counted? The answer is that these iterations are counted as
(
Mk,t − νd

k,t−1

)
/rk,t. Combining

everything together, every iteration t is counted as hk,t :=
(Mk,t−νdk,t−1)+

rk,t
, where (·)+ = max(0, ·).

In particular, every iteration that k is case A is counted as 1, every iteration that k is case B is
counted as some positive number less than 1, and iterations that k is case C are counted as 0.

Define τ k,0 as the lowest value of t for which νd
k,t > 0 (equivalently, the last iteration that k is

allocated according to case I), and define p = c−2
2c . We start by bounding the number of iterations

(weighted by hk,t) that pass from τ k,0 up to the point that the error εk,t is at most p (equivalently,
from the first iteration that νd

k,t > 0 to the first iteration that νd
k,t ≥ (1 − p)νk). This number is

bounded by O
(

log (1−p)νk
νdk,τk,0

)
, which implies that the estimate νd

k,t grows exponentially fast in the

beginning.

20

A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 12 Fix 1 ≤ k ≤ K. Fix γ ≤ (1− p)νk. Let τ be the first iteration t that νd
k,t ≥ γ. Then

E

 ∑
τk,0<t≤τ

hk,t

∣∣∣∣∣∣τ k,0, νd
k,τk,0

 ≤ C (log
γ

νd
k,τk,0

)
+

,

where C > 0 is some constant, depending only on c.

In order to give an intuitive reason to this exponential growth, recall the definition of rk,t in Fig. 3.
Fix some t and assume that νd

k,t−1 ≤ (1− p)νk and rk,i/νk ≤ p/2 for all i ≤ t. Then, for all i ≤ t,

E [1−Xk,i|Mk,i] ≥ 1−
Mk,i

νk
≥ 1−

νd
k,i−1 + rk,i

νk
≥ p/2.

This implies that

E

[
νd
k,t−1

sd
k,t−1

]
= E

 ∑t−1
i=τk,0

νd
k,i − νd

k,i−1∑t−1
i=τk,0

(
Mk,i − νd

k,i−1

)
+

 = E


∑t−1

i=τk,0

(
Mk,i − νd

k,i−1

)
+

(1−Xk,i)∑t−1
i=τk,0

(
Mk,i − νd

k,i−1

)
+

 ≥ p/2.
Hence,

rk,t

νd
k,t−1

= c exp

(
−
sd
k,t−1

cνd
k,t−1

)
= Ω(1)

with high probability, which implies that

E

[
νd
k,t

νd
k,t−1

]
= E

νd
k,t−1 + (1−Xk,t)

(
Mk,t − νd

k,t−1

)
+

νd
k,t−1

 = 1+E [1−Xk,t]
hk,trk,t

νd
k,t−1

= 1+Ω(1)hk,t.

This implies that νd
k,t is indeed growing exponentially fast (with respect to hk,t), however, recall

we assumed that rk,i/νk ≤ p/2 for all i ≤ t. This assumption was made in order to ensure that
E [1−Xk,i] is sufficiently large, so that Xk,i = 0 sufficiently often. However, one does not need
this assumption: if Xk,i = 1 for a sufficiently large constant number of times, rk,t shrinks and gets
below p/2. The formal claim is proved inductively using a potential function.

Define by τ k,1 the first iteration that νd
k,t ≥ (1 − p)νk, or, equivalently, the first iteration that

εk,t ≤ p. The next lemma bound the number of iterations that pass from τ k,1 until εk,t ≤ η by
O(1/η) plus another term which depends on sd

k,τk,1
, for any η > 0.

Lemma 13 Fix an integer k, 1 ≤ k ≤ K. Fix some number 0 < η < 1. Let τ be the first iteration
t such that εt ≤ η. Then, there exists a numerical constant C > 0 depending only on c, such that

E

 τ∑
t=τk,1+1

hk,t

∣∣∣∣∣∣τ k,1, sd
k,τk,1

 ≤ C (exp

(
2sd
k,τk,1

cνk(1− p)

)
+

1

η

)
.

One would expect the term O(1/η), since the estimate νd
k,t behaves as the estimante νk in the

single armed problem, which requires roughlyO(1/η) iterations to bet below η. However, since the

21

DAGAN AND CRAMMER

algorithm for the multi armed setting involves some complications not existant in the single armed
algorithm, the proof is obtained by induction using a potential function.

We add two comments. Firstly, one may ask why the sum in Lem. 13 begins with τ k,1 + 1
instead of τ k,0 or 1. Since the construction of rk,t uses νd

k,t−1 to approximate νk, one requires this
approximation to be accurate in order for the lemma to hold. Secondly, note the term sd

k,τk,1
in the

bound in Lem. 13. If this term is very large, rk,t would be small, and the estimate νd
k,t would not be

able to improve fast. However, one can bound this term. As explained in the intuition for Lem. 12,
rk,t/ν

d
k,t is expected not to be low in the beginning, which implies that sd

k,t is not high. We present
the lemma which bounds this term. The formal proof is by induction using a potential function, and
requires some case analysis.

Lemma 14 Fix some arm 0 ≤ k ≤ K. Then, for some constant C > 0 depending only on c,

E

[
exp

(
2sd
k,τk,1

cνk(1− p)

)]
≤ C.

Sec. B.3.1 and Sec. B.3.2 present auxiliary lemmas, Sec. B.3.3 presents the proof of Lem. 12,
Sec. B.3.4 presents the proof of Lem. 13, Sec. B.3.5 presents the proof of Lem. 14 and Sec. B.3.6
concludes the proof.

B.3.1 LEMMA 15

This lemma bounds the number of iterations before νd
k,t > 0, for any arm k.

Lemma 15 For any 1 ≤ k ≤ K,

E

[
log2

νk

νd
k,τk,0

]
≤ max(2, log2(νkK)) + 1.

Additionally

E[τ 0] ≤ max

(
1,

⌈
log2

1

ν1
+ 3

⌉)
.

Fix k, 1 ≤ k ≤ K. Let t′ = max
(⌈

log2

(
1

Kνk

)
+ 1
⌉
, 0
)

. At iteration t′ it holds that

1

K2t′−1
≤ 1

K2log2(1/(Kνk))
= νk.

Therefore, for any t > t′, assuming that νd
k,t−1 = 0 it holds that

Pr[νd
k,t > 0 | νd

k,t−1 = 0] = Pr[Xk,t = 0 | νd
k,t−1 = 0] = 1− β (Mk,t/νk)

= 1− 1

K2t−1νk
≥ 1− 1

2

1

K2t′−1νk
≥ 1/2.

Therefore, for any iteration t > t′, Pr[τ k,0 = t | τ k,0 > t − 1] ≥ 1/2. Therefore, given that
τ k,0 > t′, E[τ k,0]− t′ equals at most the expectancy of a geometric random variable with parameter
1/2, which implies that

E[τ k,0] ≤ t′ + 2 ≤ max

(
log2

(
1

Kνk

)
+ 2, 0

)
+ 2.

22

A BETTER RESOURCE ALLOCATION ALGORITHM

We calculate the expected value of log2
νk

νdk,τk,0
. It holds that

E

[
log2

νk

νd
k,τk,0

]
= E

[
log2

(
νkK2τk,0−1

)]
= E [log2(νkK) + τ k,0 − 1]

≤ log2(νkK) + max(log2

1

Kνk
+ 2, 0) + 1 = max(2, log2(νkK)) + 1.

Lastly, let t′ = max
(

0,
⌈
log2

1
ν1

+ 2
⌉)

. For any t ≥ t′ it holds that

1

K2t−1
≤ 1

K2
log2

1
ν1

+1
=

ν1

2K
.

This implies that for any 1 ≤ k ≤ K, for any t ≥ t′, it holds that whenever νd
k,t−1 = 0, Mk,t =

1
K2t−1 ≤ ν1

2K . Therefore, it holds that Xk,t > 0 with probability at most Mk,t

νk
≤ 1

2K . Therefore,
given that t ≥ t′ and that τ 0 > t − 1, the probability that there exists 1 ≤ k ≤ K such that
νd
k,t−1 = 0 and Xk,t > 0, is at most

∑
k : νdk,t−1=0

1
2K ≤ 1/2. This implies that for any t ≥ t′, given

that τ 0 > t− 1, it holds that with probability at least 1/2, τ 0 = t. This implies that conditioned on
τ 0 > t′ − 1, it holds that τ 0 − (t′ − 1) is bounded by a geometric random variable with parameter
2. Therefore,

E
[
τ 0 − (t′ − 1)

∣∣τ 0 > t′ − 1
]
≤ 2.

Thus,
E [τ 0] ≤ t′ − 1 + 2 = t′ + 1.

B.3.2 LEMMA 16

Lemma 16 There exist constants C,C ′ > 0, depending only on c, such that for any k, 1 ≤ k ≤ K,

E

 τk,1∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

rk,t

 ≤ C logK + C ′. (27)

Start by assuming that νk ≤ 1
1−p . From Lemma 12, it holds that there exist a constants c1, c

′
1 >

0, such that for any values of τ k,0 and νd
k,τk,0

,

E

 τk,1∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

rk,t

∣∣∣∣∣∣τ k,0, νd
k,τk,0

 ≤ c1 log
(1− p)νk
νd
k,τk,0

+ c′1. (28)

From Lemma 15, there exists a constant c2 such that

E log2

νk

νd
k,τk,0

≤ (log2K + log2 νk)+ + c2 ≤ log2K + log2

1

1− p
+ c2. (29)

Together, Equalities (28) and (29) conclude the proof for the case νk ≤ 1
1−p .

23

DAGAN AND CRAMMER

Next, assume that νk > 1
1−p . Let τ be the first iteration t such that νd

k,t = 1. For any t,

1 ≤ t ≤ n, if νd
k,t−1 = 1, then

(Mk,t−νdk,t)+
rk,t

= 0. This, together with Lemma 15, imply that

E

 τk,1∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

rk,t

∣∣∣∣∣∣τ k,0, νd
k,τk,0


= E

 τ∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

rk,t

∣∣∣∣∣∣τ k,0, νd
k,τk,0


≤ c1 log

1

νd
k,τk,0

+ c′1. (30)

Lemma 15 implies that

E

[
log

1

νd
k,τk,0

]
= E

[
log

νk

νd
k,τk,0

]
− log νk ≤ logK + log νk + c2 − log νk = logK + c2. (31)

Equations (30) and (31) suffice to complete the proof.

B.3.3 PROOF OF LEMMA 12

Fix some integer k, 1 ≤ k ≤ K. Given any t ≥ τ k,0, define

wt = exp

(
sd
k,t

νd
k,tc

)
.

We will prove by induction on m ≥ 0 that for all t > τ k,0, whenever νd
k,t−1 ≤ 2γ, it holds that

E

 ∑
t≤i<t+m : xt−1<γ

(Mk,i − νd
k,i−1)+

rk,i

∣∣∣∣∣∣Zt−1

 ≤ φ(νd
k,t−1, wt−1),

where
φ(u,w) = w + α1 ln

2γ

u
+ α2(c2 − w)+,

and

c1 =
2c

p
,

c2 = c1 + 2,

c3 = max(4c log(2c), 2c2, 12/p, exp(
24/p+ 1

c
)),

α1 =
6/p+ c log c3 + 1

log(1 + c/c3)
,

α2 = 2.

24

A BETTER RESOURCE ALLOCATION ALGORITHM

For the base of induction, assume thatm = 0. Since we assumed that νd
k,t−1 ≤ 2γ, the potential

function is non-negative.
For the step of induction, assume that m > 0. Fix some t > τ k,0, and fix Zt−1. Assume that

νd
k,t−1 < γ, otherwise the bound is trivially correct. Denote shortly u = νd

k,t−1, s = sd
k,t−1 and

w = wt−1. Let h be the value such that

(Mk,t − νd
k,t−1)+ = hrk,t =

hcu

w
.

Let q = Pr[Xk,t = 0 | Zt−1]. It holds that

sd
k,t = sd

k,t−1 + hrk,t = s+
hcu

w
,

and

νd
k,t =

{
u Xk,t = 1

Mk,t = u+ hcu
w Xk,t = 0

.

Let u(0) and u(1) be the corresponding values of νd
k,t given the value of Xk,t, namely

u(0) = u+
hcu

w
, u(1) = u.

Letw(0) andw(1) be defined similarly, and denote s(0) = s(1) = s. It remains to prove the following
inequality:

qφ(u(0), w(0)) + (1− q)φ(u(1), w(1)) + h ≤ φ(u,w). (32)

We use the following shorthand definitions:

φ(0) = φ(u(0), w(0)), φ(1) = φ(u(1), w(1)), φ(u,w) = φ.

We proceed by proving some inequalities which will be required in the proof.

Proposition 17 For all a > 1, and all y ≥ 2a log a, it holds that y ≥ a log y.

Proof Start by setting y = 2a log a, and b+ 1 = log a. It holds that

y = 2a log a = a(log a+b+1) ≥ a(log a+log(b+1)+1) = a(log a+log log a+1) = a log(2a log a) = a log y,

using the inequality x ≥ log(x+1) for all x ∈ R. Next, note that the function y−a log y monotonic
increasing in y for all y ≥ a, therefore the inequality indeed holds for all y ≥ 2a log a.

Lemma 18 Let u, s, w be defined as above. The following inequalities hold:

1. If w ≤ c3, then
−(s/u+ 1)(α2 − 1) + α1 log(1 + c/c3) ≥ 6/p.

2. If w ≥ c3, then
w ≥ c2 + s/u.

25

DAGAN AND CRAMMER

3. If w ≥ c3, then pw
4 ≥ 3.

4. If w ≥ c3, then s
u ≥

24
p + 1.

Proof Note that c logw = s
u . Start with proving item 1. Whenever w ≤ c3, it holds that

−(s/u+ 1)(α2 − 1) + α1 log(1 + c/c3) = −(c logw + 1) + α1 log(1 + c/c3)

≥ −(c log c3 + 1) + 6/p+ 3c log c3

= 6/p.

Next, we prove item 2. It is clear that w/2 ≥ c3/2 ≥ c2. Proposition 17 implies that for all
w ≥ c3 ≥ 2(2c) log(2c) it holds that w ≥ 2c logw = 2s/u by substituting a = 2c. Therefore,

w = w/2 + w/2 ≥ c2 + s/u

as required.
Items 3 and 4 trivially follow from the definition of c3, and the equality c logw = s

u .

Lemma 19 Let w, w(0), w(1), s, u and h be defined as above. Then

• w(0) ≤ w ≤ w(1).

• w + h ≤ w(1) ≤ w + 2h.

•
w − (s/u− 1)h ≤ w(0) ≤ max

(
w/2, w − (s/u− 1)h

2(1 + c/w)

)
.

Proof The upper bound for w(1) is as follows:

w(1) = e
s(1)

cu(1) = exp

(
s+ hcu

w

cu

)
= weh/w ≤ w(1 + 2h/w) = w + 2h, (33)

using the inequality exp(y) ≤ 1 + 2y for all 0 ≤ y ≤ 1. The lower bound is calculated similarly:

w(1) = weh/w ≥ w(1 + h/w) = w + h, (34)

using the inequality ey ≥ 1 + y for all y ∈ R.
Next, we calculate the inequalities regarding w(0):

w(0) = exp

(
s(0)

cu(0)

)

= exp

(
s+ chu/w

cu+ c2hu/w

)
= exp

(
s/(cu) + h/w

1 + ch/w

)
26

A BETTER RESOURCE ALLOCATION ALGORITHM

= exp

(
s/(cu) + (s/u)(h/w)− (s/u− 1)(h/w)

1 + ch/w

)
= exp

(
s/(cu)− (s/u− 1)(h/w)

1 + ch/w

)
= w exp

(
−(s/u− 1)(h/w)

1 + ch/w

)
≥ w exp (−(s/u− 1)(h/w))

≥ w(1− (s/u− 1)(h/w)) (35)

≥ w − (s/u− 1)h,

where (35) follows from the inequality ey ≥ 1 + y, for all y ∈ R.
Before calculating the upper bound on w(0), we first show that s ≥ u, by proving that sd

k,t ≥
νd
k,t, for all t ≥ τ k,0. For t = τ k,0, it holds that sd

k,t = νd
k,t = Mk,t. For t > τ k,0 it holds that

νd
k,t − νd

k,t−1 = (Mk,t − νd
k,t−1)+(1−Xk,t) ≤ (Mk,t − νd

k,t−1)+ = sd
k,t − sd

k,t−1.

Next, we proceed to bounding w(0).

w(0) = w exp

(
−(s/u− 1)(h/w)

1 + ch/w

)
≤ w exp

(
−(s/u− 1)(h/w)

1 + c/w

)
≤ wmax

(
1/2, 1− (s/u− 1)(h/w)

2(1 + c/w)

)
(36)

= max

(
w/2, w − (s/u− 1)h

2(1 + c/w)

)
,

where (36) follow from the inequality e−x ≤ 1− x/2 whenever 0 ≤ x ≤ 1 and e−x ≤ 1/2 when-
ever x ≥ 1. It cannot happen that (s/u−1)(h/w)

1+c/w < 0 since, as we explained s ≥ u, and this confirms

that w(0) ≤ w.

Lemma 20 If w ≤ c3 then

φ(1) − φ(0) ≥ 6h

p
.

Proof We start with an inequality:

log
1

u(1)
−log

1

u(0)
= log

u(0)

u(1)
= log

u+ hcu/w

u
= log (1 + hc/w) ≥ h log(1+c/w) ≥ h log(1+c/c3),

(37)
using the inequality log(1 + αx) ≥ α log(1 + x), for x ≥ 0 and 0 ≤ α ≤ 1.

Next, we prove
(c2 − w(0))+ − (c2 − w(1))+ ≤ w(1) − w(0). (38)

27

DAGAN AND CRAMMER

Lemma 19 states that w(1) ≥ w(0). Whenever w(1) ≤ c2 it holds

(c2 − w(0))+ − (c2 − w(1))+ = w(1) − w(0).

And whenever w(1) ≥ c2 it holds

(c2 − w(0))+ − (c2 − w(1))+ = (c2 − w(0))+ ≤ w(1) − w(0),

which confirms the validity of inequality (38).
Thus,

φ(1) − φ(0) = w(1) + α2(c2 − w(1))+ − w(0) − α2(c2 − w(0))+ + α1

(
log

1

u(1)
− log

1

u(0)

)
≥ (w(0) − w(1))(α2 − 1) + hα1 log(1 + c/c3) (39)

≥ −(s/u+ 1)h(α2 − 1) + hα1 log(1 + c/c3) (40)

≥ 6h

p
, (41)

where line (39) follows from inequalities (37) and (38), line (40) follows from Lemma 19, and
line (41) follows from Lemma 18.1.

We start by proving inequality (32) for the case w ≤ c1. From Lemma 19, w(1) ≤ w + 2 ≤
c1 + 2 = c2, which implies that (c2 − w(1))+ = c2 − w(1). Therefore,

φ− qφ(0) − (1− q)φ(1) − h = φ− φ(1) − h+ q(φ(1) − φ(0))

≥ φ− φ(1) − h (42)

= w + α2(c2 − w)+ − w(1) − α2(c2 − w(1))+ − h
= w + α2(c2 − w)− w(1) − α2(c2 − w(1))− h
= (w(1) − w)(α2 − 1)− h
≥ h(α2 − 1)− h (43)

≥ 0,

where inequality (42) follows from Lemma 20 and the fact that w ≤ c1 ≤ c3, and inequality (43)
follows from Lemma 19.

Whenever w ≥ c1, the following inequality holds:

q ≥ 1−
Mk,t

νk

≥ 1− u+ hcu/w

νk
≥ 1− (1− p)(1 + hc/w) (44)

≥ p− c/w
≥ p/2, (45)

28

A BETTER RESOURCE ALLOCATION ALGORITHM

where inequality (44) follows from the fact that u = νd
k,t−1 < γ ≤ (1− p)νk.

Next, we prove (32) for the case c1 ≤ w ≤ c3. Therefore

φ− qφ(0) − (1− q)φ(1) − h = φ− φ(1) − h+ q(φ(1) − φ(0))

≥ φ− φ(1) − h+ q(
6h

p
) (46)

≥ φ− φ(1) − h+ 3h (47)

≥ w − w(1) − h+ 3h

≥ 0 (48)

where inequality (46) follows from Lemma 20, inequality (47) follows from inequality (45), and
inequality (48) follows from Lemma (19).

Lastly, we prove inequality (32) for w ≥ c3. The bounds on w(0) and w(1), and Lemma 18.2
imply that

w(1) ≥ w ≥ w(0) ≥ w − (s/u− 1)h ≥ c2. (49)

Thus,

φ− qφ(0) − (1− q)φ(1) − h ≥ w − qw(0) − (1− q)w(1) − h (50)

≥ w − p

2
w(0) −

(
1− p

2

)
w(1) − h (51)

≥ w − p

2
max

(
w/2, w − (s/u− 1)h

2(1 + c/w)

)
−
(

1− p

2

)
(w + 2h)− h

(52)

≥ w − p

2
max

(
w/2, w − (s/u− 1)h

4

)
−
(

1− p

2

)
w − 2h− h

(53)

≥ p

2
min

(
w/2,

(s/u− 1)h

4

)
− 2h− h

≥ 0. (54)

where inequality (50) follows from inequality (49), line (51) follows from (45), line (52) follows
from Lemma 19, line (53) follows from the fact that w ≥ c1 ≥ c, and line (54) follows from
Lemma 18.3-4.

B.3.4 PROOF OF LEMMA 13

Fix an integer k, 1 ≤ k ≤ n. For any t, 1 ≤ t ≤ n, let

wk,t = exp

(
sd
k,t

cνd
k,t

)
.

We will prove by induction on m ≥ 0 that for any t > τ k,1,

E

min(t+m−1,τ)∑
i=t

(Mk,i − νd
k,i−1)+

rk,i

∣∣∣∣∣∣Zk,t−1

 ≤ φ(wk,t−1, εk,t−1), (55)

29

DAGAN AND CRAMMER

where

φ(w, ε) =

{
c2w

2ε+ c4

(
c1
ε − w

)
+

+ c5

(
2
η −

1
ε

)
ε ≥ η

2

0 ε < η
2 .
,

and

c2 = 1

c3 =
c2(1− p) + 7

c(1− p)− 2

c1 = c3 + 2

c4 = 1 + c2(2c3 + 2)

c5 = c4c1(log c1 + 3).

The proof is by induction on m. If m = 0 then inequality (55) holds since φ(w, ε) ≥ 0.
Assume therefore that m > 0. Fix some values of t > τ k,1, and fix Zt−1. If εk,t−1 ≤ η, then
τ < t, and inequality (55) holds since φ(w, ε) ≥ 0. Assume therefore that εk,t−1 > η. Denote
w = wk,t−1, ε = εk,t−1 and u = νd

k,t−1. Let w0 be the value that wk,t gets if Xk,t = 0, and let

w1 be its value if Xk,t = 1. Similarly define ε0, ε1, u0 and u1. Denote h =
(Mk,t−νdk,t−1)+

rk,t
. Let

q = Pr[Xk,t = 0 | Zt−1]. To complete the proof, it is sufficient to prove that

φ(w, ε) ≥ h+ (1− q)φ(w1, ε1) + qφ(w0, ε0). (56)

We can replace ε1 with ε, since they are equal.

Lemma 21 The following hold:

1.

w + h ≤ w1 ≤ w + h+
h2

k
.

2.
w0 = (w1)

1−ε
1−ε0 .

3.
w0 ≤ w ≤ w1.

Proof Start by proving item 1. It holds that

w1 = exp

(
sd
k,t

cu1

)
= exp

(
sd
k,t−1 + hrk,t

cνd
k,t−1

)
= exp

(
sd
k,t−1 + hνd

k,t−1c/wt−1

cνd
k,t−1

)
= weh/w.

Since 0 ≤ h
w ≤ 1, applying the inequality 1 + x ≤ exp(x) ≤ 1 + x + x2 which holds whenever

0 ≤ x ≤ 1, suffices to complete the proof of item 1.
We proceed to proving item 2. The value of sd

k,t is defined by Zt−1, and does not depend on
Xk,t. Therefore,

w0 = exp

(
sd
k,t

cu0

)
= exp

(
sd
k,t

cu1

)u1
u0

= (w1)
(1−ε1)νk
(1−ε0)νk ,

30

A BETTER RESOURCE ALLOCATION ALGORITHM

which completes the proof of item 2.
Item 3 is proved in Lemma 19.

Proposition 22 The function φ(w, ε) is monotonic non-decreasing in ε.

Proof Follows immediately from the fact that c5 ≥ c1c4.

Lemma 23 It holds that

φ(w0, ε0)− φ(w1, ε0) ≤ c4c1(log c1 + 2)

(
1

ε0
− 1

ε

)
.

Proof If ε0 > η/2 then φ(w0, ε0)− φ(w1, ε0) = 0. Otherwise, since w0 ≤ w1,

φ(w0, ε0)− φ(w1, ε0) = c2ε0
(
(w0)2 − (w1)2

)
+ c4 ((c1/ε0 − w0)+ − (c1/ε0 − w1)+)

≤ c4 ((c1/ε0 − w0)+ − (c1/ε0 − w1)+) . (57)

We will show that

(57) ≤ c4(c1/ε0 − c1/ε) + c4(c1/ε− (c1/ε)
1−ε
1−ε0). (58)

If w0 ≥ c1/ε0 then this inequality holds since (57) = 0. If w0 ≤ c1/ε ≤ w1 then

(57) = c4c1/ε0 − c4w0

= c4(c1/ε0 − c1/ε) + c4(c1/ε− w0)

= c4(c1/ε0 − c1/ε) + c4(c1/ε− w
1−ε
1−ε0
1) (59)

≤ c4(c1/ε0 − c1/ε) + c4(c1/ε− (c1/ε)
1−ε
1−ε0),

where inequality (59) follows from Lemma 21.
If w1 ≤ c1/ε then

(57) = c4(w1 − w0)

= c4

(
w1 − w

1−ε
1−ε0
1

)
(60)

≤ c4

(
c1/ε− (c1/ε)

1−ε
1−ε0

)
, (61)

where equality (60) follows from Lemma 21, and inequality (61) follows from the fact that the
function x − xα is monotonic increasing in x, assuming a fixed 0 < α < 1. This completes the
proof of inequality (58).

To conclude the proof, it is sufficient to show that

(c1/ε− (c1/ε)
1−ε
1−ε0) ≤ (1/ε0 − 1/ε)c1(log(c1) + 1). (62)

31

DAGAN AND CRAMMER

Let γ = ε/ε0 − 1. Bounding

1− (c1/ε)
(1−ε)/(1−ε0)−1 = 1− (c1/ε)

(ε0−ε)/(1−ε0)

= 1− elog(c1/ε)(ε0−ε)/(1−ε0)

= 1− e− log(c1/ε)γε0/(1−ε0)

≤ 1− e− log(c1/ε0)γε0/(1−ε0)

= 1− e− log(c1)γε0/(1−ε0)−log(1/ε0)γε0/(1−ε0)

≤ 1− e− log(c1)γ− 1
2
γ/(1−ε0) (63)

≤ 1− e−(log(c1)+1)γ (64)

≤ (log(c1) + 1)γ, (65)

where inequality (63) follows from the fact that ε0 ≤ p ≤ 1
2 , therefore ε0

1−ε0 ≤ 1, and from the
fact that ε0 log 1

ε0
≤ 1

2 , for any ε0 > 0; inequality (64) follows from the fact that ε0 ≤ p ≤ 1
2 ; and

inequality (65) follows from the inequality e−x ≥ 1− x which holds for all x ∈ R.
Thus, we conclude the proof of inequality (62) and the proof of this lemma:

c1/ε− (c1/ε)
1−ε
1−ε0 =

c1

ε

(
1−

(c1

ε

) 1−ε
1−ε0

−1
)

≤ c1

ε
(log(c1) + 1)γ (66)

= (1/ε0 − 1/ε)c1(log(c1) + 1).

where inequality (66) follows from inequality (65).

We start by proving (56), assuming that wε ≤ c3. Let ∆ = w1 − w. Lemma 21 states that
h ≤ ∆ ≤ 2h. Therefore,

w1ε ≤ c3 + 2 = c1. (67)

This implies that

φ(w, ε)− φ(w1, ε) = c2(w2 − w2
1)ε+ c4(c1/ε− w)− c4(c1/ε− w1)

= c2ε(−2w∆−∆2) + c4∆

≥ −c2(2c3∆ + 2∆) + c4∆ (68)

= ∆(−c2(2c3 + 2) + c4)

= ∆ (69)

≥ h, (70)

where (68) follows from the assumption εw ≤ c3 and the inequality ∆ ≤ 2; and (69) follows from
the definition of c4.

If ε0 < η/2, then

φ(w, ε)− h− (1− q)φ(w1, ε)− qφ(w0, ε0)

= (φ(w, ε)− φ(w1, ε))− h− q(φ(w1, ε0)− φ(w1, ε))− q(φ(w0, ε0)− φ(w1, ε0))

32

A BETTER RESOURCE ALLOCATION ALGORITHM

≥ h− h− q(φ(w1, ε0)− φ(w1, ε))− q(φ(w0, ε0)− φ(w1, ε0)) (71)

≥ −q(φ(w0, ε0)− φ(w1, ε0)) (72)

= 0, (73)

where inequality (71) follows from inequality (70), inequality (72) follows from Proposition 22, and
inequality (71) follows from the fact that ε0 < η/2.

If ε0 ≥ η/2, then

φ(w1, ε0)− φ(w1, ε) ≤ c4[c1/ε0 − w1]+ + c5[2/η − 1/ε0]+ − c4[c1/ε0 − w1]+ − c5[2/η − 1/ε0]+

= c4(c1/ε0 − w1) + c5(2/η − 1/ε0)− c4(c1/ε− w1)− c5(2/η − 1/ε)
(74)

= (c4c1 − c5)(1/ε0 − 1/ε) (75)

where inequality (74) follows from inequality (67) and the fact that ε0 ≥ η
2 . Thus,

φ(w, ε)− h− (1− q)φ(w1, ε)− qφ(w0, ε0)

= (φ(w, ε)− φ(w1, ε))− h− q(φ(w1, ε0)− φ(w1, ε))− q(φ(w0, ε0)− φ(w1, ε0)) (76)

≥ h− h+ (c5 − c4c1)(1/ε0 − 1/ε)− (1/ε0 − 1/ε)c1c4(log(c1) + 2)

= (c5 − c4c1(log(c1) + 3))(1/ε0 − 1/ε)

= 0,

where inequality (76) follows from inequalities (70) and (75), and Lemma 23. This concludes the
proof of inequality (56) for the case εw ≤ c3.

Next, assume that wε ≥ c3. Therefore,

φ(w1, ε)− φ(w, ε) ≤ c2w
2
1ε− c2w

2ε

= c2(2w∆ + ∆2)ε

≤ c2(2w(h+ h2/w) + (2h)2)ε

= c2(2wh+ 6h)ε, (77)

using Lemma 21.
Since εw ≥ c3 > c, it holds that

νk −Mk,t = νk − u−
hcu

w
= νk

(
ε− hcu

wνk

)
≥ νkε

(
1− c

wε

)
> 0. (78)

Therefore, u0 = Mk,t = u+ hcu
w . This implies that

ε0 = 1− u0

νk
= 1− u+ (chu)/w

νk
= ε− chu

νkw
. (79)

Since t > τ k,1, it holds that u ≥ (1− p)νk, therefore, inequality (79) implies that

ε0 = ε− chu

νkw
≤ ε− h(1− p)c

w
. (80)

33

DAGAN AND CRAMMER

Additionally,

ε0 = ε− chu

νkw
≥ ε− ch

w
= ε

(
1− ch

wε

)
≥ ε

(
1− c

c3

)
≥ ε

2
>
η

2
. (81)

This implies that

φ(w1, ε)− φ(w1, ε0) = c2w
2
1(ε− ε0) + c4((c1/ε− w1)+ − (c1/ε0 − w1)+) + c5(1/ε0 − 1/ε)

≥ c2w
2(ε− ε0) + c4(c1/ε− c1/ε0) + c5(1/ε0 − 1/ε)

≥ c2whc(1− p) + (c5 − c4c1)(1/ε0 − 1/ε). (82)

where inequality (82) follows from inequality (80).
Additionally, inequality (78) and inequality (81) imply that

q = ε0 ≥ ε
(

1− c

c3

)
. (83)

To complete the proof:

φ(w, ε)− h− (1− q)φ(w1, ε)− qφ(w0, ε0)

= (φ(w, ε)− φ(w1, ε))− h+ q(φ(w1, ε)− φ(w1, ε0)) + q(φ(w1, ε0)− φ(w0, ε0))

≥ −c2(2wh+ 6h)ε− h+ q

(
c2whc(1− p) + (c5 − c4c1)

(
1

ε0
− 1

ε

))
− qc4c1(log c1 + 2)

(
1

ε0
− 1

ε

)
(84)

= −c2(2wh+ 6h)ε− h+ q (c2whc(1− p))

≥ −c2(2wh+ 6h)ε− h+ ε

(
1− c

c3

)
(c2whc(1− p)) (85)

= wεh

(
−2− 6

w
− 1

wε
+

(
1− c

c3

)
c(1− p)

)
≥ wεh

(
−2− 7

wε
+ c(1− p)− c2(1− p)

c3

)
≥ wεh

(
c(1− p)− 2− 1

c3
(7 + c2(1− p))

)
= 0,

where inequality (84) follows from inequality (77), inequality (82), and Lemma 23; and inequal-
ity (85) follows from inequality (83).

B.3.5 PROOF OF LEMMA 14

Fix some integer k, 1 ≤ k ≤ K. Define the values

c′ =
2

c(1− p)νk
,

γ = log

(
1− p/4
1− p/2

)
1− p

2
,

34

A BETTER RESOURCE ALLOCATION ALGORITHM

s0 = max

(
cνk log (2c/p) , νkc ln

1

γ

)
,

c′′ = 4c′/p.

Let τ be the first iteration t such that sd
k,t ≥ s0.

Proposition 24 Fix t > τ , let x = (Mk,t − νd
k,t−1)+. It holds that:

1.
x ≤ pνk

2
.

2.
exp(c′x) ≤ (1− p/4)/(1− p/2).

Proof First, we prove item 1:

x ≤ rk,t = cνd
k,t−1 exp(−sk,t−1/(ν

d
k,t−1c)) ≤ cνk exp(−s0/(νkc)) = cνk exp(− log(2c/p)) =

νkp

2
.

Next, we prove item 2. Start by bounding x:

x ≤ cνk exp(−s0/(νkc)) ≤ cνk exp(log γ) = cνkγ.

To complete the proof, we estimate

exp(c′x) ≤ exp

(
2

c(1− p)νk
cνk log

(
1− p/4
1− p/2

)
1− p

2

)
=

1− p/4
1− p/2

.

We prove by induction on m ≥ 0, that for any τ ≤ t ≤ τk,1 it holds that

E
[
exp

(
c′
(
sd
k,min(t+m,τk,1) − s

d
k,t

))∣∣∣νd
k,t

]
≤ exp

(
c′′(νk − νd

k,t)
)
. (86)

The base of induction is clear: whenever m = 0 the left-hand side equals 1, and the right-hand
side is at least 1. If t = τk,1 then, from the same reason the inequality holds.

For the induction step, assume thatm > 0, and take some τ ≤ t < τk,1. Proposition 24 implies
that

Mk,t+1 ≤ (Mk,t+1 − νd
k,t)+ + νd

k,t ≤
pνk
2

+ νk(1− p) = (1− p/2)νk

Therefore,

Pr[Xk,t+1 = 0] = 1− β
(
Mk,t+1

νk

)
≥ 1− (1− p/2) = p/2.

Let
x = (Mk,t+1 − νd

k,t)+.

It holds that

νd
k,t+1 =

{
νd
k,t+1 + x Xk,t+1 = 0

νd
k,t Xk,t = 1

.

35

DAGAN AND CRAMMER

Therefore, by induction hypothesis, it holds that

E
[
exp

(
c′
(
sd
k,min(t+m,τk,1) − s

d
k,t

))∣∣∣νd
k,t, x

]
=

1∑
b=0

Pr[Xk,t+1 = b]E
[
exp

(
c′
(
sd
k,min(t+m,τk,1) − s

d
k,t

))∣∣∣νd
k,t, x,Xk,t+1 = b

]
=

1∑
b=0

Pr[Xk,t+1 = b]E
[
exp(c′x) exp

(
c′
(
sd
k,min(t+m,τk,1) − s

d
k,t+1

))∣∣∣νd
k,t, x,Xk,t+1 = b

]
≤

1∑
b=0

Pr[Xk,t+1 = b]E
[
exp(c′x) exp

(
c′′(νk − νd

k,t+1)
)∣∣∣νd

k,t, x,Xk,t+1 = b
]

= Pr[Xk,t+1 = 0] exp(c′x) exp
(
c′′(νk − νd

k,t − x)
)

+ Pr[Xk,t+1 = 1] exp(c′x) exp
(
c′′(νk − νd

k,t)
)

≤ p

2
exp

(
c′′(νk − νd

k,t − x) + c′x
)

+ (1− p

2
) exp

(
c′′(νk − νd

k,t) + c′x
)
.

We would like to show that

p

2
exp

(
c′′(νk − νd

k,t − x) + c′x
)

+ (1− p

2
) exp

(
c′′(νk − νd

k,t) + c′x
)
≤ exp

(
c′′(νk − νd

k,t)
)
,

which is equivalent to showing that the function

φ(y) =
p

2
+ (1− p

2
) exp

(
c′′y
)
− exp

(
(c′′ − c′)y

)
, (87)

satisfies φ(x) ≤ 0. It trivially holds that φ(0) = 0, and we will show that dφ
dy (y) ≤ 0 for all

0 ≤ y ≤ x. This will imply that φ(x) ≤ 0. Indeed,

dφ

dy
(y) = (1− p/2)c′′ exp(yc′′)− (c′′ − c′) exp((c′′ − c′)y)

= exp(c′′y)
(
(1− p/2)c′′ − (c′′ − c′) exp(−c′y)

)
≤ exp(c′′y)

(
(1− p/2)c′′ − (c′′ − c′) exp(−c′x)

)
(88)

≤ exp(c′′y)

(
(1− p/2)c′′ − (c′′ − c′)1− p/2

1− p/4

)
= 0,

where inequality (88) follows from Proposition 24.2.
This proves that

E
[
exp

(
c′
(
sd
k,min(t+m,τk,1) − s

d
k,t

))∣∣∣νd
k,t, x

]
≤ exp

(
c′′(νk − νd

k,t)
)
,

and this inequality holds for every possible value of x, therefore the proof of inequality (86) is
concluded.

To conclude the proof, note that

sd
k,τ = sd

k,τ−1 + (Mk,τ − νd
k,τ−1)+ ≤ s0 + rk,τ ≤ s0 + cνk ≤ cνk(log

4c

γp
).

36

A BETTER RESOURCE ALLOCATION ALGORITHM

Thus,

E
[
exp(c′sd

k,τ1)
]

= E
[
exp(c′sd

k,τ) exp(c′sd
k,τ1
− sd

k,τ)
]

≤ exp(c′cνk(log
4c

γp
))E

[
exp(c′sd

k,τ1
− sd

k,τ)
]

≤ exp

(
2

(1− p)

)
4c

γp
exp(c′′νk)

≤ exp

(
2

(1− p)

)
4c

γp
exp

(
8

cp(1− p)

)
.

B.3.6 CONCLUDING THE PROOF

Fix an arm k, 1 ≤ k ≤ n. It holds that:∑
t∈T : k∈At

(1− β(Mk,t/νk)) ≤
∑

t>τk,0 : k∈At

(1− β(Mk,t/νk))

=
∑

t : τk,0<t≤τk,1, k∈At

(1− β(Mk,t/νk)) (89)

+
∑

t : t>τk,1, k∈At

(1− β(Mk,t/νk)). (90)

We will start by bounding the amount in the equation line marked (89) and proceed in bounding the
amount in (90).

For any iteration t where k ∈ At,
(Mk,t−νdk,t−1)+

rk,t
= 1. Therefore,

∑
τk,0<t≤τk,1 :

k∈At

(1− β(Mk,t/νk)) ≤
∑

τk,0<t≤τk,1 :
k∈At

1

=
∑

τk,0<t≤τk,1 :
k∈At

(Mk,t − νd
k,t−1)+

rk,t

≤ C1 logK + C ′1, (91)

for some constants C1, C
′
1 > 0 depending only on c, where the last inequality follows from

Lemma 16.

We proceed by bounding the amount in (90). Denote εk,t =
νk−νdk,t
νk

. For any value of 0 < η < 1,
let τ ′k,η be the first iteration t that εk,t ≤ η. Lemma 13 implies that there is a constant, C2 > 0,
depending only on c, such that

E

 τ ′k,η∑
t=τk,1+1

(Mk,t − νd
k,t−1)+

rk,t

∣∣∣∣∣∣τ k,1, Z ′τk,1
 ≤ C2

(
exp

(
2sd
k,τk,1

cνk(1− p)

)
+

1

η

)
.

37

DAGAN AND CRAMMER

Lemma 14 bounds the expected value of E
[
exp

(
2sdk,τk,1
cνk(1−p)

)]
by another constant, C3 > 0, de-

pending only on c. Combining these two results, we get that

E

 τ ′k,η∑
t=τk,1+1

(Mk,t − νd
k,t−1)+

rk,t

 ≤ C4

η
, (92)

for some constant C4 > 0 depending only on c.
Let wk,η be the number of iterations t, τ k,1 < t ≤ τ ′k,η, for which k ∈ At. Equation (92)

implies that

Ewk,η = E
∑

t : τk,1<t≤τ ′k,η , k∈At

1

= E
∑

t : τk,1<t≤τ ′k,η , k∈At

(Mk,t − νd
k,t−1)+

rk,t

≤ E
τ ′k,η∑

t=τk,1+1

(Mk,t − νd
k,t−1)+

rk,t

≤ C4

η
. (93)

Therefore,∑
t≥τk,1+1: k∈At

(1− β(Mk,t/νk)) ≤
∑

t≥τk,1+1: k∈At

(1− β(νd
k,t−1/νk))

=
∑

t≥τk,1+1: k∈At

εk,t−1

=
n∑

m=1

∑
t≥τk,1+1:

k∈At
1

m+1
<εk,t−1≤ 1

m

εk,t−1 +
∑

t≥τk,1+1:
k∈At

εk,t−1≤ 1
n+1

εk,t−1

≤
n∑

m=1

∑
t≥τk,1+1:

k∈At
1

m+1
<εk,t−1≤ 1

m

1

m
+

∑
t≥τk,1+1:

k∈At
εk,t−1≤ 1

n+1

1

n+ 1

≤
n∑

m=1

∣∣∣{t : t > τ k,1, τ ′k,1/m < t ≤ τ ′k,1/(m+1), k ∈ At
}∣∣∣ 1

m
+

n

n+ 1

≤
n∑

m=1

(wk,1/(m+1) − wk,1/m)
1

m
+ 1

≤ −wk,1 +

n−1∑
m=2

wk,1/m

(
1

m− 1
− 1

m

)
+

1

n− 1
wk,n + 1

38

A BETTER RESOURCE ALLOCATION ALGORITHM

≤ 2
n−1∑
m=2

wk,1/m

m2
+ 3. (94)

Inequality (93) implies that

E

[
n−1∑
m=2

wk,1/m
1

m2

]
≤ C4

n−1∑
m=2

m

m2
≤ C4(log n+ 4).

B.4 Proof of Lemma 8

Define T ′ = T ∩ {τ k,0 + 1, · · · , τ k,1}, and T ′′ = T ∩ {τ k,1 + 1, · · · , n}. We will divide the sum
that we have to bound into two summands: one over T ′ and one over T ′′.

Start with T ′.

E

 ∑
t∈T ′ : k∈At

rk,t

νd
k,t−1

+
∑

t∈T ′ : k∈Bt

r′t
νd
k,t−1


= E

 ∑
t∈T ′ : k∈At

rk,t

νd
k,t−1

+ 2
∑

t∈T ′ : k∈Bt

(Mk,t − νd
k,t−1)+

νd
k,t−1

 (95)

≤ 2E

 τk,1∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

νd
k,t−1


≤ 2E

 τk,1∑
t=τk,0+1

(Mk,t − νd
k,t−1)+

rk,t


≤ C1 logK + C ′1. (96)

for some constants C1, C
′
1 > 0, depending only on c. Inequality (95) follows from the fact that

conditioned on k ∈ Bt, k is allocated according to case B, hence Mk,t equals either νd
k,t−1 or

νd
k,t−1 + r′t, each with probability 1/2; inequality (96) follows from Lemma 16.

Next, bound the sum that relates to T ′′. Similarly to the calculation in Equality (95):

E

 ∑
t∈T ′′ : k∈At

rk,t

νd
k,t−1

+
∑

t∈T ′′ : k∈Bt

r′t
νd
k,t−1


≤ 2E

[∑
t∈T ′′

(Mk,t − νd
k,t−1)+

νd
k,t−1

]

≤ 2E

[∑
t∈T ′′

(Mk,t − νd
k,t−1)+

(1− p)νk

]

≤ 2

(1− p)νk
E

 ∑
1≤t≤n : νdk,t−1>0

(Mk,t − νd
k,t−1)+


39

DAGAN AND CRAMMER

=
2

(1− p)νk
E
[
sd
k,n

]
.

To conclude the proof, we prove by induction on t, 1 ≤ t ≤ n, that sd
k,t ≤ cνkH(t− 1), where

H(t) =
∑t

i=1
1
i is the harmonic sum. Trivially sd

k,1 = 0 = H(0). Assume that this statement holds
for t and prove for t+ 1.

sd
k,t+1 ≤ sd

k,t + cνd
k,trk,t+1

= sd
k,t + cνd

k,t exp

(
−
sd
k,t

cνd
k,t

)

≤ sd
k,t + cνk exp

(
−
sd
k,t

cνk

)

≤ cνkH(t− 1) + cνk exp

(
−cνkH(t− 1)

cνk

)
(97)

≤ cνkH(t− 1) + cνke
− log t (98)

= cνkH(t).

where Inequality (97) follows from induction hypothesis, and from the fact that the function x +
α exp

(
− x
α

)
is monotonic non-decreasing in x, for x ≥ 0 and α > 0, and Inequality (98) follows

from the fact that H(t− 1) ≥ log t, for all t ≥ 1.

B.5 Proof of Lemma 5

We use the following variant of Azuma’s inequality.

Lemma 25 Let Y1, Y2, . . . be an infinite sequence of random random variables, and letX1, X2, . . .
be random variables getting values from {0, 1}. Assume that Xi is a function of Y1, . . . , Yi for all
i ≥ 1. For any i ≥ 1, let Pi be a random variable which is a function of Y1, . . . , Yi−1 and equals
Pr[Xi = 1 | Y1, . . . , Yi−1]. The following statements hold:

1. Fix a number r, and let τ r be the random variable denoting the last number i such that∑i
j=1 Pj ≤ r. Assume that there exists some constant m such that it always holds that

τ r ≤ m. Then, for any 0 < δ ≤ 1,

Pr

[
τ r∑
i=1

Xi > (1 + δ)r

]
≤ exp

(
−δ

2r

3

)
.

2. Fix a number r, and let τ r be the random variable denoting the first number i such that∑i
j=1 Pj > r. Assume that there exists some constant m such that it always holds that

τ r ≤ m. Then, for any 0 < δ ≤ 1,

Pr

[
τ r∑
i=1

Xi < (1− δ)r

]
≤ exp

(
−δ

2r

2

)
.

This is a martingale version of the following bound on the relative error of independent random
variables by Chernoff (1952).

40

A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 26 Let X1, . . . , Xn be independent random variable getting values from {0, 1}. Let X =∑n
i=1Xi. Then, for all 0 < δ < 1,

1.

Pr[X ≥ (1 + δ)EX] ≤ exp

(
−δ

2EX
3

)
.

2.

Pr[X ≤ (1− δ)EX] ≤ exp

(
−δ

2EX
2

)
.

First note that we can assume in Lemma 25.1 that
∑τ r

j=1 Pj = r. Then, the proof is almost
identical to the proof of Lemma 25, inductively bounding E exp (t

∑τ r
i=1Xi) ≤ exp

(
r(et − 1)

)
.

Lemma 25.2 is proved similarly.
Before proving the following lemmas, extend the values of Mk,t, Xk,t, s

p
k,t and xp

k,t for t > n,
by defining, for all t > n,

Mk,t = min(νk, 1),

Xk,t =

{
1 with probability Mk,t/νk

0 with probability 1−Mk,t/νk
,

sp
k,t = sp

k,t−1 +Mk,t, (99)

and
xp
k,t = xp

k,t−1 +Xk,t.

Here is an auxiliary lemma.

Lemma 27 Fix some arm k, 1 ≤ k ≤ K. Then,

E
[∣∣∣{0 ≤ t ≤ n : νp

k,t > νk

}∣∣∣] ≤ π2

6K
.

Proof Fix some arm k. Fix some s, ζ > 0. Regard the inequality

x ≥ s

ν
−
√

2
s

ν
ζ,

for all positive x and ν. This is a quadratic inequality in the parameter
√

1
ν , which holds if and only

if √
1

ν
≤
√

ζ

2s
+

√
ζ

2s
+
x

s
.

In particular, whenever x ≥ s
ν −

√
2 sν ζ, it holds that

ν ≥

(√
ζ

2s
+

√
ζ

2s
+
x

s

)−2

. (100)

41

DAGAN AND CRAMMER

Define for any t ≥ 0 and ζ > 0,

νp
ζ,k,t =


(√

ζ
2spk,t

+

√
ζ

2spk,t
+

xpk,t
spk,t

)−2

sp
k,t > 0

0 sp
k,t = 0

.

Note that νp
ζt,k,t

= νp
k,t.

For any integer s′ ≥ 0, let τ s′ be the first iteration t that sp
k,t > s′νk. From the way we extended

the values of sp
k,t to t > n in equation (99), it holds that for any s′, τ s′ is bounded by a constant.

For all t > 0,

Pr
[
νp
k,t > νk

]
= Pr

[
νp
ζt,k,t

> νk

]
≤ Pr

[
∃i ≥ 0: sp

k,i ≤ tνk, ν
p
ζt,k,i

> νk

]
≤

t−1∑
s′=0

Pr
[
∃i ≥ 0: s′νk < sp

k,i ≤ (s′ + 1)νk, ν
p
ζt,k,i

> νk

]

=
t−1∑
s′=0

Pr

∃i ≥ 0: s′νk < sp
k,i ≤ (s′ + 1)νk,

(√
ζt

2sp
k,i

+

√
ζt

2sp
k,i

+
xp
k,i

sp
k,i

)−2

> νk


≤

t−1∑
s′=0

Pr

√ ζt
2(s′ + 1)νk

+

√
ζt

2(s′ + 1)νk
+

xp
k,τ s′

(s′ + 1)νk

−2

> νk


≤

t−1∑
s′=0

Pr

xp
k,τ s′

<
(s′ + 1)νk

νk
−

√
2

(s′ + 1)νk
νk

ζt

 (101)

≤
t−1∑
s′=1

Pr

[
xp
k,τ s′

< s′
(

1−
√

2ζt/s′ +
1

s′

)]

≤
t−1∑
s′=1

exp

(
−1

2
s′
(√

2ζt/s′ −
1

s′

)2
)

(102)

≤
t−1∑
s′=1

exp
(
−ζt +

√
2ζt/s′

)
≤ t exp

(
−ζt +

√
2ζt

)
= t exp (− ln(1/εt))

= t−2K−1.

where inequality (101) follows from (100) by substituting s = (s′ + 1)νk, ν = νk, x = xp
k,τ s′

and
ζ = ζt; and inequality (102) follows from Lemma 25, by substituting Xi = xp

k,i − x
p
k,i−1, Yi = Zi,

Pi =
spk,i−s

p
k,i−1

νk
, r = s′ and δ =

√
2ζt/s′ − 1

s′ .

42

A BETTER RESOURCE ALLOCATION ALGORITHM

This implies that

E
[∣∣∣{0 ≤ t ≤ n : νp

k,t > νk

}∣∣∣] ≤ n∑
t=1

Pr[νp
k,t > νk] ≤

n∑
t=1

1

t2K
≤
∞∑
t=1

1

t2K
=

π2

6K
.

To conclude the proof, note the following: the expected number of iterations t that there exists k
such that νk,t = 0, is at most the expected number of iterations that there exists k such that νd

k,t = 0.
This quantity is bounded by E[τ 0] = O(max(1, log 1

ν1
)), by Lemma 15.

The expected number of iterations t such that there exists k that νk,t > νk, is bounded by the
expected number of iterations that there exists k that νp

k,t > νk, which is bounded by a constant,
from Lemma 27. This concludes the proof.

B.6 Proof of Lemma 9

We begin with a lemma:

Lemma 28 Fix an integer k and real numbers a and ν such that 1 ≤ k ≤ K, 0 < a ≤ 1, and
1
ν ≥

1+a
νk

. Then,

E

 ∑
t : νk,t−1≤ν

1Mk,t≤νdk,t−1
Mk,t

 ≤ ν (1029ζn
a2

)
.

Proof Assume that sp
k,t and xp

k,t are defined also for t > n, as defined in equation (99). Let

α =
(

32
a

)2, and let
s′ = d1 + αζne .

First, for any s ≥ s′, and for any x ≤ s+
√

3s log n, it holds that(√
ζn

2(s− 1)
+

√
ζn

2(s− 1)
+

x

s− 1

)2

=
s

s− 1

(√
ζn
2s

+

√
ζn
2s

+
x

s

)2

≤ s

s− 1

√ζn
2s

+

√
ζn
2s

+ 1 +

√
3 log n

s

2

≤ s

s− 1

√ζn
2s

+

√
ζn
2s

+ 1 +

√
ζn
s

2

≤ s

s− 1

√ζn
2s

+

√√
ζn
2s

+ 1 +

√
ζn
s

2

≤ s

s− 1

(√
ζn
2s

+
1

2

√
ζn
2s

+
1

2

√
ζn
s

+ 1

)2

(103)

43

DAGAN AND CRAMMER

≤
(

1 +
1

s− 1

)(
1 + 15

√
ζn
s

)

≤
(

1 +
1

α

)(
1 + 15

√
1

α

)
= 1 + a, (104)

where inequality (103) follows from the fact that
√

1 + x ≤ 1 + x
2 for x ≥ 0.

For any integer s ≥ s′, let τ s be the last t such that sp
k,t ≤ sν, and As be the event√ ζn

2(s− 1)ν
+

√
ζn

2(s− 1)ν
+

xp
k,τ s

(s− 1)ν

2

≥ 1

ν
.

Substituting x = xp
k,τ s

and s = s
1+a in inequality (104), we obtain that whenever xp

k,τ s
≤ s

1+a +√
3 s

1+a log n, As does not hold.

Applying Lemma 25 with Xt = xp
k,t − xp

k,t−1, Yt = Zt, Pt =
spk,t−s

p
k,t−1

νk
, r = s

1+a and

δ =

√
3(1+a) logn

s , it holds that

Pr[As] ≤ Pr

[
xp
k,τ s

>
s

1 + a
+

√
3

s

1 + a
log n

]
≤ exp

(
− δ2s

3(1 + a)

)
=

1

n
.

This suffices to complete the proof:

E

 ∑
1≤t≤n : 1

νk,t−1
≥ 1
ν

1Mk,t≤νdk,t−1
Mk,t



= E

 ∑
1≤t≤min(n,τ s′+1): 1

νk,t−1
≥ 1
ν

1Mk,t≤νdk,t−1
Mk,t

+ E

 ∑
min(n,τ s′+1)<t≤n : 1

νk,t−1
≥ 1
ν

1Mk,t≤νdk,t−1
Mk,t



≤ νs′ + E

 n−1∑
s=s′+1

∑
t :

(s−1)νk<s
p
k,t−1≤sνk

1Mk,t≤νdk,t−1
1 1
νk,t−1

≥ 1
ν
Mk,t



≤ νs′ + E

 n−1∑
s=s′+1

∑
t :

(s−1)νk<s
p
k,t−1≤sνk

1As1Mk,t≤νdk,t−1
Mk,t


≤ νs′ + E

[
n−1∑
i=s′+1

2ν · 1As

]
≤ ν(s′ + 2).

44

A BETTER RESOURCE ALLOCATION ALGORITHM

Lemma 32 implies that for any j, 1 ≤ j ≤ K, and for any t ∈ T , if νd
k,t−1 > νj then there are

at least j arms i for which νi,t−1 ≤ νj < νk,t−1. Therefore,

∑
t∈T : k∈Bt∪Ct

{
min(νd

k,t−1,Mk,t)(1/ν`+1 − 1/νk) |At| = `

min(νd
k,t−1,Mk,t)(1/ν` − 1/νk) |At| < `

≤
∑

t∈T : k∈Bt∪Ct
νdk,t−1≤ν`+1

min(νd
k,t−1,Mk,t)(1/ν`+1 − 1/νk)

+
∑

t∈T : k∈Bt∪Ct
νdk,t−1≤ν`

min(νd
k,t−1,Mk,t)(1/ν` − 1/νk). (105)

Take some k′ < k. Let a = min
(

1, νkνk′
− 1
)

. Then

E

 ∑
t∈T : k∈Bt∪Ct
νk,t−1≤νk′

min(νd
k,t−1,Mk,t)

 (106)

= E

 ∑
t∈T : k∈Bt
νk,t−1≤νk′

νd
k,t−1

+ E

 ∑
t∈T : k∈Ct
νk,t−1≤νk′

1Mk,t≤νdk,t−1
Mk,t



= 2E

 ∑
t∈T : k∈Bt
νk,t−1≤νk′

1Mk,t=ν
d
k,t−1

νd
k,t−1

+ E

 ∑
t∈T : k∈Ct
νk,t−1≤νk′

1Mk,t≤νdk,t−1
Mk,t

 (107)

= 2E

 ∑
t∈T : k∈Bt
νk,t−1≤νk′

1Mk,t≤νdk,t−1
Mk,t

+ E

 ∑
t∈T : k∈Ct
νk,t−1≤νk′

1Mk,t≤νdk,t−1
Mk,t

 (108)

≤ 2E

 ∑
t : 1≤t≤n
νk,t−1≤νk′

1Mk,t≤νdk,t−1
Mk,t


≤ 2νk′(

1029ζn
a2

), (109)

where inequality (107) follows from the fact that if k ∈ Bt then k is allocated according to case B,
and the probability thatMk,t = νd

k,t−1 conditioned on k ∈ Bt is 1/2, independently on νd
k,t−1; (108)

follows from the fact that whenever k ∈ Bt, it never holds that Mk,t < νd
k,t−1; and inequality (109)

follows from Lemma 28.

45

DAGAN AND CRAMMER

If a < 1 this implies that

E

 ∑
t∈T : k∈Bt∪Ct
νdk,t−1≤νk′

min(νd
k,t−1,Mk,t)(1/νk′ − 1/νk)

 ≤ νk′(2058ζn
a2

)(1/νk′ − 1/νk)

≤ νk(
2058ζn
a2

)(1/νk′ − 1/νk)

=
2058ζn
a

=
2058ζn

νk/νk′ − 1
.

If a = 1, then

E

 ∑
t∈T : k∈Bt∪Ct
νdk,t−1≤νk′

min(νd
k,t−1,Mk,t)(1/νk′ − 1/νk)

 ≤ νk′(2058ζn
a2

)(1/νk′ − 1/νk)

= 2058ζn(1− νk′

νk
)

≤ 2058ζn.

Therefore, for any value of a,

E

 ∑
t∈T : k∈Bt∪Ct
νdk,t−1≤νk′

min(νd
k,t−1,Mk,t)(1/νk′ − 1/νk)

 ≤ 2058ζn
νk/νk′ − 1

+ 2058ζn

= 2058ζn
νk

νk − νk′
.

This, together with inequality (105), conclude the proof.

Appendix C. Proof of Theorem 4

Take an algorithm A, and we can assume that it is deterministic, since we are bounding an expected
regret over all inputs. Notice that the optimal allocation strategy is to fully allocate all the arms
1, . . . , r, and additionally allocate some of the arms r + 1, . . . , 2r. Therefore, the expected regret
on iteration t satisfies

E[Rt |M1,t · · ·MK,t] ≥
∑

k≤r : Mk,t>νk

|Mk,t − νk|
r

2
+

∑
k≤r : Mk,t<νk

|νk −Mk,t|
(

1

νk
− r

2

)

≥ r

2

r∑
k=1

|νk −Mk,t|, (110)

46

A BETTER RESOURCE ALLOCATION ALGORITHM

where the sum over Mk,t > νk corresponds to over-allocation of arms k ≤ r, and the sum over
Mk,t > νk corresponds to under-allocation of these arms.

The idea of the proof is to show that on any iteration t, and for any arm k ≤ r, the algorithm
cannot estimate the value of νk with an error lower than Ω(1/(rt)), therefore, the expected value of
|νk −Mk,t| will be Ω(1/(rt)), and (110) will imply that the regret on iteration t will be Ω(r/t).

We start by giving a definition of a distance between two distributions. Let Ω be a finite sample
space, and µ1, µ2 be distribution measures over Ω. The total variation distance between µ1 and µ2

is defined as
d(µ1, µ2) =

1

2

∑
ω∈Ω

|µ1(ω)− µ2(ω)| = max
S⊆Ω
|µ1(S)− µ2(S)|.

This distance is subadditive in terms of a Cartesian product, as stated in the following lemma.

Lemma 29 Let Ω1, . . . ,Ωt be sample spaces, and let Ω = Ω1× · · · ×Ωt. Let µ and η be measures
over Ω, and let µi and ηi be the Ωi-marginals of µ and η respectively, for all 1 ≤ i ≤ t. Fix an
ε ≥ 0. Assume that for any 1 ≤ i ≤ t, and for any ω1 ∈ Ω1, . . . , ωi−1 ∈ Ωi−1, (µi|ω1, . . . , ωi−1)
and (ηi|ω1, . . . , ωi−1) have a distance of at most ε, where (µi|ω1, . . . , ωi−1) is µi conditioned on
ω1, . . . , ωi−1, and (ηi|ω1, . . . , ωi−1) is defined similarly. Then, d(µ, η) ≤ tε.

Additionally, if f : Ω→ R is a function, and µ1, µ2 are measures over Ω, we can bound Eµ1f −
Eµ2f in terms of d(µ1, µ2), as described in the following lemma:

Lemma 30 Let Ω be a sample space, let a > 0, let f : Ω → [0, a] and let µ1, µ2 be measures over
ω. Then

Eω∼µ1f(ω)− Eω∼µ2f(ω) ≤ ad(µ1, µ2).

Proof It holds that

Eµ1f(ω)−Eµ2f(ω) =
∑
ω∈Ω

(µ1(ω)−µ2(ω))f(ω) ≤
∑

ω : µ1(ω)≥µ2(ω)

(µ1(ω)−µ2(ω))a ≤ ad(µ1, µ2).

Fix 0 ≤ t ≤ n, k ≤ r, and let Ω = {0, 1}tK be a sample space that contains vectors
(xk,i)1≤k≤K, 1≤i≤t. Given two values 1

2r ≤ a < b ≤ 1
r , let µ be a distribution over Ω, which

equals the distribution over (Xk,i)1≤k≤K, 1≤i≤t when ν is drawn from (D | νk = a). Formally, for
any x ∈ Ω,

µ(x) = Pr
ν∼D

[Xk,i = xk,i for all 1 ≤ i ≤ t, 1 ≤ k ≤ K | νk = a]. (111)

Similarly, let η be the corresponding distribution conditioned on νk = b. We can apply Lemma 29
by substituting t = t, ε =

(
1− a

b

)
, and substituting Ωi with the marginal of Ω on the coordinates

{(k, i) : 1 ≤ k ≤ K}, for all 1 ≤ i ≤ t. The lemma implies that d(µ, η) ≤ t
(
1− a

b

)
, and this

quantity is at most 2tr(b − a). Note that for any x ∈ Ω, the value of Mk,t+1 is deterministically
defined given that x occurs. Therefore, we can define a function f : Ω→ [0, b− a] by

f(x) =


0 if Mk,t+1 < a given x
α if Mk,t+1 = a+ α given x, for some 0 ≤ α ≤ b− a
b− a if Mk,t+1 > b given x

.

47

DAGAN AND CRAMMER

Lemma 30 implies that

Eµ[|Mk,t+1 − νk|] + Eη[|Mk,t+1 − νk|] = Eµ[|Mk,t+1 − a|] + Eη[|Mk,t+1 − b|]
≥ Ex∼µf(x) + ((b− a)− Ex∼ηf(x))

≥ (b− a)− (b− a)d(µ, η)

≥ (b− a)(1− 2tr(b− a)).

Therefore, for any t ≥ 1,

2Eν∼D[|Mk,t+1 − νk|]

= 2 · 2r
∫ 1

r

a= 1
2r

Eν∼D[|Mk,t+1 − νk| | νk = a]da

≥ 2r

∫ 1
r
− 1

4rt

a= 1
2r

(
Eν∼D[|Mk,t+1 − νk| | νk = a] + Eν∼D

[
|Mk,t+1 − νk|

∣∣∣∣νk = a+
1

4rt

])
da

≥ 2r

∫ 1
r
− 1

4rt

a= 1
2r

1

4rt

(
1− 2rt

4rt

)
da

=
1

8rt
− 1

16rt2
.

Combining with inequality (110), this implies that

ER(n) ≥
n−1∑
t=1

r

32t
−
n−1∑
t=1

r

64t2
≥ r

32

(
H(n− 1)− π2

12

)
.

Appendix D. Regret Lower Bound with respect to the parameters ν1 · · · νK
Theorem 31 Fix integers K and ` such that K > ` + 1, and fix numbers v1, . . . , v`, such that
v1 + · · · + v` < 1. Let B be the set of all vectors ν = (ν1, . . . , νK) ∈ RK , such that: (1) For all
k ≤ `, it holds that νk = vk, and (2) For all ` < k ≤ K, it holds that νk > 1. For any ν ∈ B,
define ν∗ = min`+1≤k≤K νk. Additionally, define D(p||q) = p log p

q + (1− p) log 1−p
1−q . Assume an

anytime algorithm A, such that for all ν ∈ B, and for all a > 0, limn→∞ ER(n)(A, ν)/na = 0.
Define C(a) = max

(
4(1−a−1)2

4(1−a−1)2+1
, a−1

−4 log(1−a−1)

)
. Then, for all ν ∈ B,

lim inf
n→∞

ER(n)(A, ν)

log n
≥

∑
k : `+1≤k≤K, νk>ν∗

1/ν∗ − 1/νk
D(1/νk||1/ν∗)

≥ C(ν∗)
∑

k : `+1≤k≤K, νk 6=ν∗

νk
νk − ν∗

.

(112)

The proof follows the same steps taken in the proof of Theorem 2 in the paper by Lai and
Robbins (1985), yet it is simpler to rewrite it instead of stating all the differences. All asymptotic
notations correspond only to n, and consider the other parameters of the problem as constants.

For any k ≥ `+1, and any integer n, let Tn(k) be the random variable which equals
∑n

t=1Mk,t.
It holds

ER(n)(A, ν) ≥
∑

k : νk>ν∗

ETn(k)

(
1

ν∗
− 1

νk

)
. (113)

48

A BETTER RESOURCE ALLOCATION ALGORITHM

Fix some k such that νk > ν∗, and we will prove that

lim inf
n→∞

ETn(k)

log n
≥ 1

D(1/νk||1/ν∗)
, (114)

and this, together with inequality (113) completes the proof of the left inequality (112). Let θk = 1
νk

,
and let θ∗ = 1

ν∗ . Fix any δ > 0. Fix some λ such that θ∗ < λ and |D(θk||λ) − D(θk||θ∗)| <
δD(θk||θ∗). Let γ ∈ RK be a vector defined as

γi =

{
1
λ i = k

νi i 6= k
.

Fix a, 0 < a < δ. It holds that

(n−O(log n))Pγ

[
Tn(k) <

(1− δ) log n

D(θk||λ)

]
≤ Eγ(n− Tn(k)) = o(na). (115)

Given a value of θ, and an integer t, let Zθ,t be the random variable which equals Mk,tθ if Xk,t = 1
and 1 −Mk,tθ otherwise. Namely, Zθ,t is the probability that Xk,t had to get its value given Mk,t

and the parameter of arm k. Let

Ln =

n∑
t=1

log
Zθk,t
Zλ,t

.

Let

Cn =

{
Tn(k) <

(1− δ) log n

D(θk||λ)
, Ln ≤ (1− a) log n

}
.

It follows from (115) that
Pr
γ

(Cn) = o(na−1). (116)

Note that for any r ≥ 0,

Pr
γ

[Tn(k) = r, Ln ≤ (1− a) log n] =

∫
(Tn(k)=r,Ln≤(1−a) logn)

n∏
t=1

Zλ,t
Zθk,t

dPν

≥ exp(−(1− a) log n) Pr
ν

[Tn(k) = r, Ln ≤ (1− a) log n] .

(117)

Since Cn is a disjoint union of events of the form {Tn(k) = r, Ln ≤ (1− a) log n}, with r <
(1− δ) log n/D(θk||λ), it follows from (116) and (117) that

lim
n→∞

Pr
ν

(Cn) ≤ lim
n→∞

n1−a Pr
γ

(Cn) = 0. (118)

Let τ be the first t such that Tt(k) ≥ (1−δ) logn
D(θk||λ) . The inequality D(εp||εq) ≤ εD(p||q) for all

0 < p, q, ε < 1, implies that ELτ ≤ log n+O(1). Therefore, using standard concentration bounds,
it holds that

lim
n→∞

Pr
ν

[∃i < τ , Li > (1− a) log n] = 0. (119)

49

DAGAN AND CRAMMER

From (118) and (119) we see that

lim
n→∞

Pr
ν

[
Tn(k) <

(1− δ) log n

(1 + δ)D(θk, θ∗)

]
≤ lim

n→∞
Pr
ν

[
Tn(k) <

(1− δ) log n

D(θk, λ)

]
= 0,

from which (114) follows. This concludes the proof of the left inequality (112).
Next, we prove the right inequality (112). Fix 0 < p < q < 1, and let ε be a number such that

q = (1 + ε)p. Assume that ε ≤ 1. Estimating the Taylor sum of D(p||p(1 + ε)) around ε = 0, we
get that there exists 0 ≤ ζ ≤ ε such that

D(p||q) =
∂2D(p||(1 + ε)p)

∂ε2

∣∣∣∣
p=ζ

ε2

2

=

(
p

(1 + ζ)2
+

p2(1− p)
(1− p− ζp)2

)
ε2

2

≤
(
p+

p2(1− p)
(1− q)2

)
ε2

2

≤
(

1 +
1

4(1− q)2

)
ε2p

2
.

This implies that,

q − p
D(p||q)

≥ 2

ε
(

1 + 1
4(1−q)2

) =
8(1− q)2

ε (4(1− q)2 + 1)
≥ 4(1− q)2

4(1− q)2 + 1

1 + ε

ε
=

4(1− q)2

4(1− q)2 + 1

1/p

1/p− 1/q
.

(120)

Next, assume that ε > 1. It holds that

D(p||q) ≤ (1− p) log
1− p
1− q

≤ log
1

1− q
.

Therefore,

q − p
D(p||q)

≥ q2

4(q − p)D(p||q)
≥ q

−4 log(1− q)
q

q − p
=

q

−4 log(1− q)
1/p

1/p− 1/q
. (121)

Inequalities (120) and (121) conclude the proof of the right inequality (112), replacing p = 1
νk

and
q = 1

ν`+1
. Here is a result which appears in the original work of Lattimore et al. (2014).

Lemma 32 Fix t ∈ T , and 1 ≤ j ≤ K. Then, νkj,t,t−1 ≤ νj , namely, the arm with priority j on
iteration t has a lower bound of at most νj .

Proof For any arm k ≤ j, it holds that νk,t−1 ≤ νk ≤ νj , where the first inequality is due to the
fact that t ∈ T , and the second inequality follows from our assumption that ν1 < · · · < νK . This
implies that the list ν1,t−1, . . . , νK,t−1 has at least j values lower or equal to νj . Therefore, if we
sort the list ν1,t−1, . . . , νK,t−1 in an increasing order, the value on place j (counting from the start)
is at most νj . This value is exactly νkj,t,t−1, by definition of kj,t.

50

A BETTER RESOURCE ALLOCATION ALGORITHM

It holds that E [Xk,t | Zt−1] = β (Mk,t/νk), for all 1 ≤ k ≤ K. If |At| = min(`+ 1,K), then

E[Rt | Zt−1] ≤ `+ 1K>` −
K∑
k=1

β (Mk,t/νk)

≤ |At| −
K∑
k=1

β (Mk,t/νk)

≤ |At| −
∑
k∈At

β (Mk,t/νk)

=
∑
k∈At

(1− β (Mk,t/νk)) .

Therefore, the proof follows for this case.
Assume next that |At| < min(` + 1,K). Let h : [0,∞) → R be a function such that for all

1 ≤ k ≤ K, h(x) = 1/νk in the range x ∈ [
∑k−1

i=1 νi,
∑k

i=1 νi), and h(x) = 0 for all x ≥
∑K

i=1 νi.
It holds that h(x) is monotonic non-increasing, and its integral function H(x) =

∫ x
y=0 h(y)dy

satisfies that H(1) is the award achieved by the optimal policy in round t. Therefore,

E[Rt | Zt−1] = H(1)−
K∑
k=1

β (Mk,t/νk) . (122)

Let a =
∑|At|

k=1 νk and b =
∑|At|

k=1 νk +
∑

k∈At rk,t + r′t. Using equality (122),

E[Rt | Zt−1] ≤

H(a)−
∑
k∈At

β (Mk,t/νk)

 (123)

+ (H(b)−H(a)) (124)

+

(
H(1)−H(b)− β

(
Mk′t,t

νk′t

))
. (125)

We will bound each of these three terms separately.
The right hand side in (123) is bounded by

H

|At|∑
k=1

νk

−∑
k∈At

β (Mk,t/νk) =
∑
k∈At

(1− β (Mk,t/νk)). (126)

We proceed to bounding the quantity in (124). Lemma 32 implies that any k ∈ At ∪ {k′t} =
{k1,t, . . . , k|At|+1,t} satisfies νd

k,t−1 ≤ ν|At|+1. Therefore,

H(b)−H(a) ≤
∫ b

a

1

ν|At|+1

=

∑
k∈At rk,t + r′t
ν|At|+1

51

DAGAN AND CRAMMER

≤
∑
k∈At

rk,t

νd
k,t−1

+
r′t

νd
k′t,t−1

. (127)

Lastly, bound the quantity in (125). Lemma 32 implies that

∑
k∈At

νd
k,t−1 =

|At|∑
j=1

νd
kj,t,t−1 ≤

|At|∑
k=1

νj .

This implies that

∑
k∈At

Mk,t =
∑
k∈At

(νd
k,t−1 + rk,t) ≤

|At|∑
k=1

νk +
∑
k∈At

rk,t. (128)

We will show that
b ≥ 1−min(Mk′t,t

, νd
k′t,t−1). (129)

First, assume that Bt = ∅. Inequality (128) implies that

b ≥
∑
k∈At

Mk,t = 1−Mk′t,t
= 1−min(Mk′t,t

, νd
k′t,t−1).

If Bt 6= ∅, then r′t = 1−
∑

k∈AtMk − νd
k′t,t−1, and

b ≥
∑
k∈At

Mk,t + r′t = 1− νd
k′t,t−1 = 1−min(νd

k′t,t−1,Mk′t,t
),

which concludes the proof of Equation (129). This implies that

H(1)−H(b) =

∫ 1

x=b
h(x)dx

≤ (1− b)h(b)

≤ min(νd
k′t,t−1,Mk′t,t

)h(b). (130)

If |At| = `, then b ≥
∑`

k=1 νk. Therefore, h(b) ≤ 1
ν`+1

, which implies, together with Equa-
tion (130), that

H(1)−H(b) ≤ min(νd
k′t,t−1,Mk′t,t

)
1

ν`+1
. (131)

If |At| < `, then, we know that νk′t,t−1 ≤ ν|At|+1 ≤ ν`, which implies, together with equa-
tion (129) that

b ≥ 1−min(νd
k′t,t−1,Mk′t,t

) ≥ 1− νd
k′t,t−1 ≥ 1− ν`.

Therefore,

h(b) ≤ h(1− ν`) ≤
1

ν`
.

This implies, together with Equation (130), that

H(1)−H (b) ≤ min(νd
k′t,t−1,Mk′t,t

)
1

ν`
. (132)

52

A BETTER RESOURCE ALLOCATION ALGORITHM

Additionally,

β
(
Mk′t,t

/νk′t

)
≥ β

(
min(νd

k′t,t−1,Mk′t,t
)/νk′t

)
= min(νd

k′t,t−1,Mk′t,t
)/νk′t . (133)

Equations (131), (132) and (133) imply that

H(1)−H(b)− β
(
Mk′t,t

/νk′t

)
≤

{
min(νd

k′t,t−1,Mk′t,t
)(1/ν`+1 − 1/νk′t) |At| = `

min(νd
k′t,t−1,Mk′t,t

)(1/ν` − 1/νk′t) |At| < `
. (134)

Equations (123), (126), (127) and (134) conclude the proof.

53

	Introduction
	Single Arm Problem
	Multi-Arm Problem
	Algorithm
	Proof Outline of Theorem 3
	Simulations
	Summary
	Proof of Theorem 1

	Proof of Theorem 3
	Table of definitions
	Proof of Lemma 6
	Proof of Lemma 7
	Lemma 15
	Lemma 16
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Concluding the proof

	Proof of Lemma 8
	Proof of Lemma 5
	Proof of Lemma 9

	Proof of Theorem 4
	Regret Lower Bound with respect to the parameters 1 @let@token K

