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Abstract

We study a variant of the stochastic multi-armed bandit (MAB) problem in which the
rewards are corrupted. In this framework, motivated by privacy preservation in online
recommender systems, the goal is to maximize the sum of the (unobserved) rewards, based
on the observation of transformation of these rewards through a stochastic corruption
process with known parameters. We provide a lower bound on the expected regret of any
bandit algorithm in this corrupted setting. We devise a frequentist algorithm, KLUCB-
CF, and a Bayesian algorithm, TS-CF and give upper bounds on their regret. We also
provide the appropriate corruption parameters to guarantee a desired level of local privacy
and analyze how this impacts the regret. Finally, we present some experimental results
that confirm our analysis.
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1. Introduction

The classical multi-armed bandits (MAB) problem is the formulation of the exploration-
exploitation dilemma inherent to reinforcement learning (see Bubeck and Cesa-Bianchi,
2012, for a survey). In this setup, a learner has access to a number of available actions, also
called “arms” in reference to the arm of a slot machine or a one-armed bandit. They have
to repeatedly select (or “draw”) one of these arms, which yields a reward generated from
an unknown reward process, with the aim to maximize the sum of the gathered rewards.
After each arm selection, a feedback is provided to the learner, that shall influence their
arm selection strategy in the next rounds. In the classical MAB problem, the feedback
is the observation of the reward itself. However, this assumption does not hold true for
some practical scenarios. For example, in adaptive routing, positive feedback means the
corresponding path is usable but no feedback could either mean that the corresponding
path is unusable or the feedback was dropped due to extraneous issues. In the literature,
such an asymmetric feedback is called Positive and Unlabeled (PUN) feedback. See Zhang
and Zuo (2008) for a survey.

On-purpose feedback corruption is an effective way to protect the respondent’s individual
privacy in online recommender systems or survey systems. For instance, Warner (1965)
proposed the randomized response method as a survey technique to reduce potential bias
due to non-response and social desirability when asking questions about sensitive behaviors
and beliefs. This method asks the respondents to employ randomization, say with a coin flip,
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the outcome of which is not available to the interviewer. By introducing random noise, the
method conceals the individual responses and protects respondent privacy. This method
could also be applied within a recommender system, that would thus receive corrupted
version of the user’s original feedback about the items presented. Contrary to most previous
works which apply privacy at the recommender level, this privacy mechanism, called local
privacy, can be deployed at the user level. The challenge for the recommender is then
to present good items to the users (in terms of their “true” feedback), based only on the
received corrupted feedback. Moreover, users may be willing to tune the level of corruption
in order to balance between their privacy and the utility of the recommendation they obtain.

The corrupted feedback we consider is a particular type of an incomplete feedback. There-
fore, the natural framework to deal with this situation appears to be Partial Monitoring
(PM) (Piccolboni and Schindelhauer (2001); Bartók et al. (2014)), which is a general frame-
work for sequential decision making problems with incomplete feedback. The partial moni-
toring problem may be either trivial with a minimax regret of 0, easy with a minimax regret
Θ̃(
√
T ) at time T , hard with a minimax regret Θ̃(T 2/3), or hopeless with a linear minimax

regret. The MAB problem with corrupted feedback however does not fit directly in the
PM setting as defined in Bartók et al. (2014) since it requires additional constraints on the
environment. Specifically, the infinite observation usually space assumed in the literature
of finite stochastic PM precludes the PM results from being applicable to our setting. In
this work, exploiting the specificity of the corrupted MAB problem, we aim for the best
problem-dependent regret, that scales with log(T ).

The article is structured as follows. In Section 2, we formally define the corrupted MAB
prob lem and the relevant parameters. In Section 3, a lower bound on the regret of any
corrupt bandit algorithm is given. In Section 4, the algorithms kl-UCB-CF and TS-CF
are introduced and we provide upper bounds on their regret. In Section 5, we describe how
corrupted feedback can be used to enforce privacy. The proof sketches for the lower and
the upper bounds are given in Section 7, while the complete proofs are postponed to the
appendices. The penultimate section, Section 6, gives an overview of our experiments on
the proposed algorithms.

2. The Corrupt Bandit Problem

A (stochastic) corrupt bandit problem ν is formally characterized by a set of arms A =
{1, . . . ,K} on which are indexed a list of unknown sub-Gaussian reward distributions
{νa}a∈A, a list of unknown sub-Gaussian feedback distributions {ςa}a∈A, and a list of known
mean-corruption functions {ga}a∈A.

If the learner pulls an arm a ∈ A at time t, they receive a reward Rt drawn from the
distribution νa with mean µνa and observe a feedback Ft drawn from the distribution ςa with
mean λνa . We assume that, for each arm, there exists a loose link between the reward and
the feedback through a known mean-corruption function (or simply, corruption function) ga
which maps the mean of the reward distribution to the mean of the feedback distribution
: ga(µ

ν
a ) = λνa , ∀a ∈ A. Note that these ga functions may be completely different from

one arm to another. For Bernoulli distributions, µa and λa are in [0, 1] for all a ∈ A and
we assume all the corruption functions {ga}a∈A to be continuous aleast in this interval.
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Let a∗(ν) ∈ arg maxµνa be the optimal arm in the corrupt bandit model ν1. Without loss
of generality, we assume when presenting the results that arm 1 is the optimal arm for
the rest of this article, unless otherwise specified. The objective is to design a strategy,
which chooses an arm ât to be pulled at time t based only on the previously observed
feedback, F1, . . . , Ft−1, in order to maximize the expected sum of rewards, or equivalently

to minimize the regret: RegretT (ν) := Eν

[
µ1 · T −

∑T
t=1Rt

]
=
∑K

a=2 ∆a ·Eν [Na(T )] where

Na(T ) :=
∑T

t=1 11(ât=a) denotes the number of pulls of arm a up to time T and ∆a := µ1−µa
i.e. the gap between the optimal mean reward and the mean reward of arm a.

Another way to define the link between the reward and the feedback is to provide a
corruption scheme operator g̃a which maps the reward outcomes into feedback distributions.
If the mean is a sufficient statistic of the reward distribution, then the learner can build their
own corruption function from the corruption scheme and the two definitions are equivalent.
This equivalence is true for Bernoulli distributions where most of our results apply.

Randomized response. Randomized response (Warner (1965)), described in the intro-
duction, can be simulated by a Bernoulli corrupt bandit and the corresponding corruption
scheme g̃a can be encoded by the matrix:

Ma :=

[ 0 1

0 p00(a) 1− p11(a)
1 1− p00(a) p11(a)

]
(1)

where Ma(y, x) := P(Feedback from arm a = y |Reward from arm a = x). The correspond-
ing linear corruption function is ga(x) = 1− p00(a) + [p00(a) + p11(a)− 1] · x.

3. Lower Bound on the Regret for MAB with Corrupted Feedback

Following a definition by Lai and Robbins (1985) for the classical MAB, we define a uni-
formly efficient algorithm for the corrupt bandit problem as an algorithm which, for any
problem instance ν, has RegretT (ν) = o(Tα) for all α ∈]0, 1[. Theorem 1 provides a lower
bound on the regret of a uniformly efficient algorithm, in terms of the Kullback-Leibler (KL)
divergence between some distributions. We denote by d(x, y) the KL-divergence between
the Bernoulli distribution of mean x and that of mean y.

Theorem 1 Given continuous corruption functions {ga}a∈A, any uniformly efficient algo-

rithm for a Bernoulli corrupt bandit problem satisfies, lim infT→∞
RegretT
log(T ) ≥

∑K
a=2

∆a
d(λa,ga(µ1)) .

The proof of Theorem 1 can be found in Section 7.1.

The lower bound reveals that the divergence between the mean feedback from a ∈ A
and the image of the optimal reward µ1 with ga plays a crucial role in distinguishing arm
a from the optimal arm. The shape of the ga function in the neighborhood of both a
and 1 has a great impact on the information the learner can extract from the received
feedback. Particularly, if the ga function is non-monotonic, as shown in Figure 1a, it
might be impossible to distinguish between arm a and the optimal arm. To circumvent

1When the associated model is clear from the context, we drop the symbol ν.
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(a) Uninformative ga function (b) Informative ga function

Figure 1: In Figure 1a, ga such that λa = ga(µ1) thereby making it impossible to discern
arm a from the optimal arm given the mean feedback. In Figure 1b, a steep monotonic ga
leads the reward gap ∆a = µ1 − µa into a clear gap between λ and ga(µ1).

this problem, we assume the corruption functions {ga}a∈A to be strictly monotonic in our
algorithms and we denote its corresponding inverse function by g−1

a . Such an informative
corruption function is shown in Figure 1b. To clarify that the gap between λa and λ1 is
not relevant here, we also plot in Figure 1b, a corruption function g1 which differs from
ga and causes fortuitously the two arms to have the same mean feedback with different
interpretations in terms of mean rewards.

4. Algorithms for MAB with Corrupted Feedback

There are two popular approaches to solve the MAB problem in its many variations: the fre-
quentist approach and the Bayesian approach. In this article, we propose both a frequentist
and a Bayesian algorithm for the problem at hand.

4.1. kl-UCB for MAB with Corrupted Feedback (kl-UCB-CF)

We propose in Algorithm 1 an adaptation of the kl-UCB algorithm of Cappé et al. (2013).
Indexa(t) is an upper-confidence bound on µa built from a confidence interval on λa based
on the KL-divergence. The quantity λ̂a(t) in the algorithm denotes the empirical mean of
the feedback observed from arm a until time t: λ̂a(t) := 1

Na(t)

∑t
s=1 Fs · 11(âs=a).

Theorem 2 gives an upper bound on the regret of kl-UCB-CF, showing that it matches the
lower bound given in Theorem 1. A more explicit finite-time bound is proved in Appendix I.

Theorem 2 kl-UCB-CF using f(t) := log(t) + 3 log(log(t)) on a K-armed Bernoulli
corrupt bandit with strictly monotonic and continuous corruption functions {ga}a∈A satisfies
at time T ,

RegretT ≤
K∑
a=2

∆a log(T )

d (λa, ga(µ1))
+O(

√
log(T )).
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Algorithm 1 KLUCB for MAB with corrupted feedback (kl-UCB-CF)

Input: A bandit model with a set of arms A := {1, . . . ,K} with unknown mean rewards
µ1, . . . , µK and unknown mean feedbacks λ1, . . . , λK and monotonic and continuous
corruption functions g1, . . . , gk.
Parameters: A non-decreasing (exploration) function f : N→ R,
d(x, y) := KL(B(x),B(y)), Time horizon T .

1. Initialization: Pull each arm once.
2. for time t = K, . . . , T − 1 do

(a) Compute for each arm a in A the quantity

Indexa(t) := max
{
q : Na(t) · d(λ̂a(t), ga(q)) ≤ f(t)

}
(b) Pull arm ât+1 := argmax

a
Indexa(t) and observe the feedback Ft+1.

end for

The UCB1 algorithm (Auer et al. (2002)) can also be updated to UCB-CF to deal with
the corrupted feedback by modifying the index to

Indexa(t) :=

g
−1
a

(
λ̂a(t) +

√
f(t)

2Na(t)

)
if increasing ga

g−1
a

(
λ̂a(t)−

√
f(t)

2Na(t)

)
if decreasing ga

Corollary 1 With f(t) := log(t)+3 log(log(t)), the regret of UCB-CF at time T on a K-
armed Bernoulli corrupt bandit with strictly monotonic and continuous corruption functions

{ga}a∈A is in O
(∑K

a=2
∆a log(T )

(λa−ga(µ1))2

)
.

The proof of this corollary follows the proof of Theorem 2, using the quadratic divergence
2(x − y)2 in place of d(x, y) through Pinsker’s inequality. UCB-CF is only order optimal
with respect to the bound of Theorem 1, but its index is simpler to compute.

4.2. Thompson Sampling for MAB with Corrupted Feedback (TS-CF)

TS-CF maintains a Beta posterior distribution on the mean feedback of each arm. At time
t + 1, for each arm a, it draws a sample θa(t) from the posterior distribution on λa and
pulls the arm which maximizes g−1

a (θa(t)). This mechanism ensures that at each time, the
probability that arm a is played is the posterior probability of this arm to be optimal, as
in classical Thompson Sampling (TS) (Thompson (1933)).

Theorem 3 When TS-CF is run on a K-armed Bernoulli corrupt bandit with strictly
monotonic and continuous corruption functions {ga}a∈A, for all ψ > 0, there exists a con-
stant Cψ := C(ψ, {µa}a∈A, {ga}a∈A) such that at time T ,

RegretT ≤ (1 + ψ)
K∑
a=2

∆a log(T )

d(λa, ga(µ1))
+ Cψ.
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Algorithm 2 Thompson sampling for MAB with corrupted feedback (TS-CF)

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown reward
means µ1, . . . , µK and unknown feedback means λ1, . . . , λK and monotonic and
continuous corruption functions g1, . . . , gK .
Parameters: Time horizon T .

1. Initialization: For each arm a in A, set successa = 0 and faila = 0
2. for time t = 0, . . . , T − 1 do

(a) For each arm a in A, sample θa(t) from Beta(successa +1, faila +1).
(b) Pull arm ât+1 := arg max

a
g−1
a (θa(t)) and observe the feedback Ft+1.

(c) if Ft+1 = 1 then
i. successât+1 = successât+1 +1

else
ii. failât+1 = failât+1 +1

end if
end for

This theorem also yields the asymptotic optimality of TS-CF with respect to the lower
bound given in Theorem 1. We give a sketch of its proof in Section 7.3.

We can use the above algorithms on a MAB problem with randomized response. The
following corollary bounds their regret.

Corollary 2 The regret of kl-UCB-CF and TS-CF for a K-armed Bernoulli MAB
problem with randomized response using corruption matrices {M}a∈A at time T is∑K

a=2
2 log(T )

∆a(p00(a)+p11(a)−1)2
+O(

√
log (T )).

This corollary follows from Theorem 2 and 3 together with Pinsker’s inequality: d(x, y) >
2(x− y)2. The term (p00(a) + p11(a)− 1) is the slope of the corruption function for arm a.

5. Corrupted Feedback to Preserve Local Differential Privacy

Differential privacy (DP), introduced by Dwork et al. (2006), is one of the usual approaches
for the privacy concerns. Dwork and Roth (2014) present a comprehensive overview. Jain
et al. (2012); Thakurta and Smith (2013); Mishra and Thakurta (2015); Tossou and Dim-
itrakakis (2016) have observed the importance of privacy to MAB applications. Recently,
the notion of differential privacy has been extended to local differential privacy by Duchi
et al. (2014) in which data remains private even from the learner.

Definition 1 (Locally differentially private mechanism) Any randomized mechanism M
is ε-locally differentially private for ε ≥ 0 if for all d1, d2 ∈ Domain(M) and for all S ⊂
Range(M),

P[M(d1) ∈ S] ≤ eε · P[M(d2) ∈ S].

In both global and local contexts, differential privacy is achieved by the addition of noise.
The main difference between global and local differential privacy is whether privacy is to
be maintained from the algorithm or the (possibly unintended) recipient of the output of
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the algorithm. In global differential privacy, noise is added by the algorithm so the output
does not reveal private information about the input. In local differential privacy, noise is
added to the input of the algorithm so that privacy is maintained even from the algorithm.
To the best of our knowledge, hitherto all the previous work combining differential privacy
and bandits has used global differential privacy, either within a stochastic (Mishra and
Thakurta (2015), Tossou and Dimitrakakis (2016)) or an adversarial (Thakurta and Smith
(2013), Tossou and Dimitrakakis (2017)) bandit problem.

In this article, we consider local differential privacy. To understand the motivation for
local differential privacy, let us consider these settings in the context of Internet advertis-
ing, which is one of the major applications of bandit algorithms. An advertising system
receives, as input, feedback from the users which may reveal private information about
them. The advertising system employs a suitable bandit algorithm and selects the ads for
the users tailored to the feedback given by them. These selected ads are then given to the
advertisers as the output2. While using global differential privacy, privacy is maintained
from the advertisers by ensuring that the output of the bandit algorithms does not reveal
information about the input (i.e. user information). Typically, advertising systems are
established by leading social networks, web browsers and other popular websites. Korolova
(2010), Kosinski et al. (2013) show that it is possible to accurately predict a range of highly
sensitive personal attributes including age, sexual orientation, relationship status, political
and religious affiliation, presence or absence of a particular interest, as well as exact birth-
day using the the feedback available to the advertising systems. Such possible breach of
privacy necessitates us to protect personal user information not only from the advertisers
but also from the advertising systems. Local differential privacy is able to achieve this goal
unlike global differential privacy.

Recently, Wang et al. (2016) addressed a similar scenario in data collection. They used
randomized response to perturb sensitive information before being collected by an untrusted
server so as to limit the server’s ability to learn the sensitive information with confidence.
We too shall use the corruption process as a mechanism to provide local differential privacy.

Definition 2 (ε-locally differentially private bandit feedback corruption scheme) A bandit
feedback corruption scheme g̃ is ε-locally differentially private for ε ≥ 0 if for all reward
sequences Rt1, . . . , Rt2 and R′t1 . . . , R

′
t2, and for all S ⊂ Range(g̃),

P[g̃(Rt1, . . . , Rt2) ∈ S] ≤ eε · P[g̃(R′t1, . . . , R
′
t2) ∈ S].

In the case where corruption is done by randomized response, local differential privacy

requires that max1≤a≤K

(
p00(a)

1−p11(a) ,
p11(a)

1−p00(a)

)
≤ eε. By ensuring the appropriate values for

the parameters of randomized response, users can send differentially private feedback to the
learner. The learner can then employ kl-UCB-CF or TS-CF to learn from such feedback.
From Corollary 2, we can see that to achieve lower regret, p00(a)+p11(a) is to be maximized
for all a ∈ A. Using Result 1 from Wang et al. (2016), we can state that, in order to achieve

2This description does not express our belief of how real-life Internet advertising systems work. We
use it for the purpose of illustration only.
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ε-local differential privacy while maximizing p00(a) + p11(a),

Ma =

[ 0 1

0
eε

1+eε
1

1+eε

1
1

1+eε
eε

1+eε

]
. (2)

As it turns out, this is equivalent to the staircase mechanism for local privacy given in
Kairouz et al. (2016, Eq. (15)) for binary rewards and feedbacks. Moreover, this is the
optimal local differential privacy mechanism for low privacy regime (Kairouz et al., 2016,
Theorem 14). In low privacy regime, the noise added to the data is small and the aim
of the privacy mechanism is to send as much information about data as allowed, but no
more (Kairouz et al., 2014). This is in alignment with our dual goal of using privacy with
bandit algorithms: learn from the data while respecting the privacy as much as possible.
The trade-off between utility and privacy is controlled by ε. At one extreme, for ε = 0,
feedbacks are independent of rewards and learning about rewards from feedbacks is not
possible. On the other extreme, for ε =∞, feedbacks can be made equal to rewards.

Using the corruption parameters from Eq. (2) with Corollary 2, we arrive at the following
upper bound.

Corollary 3 The regret of kl-UCB-CF or TS-CF at time T with ε-locally differentially
private bandit feedback corruption scheme is RegretT ≤

∑K
a=2

2 log(T )

∆a

(
eε−1
eε+1

)2 +O(
√

log (T )).

The term
(
eε−1
eε+1

)2
in the above expression conveys the relationship of the regret with the

level of local differential privacy symbolized by ε. For low values of ε,
(
eε−1
eε+1

)
≈ ε/2. This

is in-line with the regret of the stochastic bandit algorithms providing global DP given by
Mishra and Thakurta (2015, Theorem 4 and 8) which have a multiplicative factor of O(ε−1)
or O(ε−2). Tossou and Dimitrakakis (2016, Corollary 3.2 and Theorem 3.5) provided a
regret bound for a stochastic bandit algorithm achieving global DP with an additive factor
of O(ε−1). Our lower bound, given in Theorem 1, shows that such an improvement is
not expected for local differential privacy as parameters of the corruption mechanism are
featured in the (asymptotic) multiplicative factor of log(T ). It is also worthwhile to recall
that local differential privacy comes at a higher price for the user : as local DP is a more
stringent privacy notion than global DP, it is justifiable that the regret of the algorithms
providing the latter is lower than that of the algorithms providing the former.

6. Empirical Evaluation

Before delving into the empirical evaluation, we first describe a naive algorithm called,
Wrapper to be used as a baseline. This algorithm simply applies the appropriate inverse
corruption function to the received feedback values and uses the result as a substitute for
empirical reward. It then treats the corrupt bandit problem as a classical MAB problem
and solves it using any classical MAB algorithm as a black-box. It is easy to see that this
naive algorithm won’t work for the corruptions functions in which E(g−1

. (y)) 6= g−1
. (E(y)).

Even while using linear corruption functions, this algorithm gives worse performance than
the algorithms provided in this article, as can be verified below. The inferior performance
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Figure 2: Regret curves

is because this naive algorithm doesn’t take into account the variance of the sequence
generated by applying inverse corruption functions to the received feedback values.

We provide here the evaluation of the algorithms on a 10-armed Bernoulli corrupt bandit
problem. The reward means of the arms were set as follows:

µ1 = 0.9 µ2 = µ3 = · · · = µ10 = 0.8

Further experiments can be found in Appendix III.

6.1. Regret over a period of time

In this experiment, we aim to see the effect of time on the regret of kl-UCB-CF and TS-
CF. Randomized response was employed to corrupt the feedback with p00 = p11 = 0.6 for
the optimal arm, while for all the other arms, both p00 and p11 were set to 0.9. The time
horizon was varied to 105 and each experiment was repeated 1000 times. As a baseline,
we plot the regret curves for two instances of the Wrapper algorithm (denoted as WR)
with kl-UCB and TS used as the black-box subroutine respectively. To demonstrate the
inability of the traditional MAB algorithms to solve the corrupt bandit problem, we also
include the regret curves for kl-UCB ,UCB1 and TS (treating feedback as reward). The
regret curves for all the considered algorithms are given in Figure 2a. LB denotes the lower
bound given by Theorem 1. The performance superiority of the proposed algorithms for
corrupt bandits is more pronounced as the time increases.

6.2. Regret with varying level of local differential privacy

In this experiment, we vary the local differential privacy parameter and examine the effect
on the regret of kl-UCB-CF and TS-CF. We chose ε from the set {1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8}. The

corruption parameters are set by substituting the values of ε in Eq. (2). The time horizon
was fixed to 105 and the experiment was repeated 1000 times. The corresponding curves for
average regret can be seen in Figure 2b. UB indicates the upper bound given by Corollary 3.
The regret for both the algorithms decreases with increasing ε. This behavior is expected
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since, lower the value of ε, more stringent is the level of differential privacy. Towards both
the end points of the range ( ε < 1/4 and ε > 4 ), the regret tends to plateau as a change
in ε causes an infinitesimal change in the required level of differential privacy.

6.3. Regret for local and global differential privacy

For comparison, we plot the regret of kl-UCB-CF and TS-CF against the recent stochastic
bandit algorithm for global DP, DP-UCB-Int (Tossou and Dimitrakakis (2016)) for ε = 1
in Figure 2c. The comparison aims to convey how much utility, in terms of regret, is lost by
opting for local DP instead of global DP. As already mentioned, lower regret for achieving
global DP is to be expected as local DP is a much stronger notion of privacy than global
DP. For DP-UCB-Int, we chose the same values of the algorithm parameters (δ = e−10

and v = 1.1) as in the experiments given in Tossou and Dimitrakakis (2016, Section 4).

7. Elements of proofs

We denote by λ̂a(t) the empirical mean of the feedback obtained from arm a until time
t. Letting Fa,s being the successive feedbacks of arm a and λ̂a,s := 1

s

∑s
`=1 Fa,`, one has

λ̂a(t) = λ̂a,Na(t) when Na(t) > 0.

7.1. Proof of Theorem 1

To obtain a lower bound on the regret, we use a change-of-distribution argument. Let ν and
ν′ be K-armed corrupted bandit models with different optimal arms i.e. a∗(ν) 6= a∗(ν

′).
For the ease of readability, let’s assume without loss of generality that a∗(ν) = 1.

The log-likelihood ratio of the observations up to time T under ν and ν, LT (ν,ν′),

can be written as LT (ν,ν′) =
∑K

a=1

∑Na(T )
s=1 log

fλνa (Fa,s)

f
λν

′
a

(Fa,s)
where fx(·) denotes the Bernoulli

density of mean x. By Wald’s lemma, Eν [LT (ν,ν′)] =
∑K

a=1 Eν [Na(T )] · d(λνa , λ
ν′
a ).

The following lemma can be extracted from Garivier et al. (2016).

Lemma 1 Let ν and ν ′ be two bandit models with K arms and and T ∈ {0} ∪ N, then:∑K
a=1 Eν [Na(T )] · KL(λνa , λ

ν′
a ) ≥ d (Eν(Z),Eν′(Z)), where d(x, y) is the binary relative

entropy and Z ∈ [0, 1] is a random variable measurable from the past-observations filtration.

Using Lemma 1 with Z := N1(T )
T , one obtains

K∑
a=1

Eν(Na(T )) · d
(
λνa, λ

ν′
a

)
≥ d
(Eν(N1(T ))

T
,
Eν′(N1(T ))

T

)
(3)

Using the inequality d(p, q) ≥ p log(1/q)− log(2) (see Garivier et al. (2016)) yields

d
(Eν(N1(T ))

T
,
Eν′(N1(T ))

T

)
≥ Eν(N1(T ))

T
log
( T

Eν′(N1(T ))

)
− log(2)

Since a∗(ν) = 1, and a∗(ν
′) 6= 1, Eν(N1(T )) ∼ T and Eν′(N1(T )) = o(Tα) for all α ∈]0, 1].

Hence one can show that, Eν(N1(T ))
T ∼ 1 and log

(
T

Eν′ [N1(T )]

)
∼ log(T ). Equation (3)

10
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yields

lim inf
T→∞

∑K
a=1 Eν(Na(T )) · d

(
λνa , λ

ν′
a

)
log T

≥ 1. (4)

To obtain a lower bound on Eν [Na(T )] for each a ∈ {2, . . . ,K}, one can choose ν′ such
that, for some ε > 0,

µν
′
b =

{
µν1 + ε, if b = a

µνb otherwise

This translates to the following change in feedback, λν
′
b =

{
gb(µ

ν
1 + ε) if b = a,

gb(µ
ν
b ) = λνb otherwise.

As d
(
λνb , λ

ν′
b

)
= 0 for b 6= a, using equation (4) we get

lim inf
T→∞

Eν(Na(T ))

log T
≥ 1

d (λνa , ga(µ1 + ε))

Letting ε go to zero for each a ∈ {2, . . . ,K} (and assuming {ga}a∈A are continuous), one

obtains, lim infT→∞
RegretT (ν)

log(T ) ≥
∑K

a=2
∆ν
a

d(λνa ,ga(µν1 ))
.

7.2. Proof outline for Theorem 2

We defer the complete proof of Theorem 2 to Appendix I. In this subsection, we describe
the road-map for the proof. We arrive at a upper bound on the regret of kl-UCB-CF by
first bounding the number of times any suboptimal arm a is pulled by the algorithm till
horizon T , E[Na(T )]. Recall that, at any time kl-UCB-CF pulls an arm maximizing a index
defined as

Indexa(t) := max
{
q : Na(t) · d(λ̂a(t), ga(q)) ≤ f(t)

}
= max g−1

a

(
{q : Na(t) · d(λ̂a(t), q) ≤ f(t)}

)
For the purpose of this proof, we further decompose the index computation as follows:

Indexa(t) :=

{
g−1
a (`a(t)) with `a(t) := min{q : Na(t) · d(λ̂a(t), q) ≤ f(t)} if ga is decreasing,

g−1
a (ua(t)) with ua(t) := max{q : Na(t) · d(λ̂a(t), q) ≤ f(t)} if ga is increasing,

The interval [`a(t), ua(t)] is a KL-based confidence interval on the mean feedback λa of
arm a. This is in contrast to kl-UCB (Cappé et al. (2013)) where a confidence interval is
placed on the mean reward (refer Figure 3 in Appendix I for a depiction).

In our analysis, we use the fact that when arm a is picked at time t+ 1 by kl-UCB-CF,
one of the following is true. Either the mean feedback of the optimal arm 1 is outside its
confidence interval (i.e. g1(µ1) < `1(t) or g1(µ1) > u1(t)), which is unlikely, or the mean
feedback of the optimal arm is where it should be, and then the fact that arm a is selected
indicates that the confidence interval on λa cannot be too small as either (ua(t) ≥ ga(µ1))
or (`a(t) ≤ ga(µ1)). We then need to control the two terms in the decomposition of the
expected number of draws of arm a. The term regarding the “unlikely” event, is easily
bounded using the same technique as in the kl-UCB analysis, and is of order o(log(T )). To
control the second term, depending on the monotonicity of the corruption functions ga and
g1, we need to adapt the arguments in Cappé et al. (2013) to control the number of draws
of arm a, as can be seen in Appendix I.

11
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7.3. Proof outline for Theorem 3

Our proof follows the analysis of Agrawal and Goyal (2013) for classical Thompson Sam-
pling. We proceed by controlling the number of draws of each suboptimal arm a. For this
purpose, we introduce two thresholds ua and wa that satisfy λa < ua < wa < ga(µ1) if ga is
increasing and λa > ua > wa > ga(µ1) if ga is decreasing. We introduce Eλa (t) as the event
{g−1
a (λ̂a(t)) ≤ g−1

a (ua)} and Eθa(t) as the event {g−1
a (θa(t)) ≤ g−1

a (wa)}. We then upper
bound E[Na(T )] by the sum of the three terms as,

T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑
t=0

P(ât+1 = a,Eλa (t)).

Using arguments similar to Agrawal and Goyal (2013), with some adaptations, we then
show that the last two terms are of order o(log(T )). To control the first term, we prove the
following, which requires some extra technicalities compared to the original proof, as shall
be seen in Appendix II, where the full proof of Theorem 3 is given.

Lemma 2 When ga is increasing (resp. decreasing), for any u′a ∈ (ua, wa) (resp. (wa, ua)),
T−1∑
t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log(T )

d(u′a, wa)
+ 1 when T is large enough.

8. Conclusion

Both the algorithms introduced in this article, kl-UCB-CF and TS-CF provide suitable
solutions to the MAB problem with corrupted feedback, as they are proved to asymptot-
ically attain the best possible (problem-dependent) regret. Our experiments confirm the
theoretical analysis by demonstrating the superior performance of kl-UCB-CF and TS-CF.
Furthermore, we exhibit appropriate corruption matrices that achieve a desired level of lo-
cal differential privacy, and quantify their impact on the regret. These algorithms are thus
good candidates to be used in recommender systems which apply a randomized response
mechanism to protect the user privacy.

This work can be extended in many ways. In our setting, although the feedback is
corrupted, it is available at all times. In some situations however, the feedback is simply
lost. As future work, we plan to extend our problem setting to incorporate such scenarios
by making appropriate changes to the corruption process. An adversarial corruption of the
feedback can be considered too. Another possible extension is to incorporate contextual
information in the learning process. We conjecture that the invertibility condition on the
corruption functions can be relaxed for kl-UCB-CF as long as λa 6= ga(µ1) for all suboptimal
arms but it remains to be proven.
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Notations. For the proofs, we recall that λ̂a(t) is the empirical mean of the feedback
obtained from arm a until time t. Letting Fa,s being the successive feedbacks of arm a and

λ̂a,s := 1
s

∑s
`=1 Fa,`, one has λ̂a(t) = λ̂a,Na(t) when Na(t) > 0.

Appendix I. Proof of Theorem 2

Proof. The index is defined by

Indexa(t) := max
{
q : Na(t) · d(λ̂a(t), ga(q)) ≤ f(t)

}
= max g−1

a

(
{q : Na(t) · d(λ̂a(t), q) ≤ f(t)}

)

Figure 3: KL indices calculation.

For the purpose of this proof, we further decompose the computation of index as follows,

Indexa(t) :=

{
g−1
a (`a(t)) if ga is decreasing,

g−1
a (ua(t)) if ga is increasing

where,

`a(t) := min{q : Na(t) · d(λ̂a(t), q) ≤ f(t)} and ua(t) := max{q : Na(t) · d(λ̂a(t), q) ≤ f(t)}

To get an upper bound on the regret of this algorithm, we first bound E[Na(t)] for all
the non-optimal arms a. Note that, we assume 1 to be the optimal arm.

E(Na(T )) = 1 +
T−1∑
t=K

P(ât+1 = a)

Depending upon if ga and g1 are increasing or decreasing there are four possible sub-cases:

• Both g1 and ga are increasing.

(ât+1 = a)

⊆ (u1(t) < g1(µ1)) ∪ (ât+1 = a, u1(t) ≥ g1(µ1))

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
1 (u1(t)) ≥ µ1) since g1 is increasing

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
a (ua(t)) ≥ µ1) since Indexa > Index1
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= (u1(t) < g1(µ1)) ∪ (ât+1 = a, ua(t) ≥ ga(µ1)) since ga is increasing

∴ E(Na(T )) ≤ 1 +
T−1∑
t=K

P(u1(t) < g1(µ1)) +
T−1∑
t=K

P(ât+1 = a, ua(t) ≥ ga(µ1)) (5)

• g1 is decreasing and ga is increasing.

(ât+1 = a)

⊆ (`1(t) > g1(µ1)) ∪ (ât+1 = a, `1(t) ≤ g1(µ1))

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
1 (`1(t)) ≥ µ1) since g1 is decreasing

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
a (ua(t)) ≥ µ1) since Indexa > Index1

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, ua(t) ≥ ga(µ1)) since ga is increasing

∴ E(Na(T )) ≤ 1 +
T−1∑
t=K

P(`1(t) > g1(µ1)) +
T−1∑
t=K

P(ât+1 = a, ua(t) ≥ ga(µ1)) (6)

• g1 is increasing and ga is decreasing.

(ât+1 = a)

⊆ (u1(t) < g1(µ1)) ∪ (ât+1 = a, u1(t) ≥ g1(µ1))

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
1 (u1(t)) ≥ µ1) since g1 is increasing

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
a (`a(t)) ≥ µ1) since Indexa > Index1

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, `a(t) ≤ ga(µ1)) since ga is decreasing

∴ E(Na(T )) ≤ 1 +
T−1∑
t=K

P(u1(t) < g1(µ1)) +
T−1∑
t=K

P(ât+1 = a, `a(t) ≤ ga(µ1)) (7)

• g1 is decreasing and ga is decreasing.

(ât+1 = a)

⊆ (`1(t) > g1(µ1)) ∪ (ât+1 = a, `1(t) ≤ g1(µ1))

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
1 (`1(t)) ≥ µ1) since g1 is decreasing

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
a (`a(t)) ≥ µ1) since Indexa > Index1

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, `a(t) ≤ ga(µ1)) since ga is decreasing

∴ E(Na(T )) ≤ 1 +

T−1∑
t=K

P(`1(t) > g1(µ1)) +

T−1∑
t=K

P(ât+1 = a, `a(t) ≤ ga(µ1)) (8)

We first upper bound the two sums

T−1∑
t=K

P(u1(t) < g1(µ1)) and
T−1∑
t=K

P(`1(t) > g1(µ1)) (9)
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using that `1(t) and u1(t) are respectively lower and upper confidence bound on g1(µ1).
Indeed,

P(u1(t) < g1(µ1)) ≤ P
(
g1(µ1) > λ̂1(t) and N1(t)d(λ̂1(t), g1(µ1)) ≥ f(t)

)
≤ P

(
∃s ∈ {1, . . . , t} : g1(µ1) > λ̂1,s and sd(λ̂1,s, g1(µ1)) ≥ f(t)

)
≤ min{1, edf(t) log tee−f(t)},

where the upper bound follows from Lemma 2 in Cappé et al. (2013), and the fact that λ̂1,s

is the empirical mean of s Bernoulli samples with mean g1(µ1). Similarly, one has

P(`1(t) > g1(µ1)) ≤ min{1, edf(t) log tee−f(t)}.

As f(t) := log t+ 3(log log t) for t ≥ 3,

edf(t) log te ≤ 4e log2 t,

the two quantities in (9) can be upper bounded by

1 +
T−1∑
t=3

edf(t) log tee−f(t) ≤ 1 +
T−1∑
t=3

4e · log2 t · e−f(t)

= 1 + 4e
T−1∑
t=3

1

t log t

≤ 4e
( 1

3 log 3
+

∫ T−1

3

1

t log t
dt
)

≤ 4e
( 1

3 log 3
+ log (log (T − 1))− log (log 3)

)
≤ 3 + 4e log (log T ).

This proves that

T−1∑
t=K

P(u1(t) < g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (10)

T−1∑
t=K

P(`1(t) > g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (11)

We now turn our attention to the other two sums involved in the upper bound we
gave for E(Na(t)). We introduce the notation d+(x, y) = d(x, y) · 11(x<y) and d−(x, y) =
d(x, y) · 11(x>y). So we can write, when ga is increasing,

T−1∑
t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

= E

[
T−1∑
t=K

11ât+1=a · 11Na(t)·d+(λ̂i,Na(t),ga(µ1))≤f(t)

]
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≤ E

[
T−1∑
t=K

t∑
s=1

11ât+1=a · 11Na(t)=s · 11s·d+(λ̂a,s,ga(µ1))≤f(T )

]

= E
[ T−1∑
s=1

11s·d+(λ̂a,s,ga(µ1))≤f(T )

T−1∑
s=1

11ât+1=a · 11Na(t)=s︸ ︷︷ ︸
≤1

]
.

One obtains, when ga is increasing,

T−1∑
t=K

P(ât+1 = a, ua(t) ≥ ga(µ1)) ≤
T−1∑
s=1

P
(
s · d+(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (12)

Using similar arguments, one can show that when ga is decreasing,

T−1∑
t=K

P(ât+1 = a, `a(t) ≤ ga(µ1)) ≤
T−1∑
s=1

P
(
s · d−(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (13)

The quantity in the right-hand side of (12) is upper bounded in Appendix A.2. of Cappé
et al. (2013) by

f(T )

d(λa, ga(µ1)
+
√

2π

√
(d′(λa, ga(µ1)))2

(d(λa, ga(µ1)))3

√
f(T ) + 2

(
d′(λa, ga(µ1))

d(λa, ga(µ1))

)2

+ 1. (14)

For the second term, noting that d−(x, y) = d+(1− x, 1− y), one has

P
(
s · d−(λ̂a,s, ga(µ1)) ≤ f(T )

)
= P

(
s · d+(1− λ̂a,s, 1− ga(µ1)) ≤ f(T )

)
= P

(
s · d+(µ̂a,s, 1− ga(µ1)) ≤ f(T )

)
,

where µ̂a,s := 1−λ̂a,s, is the empirical mean of s observations of a Bernoulli random variable
with mean 1−λa < 1−ga(µ1). Hence, the analysis of Cappé et al. (2013) can be applied, and
using that d(1−λa, 1− ga(µ1)) = d(λa, ga(µ1)) and d′(1−λa, 1− ga(µ1)) = −d′(λa, ga(µ1)),
the left hand side of (13) can also be upper bound by (14).

Combining inequalities (10), (11) and (12),(13), (14) with the initial decomposition of
E[Na(T )] yields in all cases,

E[Na(T )] ≤ log(T )

d(λa, ga(µ1))
+
√

2π

√
d′(λa, ga(µ1))2

d(λa, ga(µ1))3

√
log(T ) + 3 log log(T )

+

(
4e+

3

d(λa, ga(µ1)

)
log log(T ) + 2

(
d′(λa, ga(µ1)

d(λa, ga(µ1)

)2

+ 5.

Hence the regret of kl-UCB-CF is upper bounded by

K∑
a=2

∆a

[ log(T )

Da
+
√

2π

√
(D′a)

2

D3
a

√
log(T ) + 3 log log(T )+

(
4e+

3

Da

)
log log(T )+2

(
D′a
Da

)2

+5
]

where Da := d(λa, ga(µ1)) and D′a := d′(λa, ga(µ1)), which concludes the proof.
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Appendix II. Proof of Theorem 3

Proof. Assume 1 to be the optimal arm. For each arm non-optimal arm a, choose two
thresholds ua and wa such that λa < ua < wa < ga(µ1) if ga is increasing and λa > ua >
wa > ga(µ1) if ga is decreasing. Define Eλa (t) as the event {g−1

a (λ̂a(t)) ≤ g−1
a (ua)} and

Eθa(t) as the event {g−1
a (θa(t)) ≤ g−1

a (wa)}. Define Ft as the history of arm selections and
received feedbacks including time t and recall that TS-CF selects the arm as follows,

ât+1 = arg max
a

θa(t)

, where θa(t) is a sample from the posterior distribution on arm a after t observations.
Define pa,t := P(g−1

1 (θ1(t)) > g−1
a (wa) | Ft).

We start from the following decomposition.

E[Na(T )] =
T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t))

+
T−1∑
t=0

P(ât+1 = a,Eλa (t))

Below are the lemmas that permit us to bound these three terms. These results generalize
to the corrupted setting the main steps of the analysis of Thompson Sampling by Agrawal
and Goyal (2013). The proofs for these lemmas follow that of the corresponding lemmas in
the aforementioned article, with some technicalities that arise from the fact that g1 and ga
may be either increasing or decreasing.

Lemma 3 P(ât+1 = a,Eθa(t), Eλa (t) | Ft) ≤ (1−pa,t)
pa,t

P(ât+1 = 1, Eθa(t), Eλa (t) | Ft)

Proof. Assume that Eλa (t) is true (otherwise the lemma holds trivially because the left
hand size is 0). Hence, it is sufficient to prove that,

P(ât+1 = a | Eθa(t),Ft) ≤
(1− pa,t)
pa,t

P(ât+1 = 1 | Eθa(t),Ft)) (15)

Define Ma(t) the event in which the index of arm a at time t is the largest among those

of all suboptimal arms: Ma(t) :=
{
g−1
a (θa(t)) ≥ g−1

j (θj(t)),∀j 6= 1
}

.

P(ât+1 = 1 | Eθa(t),Ft))
≥ P(ât+1 = 1,Ma(t) | Eθa(t),Ft))
= P(Ma(t) | Eθa(t),Ft)) · P(ât+1 = 1 |Ma(t), E

θ
a(t),Ft)) (16)

Now, given Ma(t) and Eθa(t) hold,

g−1
j (θj(t)) ≤ g−1

a (θa(t)) ≤ g−1
a (wa) ∀j 6= a, j 6= 1
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So,

P(ât+1 = 1 |Ma(t), E
θ
a(t),Ft) ≥ P(g−1

1 (θ1(t)) > g−1
a (wa) |Ma(t), E

θ
a(t),Ft)

= P(g−1
1 (θ1(t)) > g−1

a (wa) | Ft)
= pa,t (17)

From inequalities (16) and (17),

P(ât+1 = 1 | Eθa(t),Ft) ≥ pa,t · P(Ma(t) | Eθa(t),Ft) (18)

Now, let’s consider the left hand side of the inequality (15). The fact that Eθa(t) holds and
ât+1 = a implies that g−1

1 (θ1(t)) < g−1
a (θa(t)) < g−1

a (wa). Hence

P(ât+1 = a | Eθa(t),Ft)

≤ P
(
g−1

1 (θ1(t)) ≤ g−1
a (wa), g

−1
a (θa(t)) ≥ g−1

j (θj(t)), ∀j 6= 1 | Eθa(t),Ft
)

= P
(
g−1

1 (θ1(t)) ≤ g−1
a (wa) | Ft−1

)
· P
(
g−1
a (θa(t)) ≥ g−1

j (θj(t)),∀j 6= 1 | Eθa(t),Ft
)

= (1− pa,t) · P(Ma(t) | Eθa(t),Ft) (19)

From inequalities (18) and (19),

P(ât+1 = a | Eθa(t),Ft) ≤
(1− pa,t)
pa,t

P(ât+1 = 1 | Eθa(t),Ft)

Lemma 4 When ga is increasing (resp. decreasing), for any x′a ∈ ]xa, ya[ (resp. ]ya, xa[),
when T is large enough,

T−1∑
t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log(T )

d(u′a, wa)
+ 1.

Proof. When ga is increasing, the application of Lemma 3 in Agrawal and Goyal (2013)
directly yields

T−1∑
t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log T

d(ua, wa)
+ 1.

The proof is based on the use of deviation inequalities and a link between the Beta and
Binomial c.d.f. that shall also be useful in the decreasing case, that we handle now (using
slightly different arguments).

Fact 1
F betaα,β (w) = 1− FBα+β−1,w(α− 1)

Note that for decreasing ga, one has Eθa(t) = {θa(t) ≤ wa} and Eλa (t) = {λ̂a(t) > ua}.
Fix u′a such that wa < u′a < ua and let L′a(T ) = log(T )

d(u′a,wa) .

T−1∑
t=0

P
(
ât+1 = a, λ̂a(t) > ua, θa(t) ≤ wa

)
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≤ log(T )

d(u′a, wa)
+
T−1∑
t=0

P
(
ât+1 = a,Na(t) ≤ L′a(T ), θa(t) ≤ wa, λ̂a(t) > ua

)
≤ log(T )

d(u′a, wa)
+ E

T−1∑
t=0

t∑
s=L′a(T )

11(ât+1=a,Na(t)=s,θa(t)≤wa,λ̂a(t)>ua)

=
log(T )

d(u′a, wa)
+ E

T−1∑
t=0

t∑
s=L′a(T )

11(ât+1=a,Na(t)=s,λ̂a(t)>ua)P (θa(t) ≤ wa | Ft)

=
log(T )

d(u′a, wa)
+ E

T−1∑
t=0

t∑
s=L′a(T )

11(ât+1=a,Na(t)=s,λ̂a(t)>ua)F
beta
(sλ̂a(t)+1,s−sλ̂a(t)+1)

(wa)

=
log(T )

d(u′a, wa)
+ E

T−1∑
t=0

t∑
s=L′a(T )

11(ât+1=a,Na(t)=s,λ̂a(t)>ua)

(
1− FB(s+1,wa)(sλ̂a(t))

)

≤ log(T )

d(u′a, wa)
+ E

T−1∑
t=0

t∑
s=L′a(T )

11(ât+1=a,Na(t)=s,λ̂a(t)>ua)

(
1− FB(s+1,wa)(sua)

)
︸ ︷︷ ︸

As

Introducing (Xk) an i.i.d. sequence drawn from Bernoulli of mean wa, term As can be
written, for any s, .

As = P

(
s+1∑
k=1

Xk ≥ uas

)
≤ P

(
s∑

k=1

Xk ≥ uas− 1

)
= P

(
1

s

s∑
k=1

Xk ≥ ua −
1

s

)

≤ exp (−sd (ua − 1/s, wa)) ≤ exp

(
− log(T )

d(ua − 1/s, wa)

d(u′a, wa)

)
≤ 1

T
,

for large enough T , and s larger than L′a(T ) (as it holds that d(ua − 1/s, wa) ≥ d(u′a, wa)).
Finally, for T large enough,

T∑
t=1

P
(
ât = a, λ̂a(t) ≥ ua, θa(t) ≤ wa

)
≤ log(T )

d(u′a, wa)
+
T−1∑
s=0

1

T
E

T∑
t=s

11(ât+1=a,Na(t)=s)︸ ︷︷ ︸
≤1

≤ log(T )

d(u′a, wa)
+

T∑
t=1

1

T
=

log(T )

d(u′a, wa)
+ 1.

Lemma 5
∑T−1

t=0 P
(
ât+1 = a,Eλa (t)

)
≤ 1 + 1

d(ua,λa) .

Proof. This result follows from the application of Chernoff bound for the concentration
of λ̂a(t). When ga is increasing, it follows directly from the application of Lemma 2 in
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Agrawal and Goyal (2013), hence we write the proof in the decreasing case only, where we
shall justify that for ua < λa,

T−1∑
t=0

P
(
ât+1 = a, λ̂a(t) < ua

)
≤ 1

d(ua, λa)
+ 1.

Using λ̂a,s to denote the empirical mean of the s first observations from the feedback of arm
a,

T−1∑
t=0

P
(
ât+1 = a, λ̂a(t) < ua

)
= E

[
T−1∑
t=0

t∑
s=0

11(ât+1=a,Na(t)=s)11(λ̂a,s<ua)

]

= E
[ T∑
s=0

11(λ̂a,s<ua)

T∑
t=s

11(ât+1=a,Na(t)=s)︸ ︷︷ ︸
≤1

]

≤ 1 +
T−1∑
s=1

P
(
λ̂a,s < ua

)
≤ 1 +

T−1∑
s=1

exp(−sd(ua, λa))

≤ 1 +
1

d(ua, λa)
,

where the last but one inequality follows from Chernoff inequality (as ua < λa).

Lemma 6 Let τs be the instant of the s-th play of arm 1. Then there exists a function
f(s) = f(s, λ1, g1(g−1

a (µ1))) satisfying
∑∞

s=1 f(s) <∞ such that for all s,

E
[

1

pa,τs+1

]
≤ 1 + f(s).

Proof. Let w̃a := g1(g−1
a (wa)). Examining all possibilities, one can easily show that

• if g1 is increasing and ga is increasing, pa,t = P (θ1(t) > w̃a), with w̃a < λ1,

• if g1 is increasing and ga decreasing, pa,t = P (θ1(t) > w̃a), with w̃a < λ1,

• if g1 is decreasing and ga is increasing, pa,t = P (θ1(t) < w̃a), with w̃a > λ1,

• if g1 is decreasing and ga is decreasing, pa,t = P (θ1(t) < w̃a), with w̃a > λ1.

When g1 is increasing, w̃a < λ1 and

pa,τs+1 = 1− F beta(S1(τs)+1,s−S1(τs)+1)(w̃a) = FB(s+1,w̃a)(S1(τs)).

Using that S1(τs) has a binomial distribution with parameters (s, λ1) yields

E
[

1

pa,τs+1

]
=

s∑
j=0

fB(s,λ1)(j)

FB(s+1,w̃a)(j)
. (20)
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When g1 is decreasing, recall w̃a > λ1 and one has

pa,τs+1 = F beta(S1(τs)+1,s−S1(τs)+1)(w̃a) = 1− FB(s+1,w̃a)(S1(τs)).

Using again the distribution of S1(τs) yields

E
[

1

pa,τs+1

]
=

s∑
j=0

fB(s,λ1)(j)

1− FB(s+1,w̃a)(j)

Note here two simple properties of Binomial distributions: for all t ∈ N∗ and c ∈ [0, 1], for
all j ∈ {0, . . . , t},

• fB(t,c)(j) = f(t,1−c)(s− j)

• FB(t,c)(j) = 1− FB(t,1−c)(t− j − 1)

It follows that

E
[

1

pa,τs+1

]
=

s∑
j=0

fB(s,1−λ1)(s− j)
FB(s+1,1−w̃a)(s− j)

=

s∑
j=0

fB(s,1−λ1)(j)

FB(s+1,1−w̃a)(j)
, (21)

with 1− λ1 > 1− w̃a.
The proof for Lemma 4 given in Agrawal and Goyal (2013) provides an upper bound on

the quantity
s∑
j=0

fB(s,c)(j)

FB(s+1,c)(j)

whenever c is larger that d. Using this result one can bound (20) and (21) by the same
quantity:

E
[

1

pa,τs+1

]
≤

1 + 3
∆′a
, if s < 8

∆′a

1 + Θ
(

exp (−∆′a
2s/2) + 1

(s+1)∆′a
2 exp (−Das) + 1

exp (∆′a
2s/4)−1

)
, if s ≥ 8

∆′a

where ∆′a := λ1 − w̃a and Da := w̃a log w̃a
λ1

+ (1 − w̃a) log 1−w̃a
1−λ1 . Hence, Lemma 6 follows

with

f(s) :=


3

∆′a
, if s < 8

∆′a

Θ
(

exp (−∆′a
2s/2) + 1

(s+1)∆′a
2 exp (−Das) + 1

exp (∆′a
2s/4)−1

)
, if s ≥ 8

∆′a

,

that satisfies
∑∞

s=0 f(s) <∞.
One can now complete the proof of Theorem 3.

E[Na(T )] =
T−1∑
t=0

P(ât+1 = a)
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=
T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +
T−1∑
t=0

P(ât+1 = a,Eλa (t), Eθa(t))

+
T−1∑
t=0

P(ât+1 = a,Eλa (t))

≤
T−1∑
t=0

E
[

(1− pa,t)
pa,t

11(ât+1=1,Eθa(t),Eλa (t))

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

≤
T−1∑
s=0

E

[
(1− pa,τs+1)

pa,τs+1

τs+1−1∑
t=τs

11(ât+1=1)

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

=
T−1∑
s=0

E
[

1

pa,τs+1
− 1

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

≤ log T

d(u′a, wa)
+
T−1∑
s=0

f(s) +
1

d(ua, λa)
+ 2.

Fix ψ > 0. Using the monotonicity properties of the divergence function d, there exists
ua < u′a < wa in the increasing case and ua > u′a > wa in the decreasing case such that
d(u′a, wa) ≥ d(λa, ga(µ1))/(1 + ψ). For this particular choice, one obtains

E[Na(T )] ≤ (1 + ψ)
log(T )

d(λa, ga(µa))
+R(ua, u

′
a, wa),

where R(ua, u
′
a, wa) is a rest term that depends on ψ, µ1, µa, g1 and ga. The result follows

using that RegretT =
∑K

a=2 ∆aE[Na(T )].

Appendix III. Additional Empirical Evaluation

We ran the experiments mentioned in Section 6.1, 6.2 and 6.3 on 4 additional Bernoulli
corrupt bandit problems. These problems are succinctly described by the mean rewards
of their arms given in Table 1. Recall that in the experiment to compare the performance
of the algorithms over a period of time, randomized response was employed to corrupt the
feedback with p00 = p11 = 0.6 for the optimal arm, while for all the other arms, both p00 and
p11 were set to 0.9. The time horizon was varied to 105 and each experiment was repeated
1000 times. Figures 4a, 5a, 6a and 7a show the average regret of the considered algorithms.
In the second experiment aiming to see the effect of various levels of differential privacy on
the regret, we chose ε from the set {1/8, 1/4, 1/2, 1, 2, 4, 8}. The corruption parameters are
set by substituting the values of ε in Equation (2). The horizon was fixed to 105 and the
experiment was repeated 1000 times. The corresponding curve for the average regret are
given in Figures 4b, 5b, 6b and 7b. The third experiment compares the regret of kl-UCB-
CF and TS-CF with DP-UCB-Int for ε = 1 and its results are given in Figures 4c, 5c, 6c
and 7c .
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Table 1: Bernoulli mean arm rewards for experimental scenarios

Scenario
Arms

1 2 3 4 5 6 7 8 9 10

1 0.9 0.6

2 0.9 0.8

3 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

4 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
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Figure 4: Regret plots for scenario 1
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Figure 5: Regret plots scenario 2
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Figure 6: Regret plots scenario 3
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Figure 7: Regret plots scenario 4
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