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Abstract

Recently, Mahloujifar and Mahmoody (TCC’17) studied attacks against learning algo-
rithms using a special case of Valiant’s malicious noise, called p-tampering, in which the
adversary gets to change any training example with independent probability p but is lim-
ited to only choose ‘adversarial’ examples with correct labels. They obtained p-tampering
attacks that increase the error probability in the so called ‘targeted’ poisoning model in
which the adversary’s goal is to increase the loss of the trained hypothesis over a particular
test example. At the heart of their attack was an efficient algorithm to bias the average
output of any bounded real-valued function through p-tampering.

In this work, we present new biasing attacks for biasing the average output of bounded
real-valued functions. Our new biasing attacks achieve in polynomial-time the the best bias
achieved by MM16 through an exponential time p-tampering attack. Our improved biasing
attacks, directly imply improved p-tampering attacks against learners in the targeted poi-
soning model. As a bonus, our attacks come with considerably simpler analysis compared
to previous attacks. We also study the possibility of PAC learning under p-tampering
attacks in the non-targeted (aka indiscriminate) setting where the adversary’s goal is to
increase the risk of the generated hypothesis (for a random test example). We show that
PAC learning is possible under p-tampering poisoning attacks essentially whenever it is
possible in the realizable setting without the attacks. We further show that PAC learning
under ‘no-mistake’ adversarial noise is not possible, if the adversary could choose the (still
limited to only p fraction of) tampered examples that she substitutes with adversarially
chosen ones. Our formal model for such ‘bounded-budget’ tampering attackers is inspired
by the notions of (strong) adaptive corruption in secure multi-party computation.
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1. Introduction

In his seminal work (Valiant, 1984) Valiant introduced the Probably Approximately Correct
(PAC) model of learning that triggered a significant amount of work around the theory of
machine learning.1 An important characteristic of learning algorithms is their ability to cope
with noise. Valiant also initiated a study of adversarial noise (Valiant, 1985) in which each
incoming training example is chosen, with independent probability p, by an adversary. Since
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1. The original model studies learnability in a distribution-free sense, it also make sense for classes of

distributions; (Benedek and Itai, 1991).
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no assumptions are made on such modified examples, this type of noise is called malicious.
Subsequently, (Kearns and Li, 1993) essentially proved impossibility of PAC learning under
such malicious noise by heavily relying on the existence of mistakes (i.e., wrong labels) in
adversarial examples given to the learner under a carefully chosen distribution. Bshouty, et
al. (Bshouty et al., 2002) studied a closely related model in which the adversary is allowed
to make its choices based on the full knowledge of the original training examples. While
the results of (Kearns and Li, 1993) make use of particular pathological distributions from
which the malicious samples are drawn2, in this work we are interested in studying attackers
against learners in a setting where the attackers do not have any control over the the original
distributions, but they can still influence this distribution in (still restricted) ways.

Poisoning attacks. Impossibility results against learning under adversarial noise could
be seen as attacks against learners in which the attacker injects some malicious training
examples to the training set and tries to prevent the learner from finding a hypothesis
with low risk. Such attackers, in general, are studied in the context of poisoning (a.k.a
causative) attacks (Awasthi et al., 2014; Xiao et al., 2015; Shen et al., 2016) in which an
adversary aims at directing a learner towards generating a hypothesis that performs badly
during the test phase.3 Such attacks could happen naturally when a learning process hap-
pens over time (Rubinstein et al., 2009b,a) and the adversary has some noticeable chance
of injecting or substituting malicious training data in an online manner. A stronger form of
poisoning attacks are the so called targeted (poisoning) attacks (Shen et al., 2016), where
the adversary performs the poisoning attack while she has a particular test example in mind,
and her goal is to make the final generated hypothesis fail on that particular test exam-
ple. While poisoning attacks against specific learners were studied before (Awasthi et al.,
2014; Xiao et al., 2015; Shen et al., 2016), the recent work of Mahloujifar and Mahmoody
(Mahloujifar and Mahmoody, 2017) presented a generic black-box targeted poisoning attack
that could adapt to apply to any learner, so long as there is an initial error over the target.

p-tampering attacks. The work of (Mahloujifar and Mahmoody, 2017) proved their re-
sult using a special case of Valiant’s malicious noise, called p-tampering, in which the
attacker can only use mistake-free malicious noise. Namely, similar to Valiant’s model,
any incoming training example might be chosen adversarially with independent probabil-
ity p (see Definition 5 for a formalization). The difference between p-tampering noise and
Valiant’s adversarial noise (and even from all of its special cases studied before (Sloan,
1995)) is that whenever the p-tampering adversary is allowed to tamper with a particular
example, it can only choose valid tampered examples (to substitute the original examples)
that have correct labels.4 As such, although the attributes can change pretty much arbitrar-
ily in the tampered examples, the label of the tampered examples shall reflect the correct
label5. Therefore, as opposed to the general model of Valiant’s malicious noise, p-tampering

2. This is similar to (Blumer et al., 1989; Ehrenfeucht et al., 1989) that deals with the sample complexity.
3. At a technical level, the malicious noise model also allows the adversary to know the full state (and

thus the private randomness) of the learner, while this knowledge is not given to the adversary of the
poisoning attacks, who might be limited in various other ways as well.

4. This is assuming that the original training distribution only contains correct labels.
5. For example, the adversary can repeatedly present the same example to the learner, thus reducing the

effective sample size, or it can be the case that the adversary returns correct examples that are chosen
against the learner’s algorithm and based on the whole history of the examples so far.
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noise/attacks are ‘defensible’ as the adversary can always claim that a malicious training
example is indeed generated from the same original distribution from which the rest of
the training examples are generated. Similar notions of defensible attacks are previously
explored in cryptography (Haitner et al., 2010; Aumann and Lindell, 2007).

Poisoning through biasing. At the heart of the attacks of (Mahloujifar and Mahmoody,
2017) against learners was a basic p-tampering attack for biasing the average output of
bounded real-valued functions. In particular, (Mahloujifar and Mahmoody, 2017) proved
that for any (efficient) function f mapping inputs drawn from distributions like S ≡ Dn

(consisting of n iid ‘blocks’) to [0, 1], there is always an (efficient) p-tampering attacker A

who changes the input distribution S into Ŝ while increasing the average of the output by
at least 2p

3+4p · Var[f(S)] where Var[·] is the variance. (Note that the bias shall somehow
depend on Var[f(S)] since constant functions cannot be biased.) For the special case of
Boolean function f(·), or when the p-tampering attacker could be exponential time, they
could achieve a better bias of p

1+p·µ−p
·Var[f(S)] where µ = E[f(S)] is the original average of

f(S). After obtaining biasing attacks, (Mahloujifar and Mahmoody, 2017) derived their p-
tampering targeted poisoning attacks from them by biasing the average of the loss function
Loss(h(x), y) where h is the learned hypothesis and (x, y) = d is the target test.

Robustness. The robustness of a learner (Xu and Mannor, 2012; Yamazaki et al., 2007;
González and Abu-Mostafa, 2015) refers to its behavior when the test examples are drawn
from a distribution close to the training distribution but not necessary the same. The
question in that setting is how well the learned hypothesis performs on the test set. Learning
under p-tampering can be seen as a generalization of algorithmic robustness in which the
training distribution can adaptively and adversarially deviate form the testing distribution
without using wrong labels.

Evasion attacks. In the last few years neural network based architectures explored the
so-called adversarial perturbations for some correctly classified instances so that the per-
turbed instances are misclassified (Szegedy et al., 2014). Such resulting misclassified per-
turbed instances are called adversarial examples and attacks aimed at finding such examples
are called evasion attacks (Biggio et al., 2014; Nelson et al., 2012; Goodfellow et al., 2015;
Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017; Xu et al., 2017). The goal of eva-
sion attacks is quite different from poisoning attacks: in poisoning attacks the tampering
happens over the training data, while in evasion attacks no tempering to the training data
is allowed but it is allowed for the test example itself. More work has also been done toward
designing learning strategies that can achieve near optimal accuracy in presence of such
attacks (Feige et al., 2015; Mansour et al., 2014).

1.1. Our Results

Improved p-tampering biasing attacks. Our main technical result in this work is to
improve the polynomial-time p-tampering biasing attack of (Mahloujifar and Mahmoody,
2017) to achieve the bias of p

1+p·µ−p
· Var[f(S)] (where µ = E[f(S)] for S ≡ Dn and Var[·]

is the variance) in polynomial time and for real-valued bounded functions with output in
[0, 1] (see Theorem 6). This main result immediately allows us to get improved polynomial-
time targeted p-tampering attacks against learners for scenarios where the loss function is
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not Boolean (see Corollary 7). As in (Mahloujifar and Mahmoody, 2017), our attacks are
black-box and apply to any learning problem P and any learner L for P as long as L has a
non-negligible error over a specific test example d.

Special case of p-resetting attacks. The biasing attack of (Mahloujifar and Mahmoody,
2017) has an extra property that: for each block (or training example) di, if the adversary
gets to tamper with di, it either does not change di at all, or it simply ‘resets’ it by re-
sampling it from the training distribution D. In this work, we refer to such limited forms of
p-tampering attacks as p-resetting attacks. Interesingly, p-resetting attacks were previously
studied in the work of Bentov, Gabizon, and Zuckerman (Bentov et al., 2016) in the context
of (ruling out) extracting uniform randomness from Bitcoin’s blockchain (Nakamoto, 2008)
when the adversary controls p fraction of the computing power, and thus it has the chance
p of obtaining the next block, which she can discard/reset.6 (Bentov et al., 2016) showed
how to achieve bias p/12 when the original (untampered) distribution D is uniform and the
function f is Boolean and balanced.7 As a special case of p-tampering attacks, p-resetting
attacks have interesting properties that are not present in general p-tampering attacks. For
example, if the original training distribution D includes wrong labels with probability ε,
this probability will only got up to at most (1 + p) · ε = ε+ p · ε under a p-resetting attack,
while it could go up to ε + p under p tampering attacks. Motivated by special applica-
tions of p resetting attacks and their the special properties of p-resetting attacks, in this
work we also study such attacks over arbitrary block distributions D and achieve bias of
at least p

1+p·µ
· Var[f(S)], improving upon the previous bias of 2p

3+4p · Var[f(S)] proved in
(Mahloujifar and Mahmoody, 2017).

PAC learning under non-targeted poisoning. We also study the power of p-tampering
(and p-resetting) attacks in the non-targeted setting where the adversary’s goal is simply
to increase the risk of the generated hypothesis.8 In this setting, it is indeed meaningful to
study the possibility (or impossibility) of PAC learning, as the test example is chosen at
random. We show that in this model, p-tampering attacks cannot prevent PAC learnabil-
ity for ‘realizable’ settings; that is when there is always a hypothesis consistent with the
training data (see Theorem 15).

We further go beyond p-tampering attacks and study PAC learning under more powerful
adversaries who might choose the training examples that are tampered with but are still
limited to choose ≤ p ·n such examples. We show that PAC learning under such adversaries
depends on whether the adversary makes its tampering choices before or after getting to
see the original ‘honest’ sample di. We call these two class of attacks strong/weak p-budget
tampering attacks (see Definition 14). Our notions of p-budget tampering are inspired by
notions of (strong) adaptive corruption (Canetti et al., 1996; Goldwasser et al., 2015) in
cryptographic context. Our impossibility of PAC readability under strong p-budget attacks
(see Theorem 16) shows that PAC learning under ‘mistake-free’ adversarial noise is not

6. To compare the terminologies, the work of (Bentov et al., 2016) studies p-resettable sources of random-
ness, while here we study p-resetting attackers that generate such sources.

7. The running time of the p-resetting attacker of (Bentov et al., 2016) was poly(n, 2|D|) where |D| is the
length of the binary representation of any d← D, but our p-resetting attacks run in time poly(n, |D|).

8. In the targeted setting, pre-selection of the target test eliminate the ε parameter of (ε, δ)-PAC learning.
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always possible. Using our biasing attacks, we also obtain p-tampering and p-resetting
attackers that increase the failure probability of any PAC learner (see Corollary 8).

Applications beyond attacking learners. Similar to how (Mahloujifar and Mahmoody,
2017) used their biasing attacks in applications other than attacking learners, our new bi-
asing attacks can also be used to obtain improved polynomial-time attacks for biasing the
output bit of any seedless randomness extractors (Von Neumann, 1951; Chor and Goldreich,
1985; Santha and Vazirani, 1986), as well as blockwise p-tampering (and p-resetting) attacks
against security of certain cryptographic primitives (e.g., encryption, secure computation,
etc.). As in (Mahloujifar and Mahmoody, 2017), our new improved biasing attacks apply
to any joint distribution (e.g., a martingale). In this work, however, we focus on the case of
product distributions that already includes all the main applications to learning and include
all the main ideas even for the general case of random processes. We refer the reader to the
work of (Mahloujifar and Mahmoody, 2017) for such applications.

Ideas behind Our Biasing Attacks. The attacks of (Mahloujifar and Mahmoody,
2017), at a high level, were simple to describe, while their analysis were extremely com-
plicated and heavily relied on carefully chosen potential functions based on ideas from
(Austrin et al., 2014) in which authors presented a p-tampering biasing attack for the spe-
cial case of uniform Boolean blocks (i.e., D ≡ U1). Our new (polynomial time) attacks use
completely different ideas as they have a more complicated description, while the analysis
of our attacks are indeed much simpler.

Our new biasing attacks built upon ideas developed in previous work (Reingold et al.,
2004; Dodis et al., 2004; Beigi et al., 2017; Dodis and Yao, 2015; Bentov et al., 2016) in
the context of attacking deterministic randomness extractors from Santha-Vazirani sources
(Santha and Vazirani, 1986). In (Mahloujifar and Mahmoody, 2017) the authors gener-
alized the idea of ‘half-space’ sources (introduced in (Reingold et al., 2004; Dodis et al.,
2004)) to real-valued functions, using which it was shown how to find p-tampering biasing
attacks with same bias p

1+p·µ−p
·Var[f(S)] as ours using inefficient exponential time attacks.

Achieving the same bias efficiently is the main technical challenge resolved in this work.
More formally, let d≤i = (d1, . . . , di) be the first i blocks given as input to a func-

tion f (or alternatively the first i training examples, when we attack learners). Note that
some of the blocks in (d1, . . . , di) might be the result of previous tamperings. Now, sup-
pose the adversary gets the chance to determine a new value d′i for di in its p-tampering
attack (which happens with probability p) knowing only the previously generated blocks
(d1, . . . , di−1). In (Mahloujifar and Mahmoody, 2017) it was shown that there always ex-
ists some d′i (that could be found in exponential time) such that choosing it will lead to
the bias p

1+p·µ−p
· Var[f(S)]. They also showed how to choose d′i efficiently, but that re-

sulted in achieving smaller bias of 2p
3+4p · Var[f(S)]. The analysis of the efficient attacks of

(Mahloujifar and Mahmoody, 2017) involves ‘partial averages’ of f(·) defined as

f̂ [d≤i] = E
di+1,...,dn←Dn−i

[f(d1, . . . , dn)].

One of the key ideas enabling the attacks of this work is to design our attacks’ algorithms
(and not their analyses) directly based on the (unrealistic) assumption that we have access to
an oracle providing the partial averages f̂ [d≤i] of f(·). By leveraging on the oracle f̂ [d≤i] we
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design our attacks in a way that we can compute their achieved biases exactly (rather than
bounding them using potential functions as it was done in (Mahloujifar and Mahmoody,
2017)). Fortunately, although the partial averages f̂ [d≤i] are not exactly computable in
polynomial time, they can indeed be efficiently approximated within arbitrary small additive
error. As we show, our attacks are also robust to such approximation, and by using the
approximations of f̂ [d≤i] (rather than their exact values) we can still control how much bias
is achieved. See Sections A and Section A.3 for the details.

2. Preliminaries

Notation. We use calligraphic letters (e.g., D) for sets and capital non-calligraphic letters
(e.g., D) for distributions. By d← D we denote that d is sampled fromD. For a randomized
algorithm L(·), by y ← L(x) we denote the randomized execution of L on input x outputting
y. For joint distributions (X,Y ), by (X | y) we denote the conditional distribution (X |
Y = y). By Supp(D) = {d | Pr[D = d] > 0} we denote the support set of D. By TD(·) we
denote an algorithm T (·) with oracle access to a sampler for D. By D ≡ G we denote that
distributions D,G are identically distributed. By Dn we denote n iid samples from D. By
ε(n) ≤ 1

poly(n) we mean ε(n) ≤ 1
nΩ(1) and by t(n) ≤ poly(n) we mean t(n) ≤ nO(1).

A learning problem P = (X ,Y,D,H,Loss) is specified by the following components. The
set X is the set of possible instances, Y is the set of possible labels, D is a class of distributions
containing some joint distributions D ∈ D over X × Y.9 The set H ⊆ YX is called the
hypothesis space or hypothesis class. We consider loss functions Loss : Y × Y 7→ R+ where
Loss(y′, y) measures how different the ‘prediction’ y′ (of some possible hypothesis h(x) = y′)
is from the true outcome y.10 We call a loss function bounded if it always takes values in
[0, 1]. A natural loss function for classification tasks is to use Loss(y′, y) = 0 if y = y′ and
Loss(y′, y) = 1 otherwise. For a given distribution D ∈ D, the risk of a hypothesis h ∈ H
is the expected loss of h with respect to D, namely RiskD(h) = E(x,y)←D [Loss(h(x), y)].

An example s is a pair s = (x, y) where x ∈ X and y ∈ Y. An example is usually
sampled from a distribution D. A sample set (or sequence) S of size n is a set (or sequence)
of n examples. A hypothesis h is consistent with a sample set (or sequence) S if and only if
h(x) = y for all (x, y) ∈ S. We assume that instances, labels, and hypotheses are encoded
as strings over some alphabet such that given a hypothesis h and an instance x, h(x) is
computable in polynomial time.

Definition 1 (Realizability) We say that the problem P = (X ,Y,D,H,Loss) is realiz-
able, if for all D ∈ D, there exists an h ∈ H such that RiskD(h) = 0.

We can now define Probably Approximately Correct (PAC) learning. Our definition is with
respect to a given set of distributions D, and it can be instantiated with one distribu-
tion {D} = D to get the distribution-specific case. We can also recover the distribution-
independent scenario, whenever the projection of D over X covers all distributions.

9. By using joint distributions over X × Y, we jointly model a set of distributions over X and a concept
class mapping X to Y (perhaps with noise and uncertainty).

10. Natural loss functions such as the 0-1 loss or the square loss assign the same amount of loss for same
labels computed by h and c regardless of x.
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Definition 2 (PAC Learning) A realizable problem P = (X ,Y,D,H,Loss) is (ε, δ)-PAC
learnable if there is a (possibly randomized) learning algorithm L such that for every n and
every D ∈ D, it holds that PrS←Dn,h←L(S)[RiskD(h) ≤ ε(n)] ≥ 1 − δ(n). We call P simply
PAC learnable if ε(n), δ(n) ≤ 1/ poly(n), and we call it efficiently PAC learnable if, in
addition, L is polynomial time.

Definition 3 (Average Error of a Test) For a problem P = (X ,Y,D,H,Loss), a (pos-
sibly randomized) learning algorithm L, a fixed test sample (x, y) = d ← D for some dis-
tribution S over Supp(D)n (e.g., S ≡ Dn) for some n ∈ N, the average error11 of the
test example d (with respect to S,L) is defined as: ErrS,L(d) = ES←S,h←L(S)[Loss(h(x), y)].
When L is clear from the context, we simply write ErrS(d) to denote ErrS,L(d).

It is easy to see that a realizable problem P = (X ,Y,D,H,Loss) with bounded Loss is
PAC learnable iff there is a learner L (for P) such that the average of test’s average error
γ = Ed←D[ErrDn(d)] is bounded by a fixed 1/ poly(n) function for all D ∈ D.12

Poisoning Attacks. PAC learning under adversarial noise is already defined in the lit-
erature, however, poisoning attacks include broader classes of attacks. For example, a
poisoning adversary might add adversarial examples to the training data (thus, increasing
it) or remove some of it adversarially. A more powerful form of poisoning attack is the so
called targeted poisoning attacks where the adversary gets to know the targeted test exam-
ple before poisoning the training examples. More formally, suppose S = (d1, . . . , dn) is the
training examples iid sampled from D ∈ D. For a poisoning attacker A, by Ŝ ← A(S) we
denote the process through which A generates Ŝ based on S. Note that, this notation does
not specify the exact limitations of how A is allowed to tamper with S, and that is part
of the definition of A. In the targeted case, the adversary A is also given a test example
(x, y) = d ← D. So, we would denote this by writing Ŝ ← A(d,S) to emphasize that d is
the test example given as input to A. We usually use A to denote a general adversary class.
Note that a particular adversary A ∈ A might try to poison a training set S based on the
knowledge of a problem P = (X ,Y,D,H,Loss). On the other hand, because sometimes we
would like to limit adversary’s power based on the specific distribution D (e.g. by always
picking tampered data from Supp(D)). By AD ⊆ A we denote the adversary class for D.

Definition 4 (Learning under poisoning) Suppose L is a (possibly randomized) learn-
ing algorithm for problem P = (X ,Y,D,H,Loss) and A = ∪D∈DAD is an adversary class.

• PAC learning under poisoning. If problem P is realizable, then L is an (ε, δ)-
PAC learning for P under poisoning attacks of A, if for every D ∈ D, n ∈ N, and
every adversary A ∈ AD: Pr

S←Dn,Ŝ←A(S),h←L(Ŝ)
[RiskD(h) ≤ ε(n)] ≥ 1 − δ(n). PAC

learnability and efficient PAC learnability are then defined similarly to Definition 2.

• Average error under targeted poisoning. If A contains targeted poisoning at-
tackers, for a distribution D ∈ D, and an attack A ∈ AD the average error ErrADn(d)
for a test example d = (x, y) under poisoning attacker A is equal to Err

Ŝ
(d) where

Ŝ ≡ A(d, S) for S ≡ Dn.

11. The work (Mahloujifar and Mahmoody, 2017) called the same notion the ‘cost’ of d.
12. Suppose Loss(·) is bounded (i.e., always in [0, 1]). On one hand, if P is (ε, δ)-PAC learnable, then γ is

at most ε+ δ. On the other hand, L is an (
√
γ,
√
γ)-PAC learner.
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We now define the class of poisoning attacks studied in this work. Informally speak-
ing, p-tampering attacks model attackers who will manipulate the training sequence S =
(d1, . . . , dn) in an online way, meaning while tampering with di, they do not rely on the
knowledge of dj , j > i. Moreover, such attacks get to tamper with di only with indepen-
dent probability p, modeling scenarios where the tampering even is random and outside the
adversary’s choice. A crucial point about p-tampering attacks is that they always stay in
Supp(D). The formal definition follows.

Definition 5 (p-tampering/resetting attacks) The class of p-tampering attacks Ap
tam =

∪D∈DAD is defined as follows. For a distribution D ∈ D, any A ∈ AD has a (po-
tentially randomized) tampering algorithm Tam such that (1) given oracle access to D,
Tam

D(·) ∈ Supp(D), and (2) given any training sequence S = (d1, . . . , dn), the tampered
Ŝ = (d̂1, . . . , d̂n) is generated by A inductively (over i ∈ [n]) as follows:
• With probability 1− p, let d̂i = di.
• Otherwise (this happens with probability p), get d̂i ← Tam

D(1n, d̂1, . . . , d̂i−1, di).
The class of p-resetting attacks Ap

res ⊂ A
p
tam include special cases of p-tampering attacks

where the tampering algorithm Tam is restricted as follows. Either Tam(1n, d̂1, . . . , d̂i−1, di)
outputs di, or otherwise, it will output a fresh sample d′i ← D. In the targeted case, the
adversary AD and its tampering algorithm Tam are also given the final test example d0 ← D
as extra input (that they can read but not tamper with). An attacker AD is called efficient,
if its oracle-aided tampering algorithm Tam

D runs in polynomial time.

Even though one can imagine a more general definition for tampering algorithms, in all the
attacks of (Mahloujifar and Mahmoody, 2017) and the attacks of this work, the tampering
algorithms do not need to know the original un-tampered values d1, . . . , di−1. Since our
goal here is to design p-tampering attacks, we use the simplified definition above, while all
of our positive results for the stronger version in which the tampering algorithm is given the
full history of the tampering algorithm. Another subtle issue is about whether di is needed
to be given to the tampering algorithm. As already noted in (Mahloujifar and Mahmoody,
2017), when we care about p-tampering distributions of Dn, di is not necessary to be given
to the tampering algorithm Tam, as Tam can itself sample a copy from D and treat it like di.
Therefore the ‘stronger’ form of such attacks (where di is given) is equivalent to the ‘weaker’
form where di is not given. In fact, if D is efficiently samplable, then this equivalence holds
with respect to efficient adversaries (with efficient Tam algorithm) as well. In this work, for
both p-resetting and p-resetting attacks we choose to always give di to Tam. Interestingly,
as we show, if the adversary can choose the p · n locations of tampering, the weak and
strong attackers will have different powers!

3. Improved p-Tampering and p-Resetting Poisoning Attacks

In this section we study the power of p-tampering attacks in the targeted setting and improve
upon the p-tampering and p-resetting attacks of (Mahloujifar and Mahmoody, 2017). Our
main tool is the following theorem giving new improved p-tampering and p-resetting attacks
to bias the output of bounded real-valued functions.

Theorem 6 (Improved biasing attacks) Let D be any distribution, S ≡ Dn, and
f : Supp(S) → [0, 1]. Suppose µ = E[f(S)] and ν = Var[f(S)] be the average and the
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variance of f(S) respectively. For every constant p ∈ (0, 1), there is a p-tampering attack
Atam such that E

Ŝ←Atam(S)
[f(Ŝ)] ≥ µ + p·ν

1+p·µ−p
and a p-resetting attacker Ares achieving

bias of p·ν
1+p·µ

. Moreover, if D is efficiently sampleable and f(·) is efficiently computable,
then Atam (resp. Ares) could be implemented in time poly(|D| · n/ε) (where |D| is the bit
length of d← D) while achieving bias at least p·ν

1+p·µ−p
− ε (resp. p·ν

1+p·µ
− ε).

We first describe the corollaries of the above theorem. We will then describe the actual
attacks of Theorem 6. See Section A and Section A.3 for the full proof of Theorem 6.

By using our improved biasing attacks, we can obtain the following improved attacks in
the targeted setting against any learner. In particular, for any fixed (x, y) = d ← D, the
following corollary follows from Theorem 6 by letting f(S) = Eh←L(S)[Loss(h(x), y)].

Corollary 7 (Improved targeted p-tampering attacks) Let P = (X ,Y,D,H,Loss)
be a problem with a bounded loss function Loss. For any distribution D ∈ D, test example
(x, y) = d ← D, learner L, and n ∈ N, let µ = ErrD(d) be the average error of d, and

let ν = VarS←Dn

[
Eh←L(S)[Loss(h(x), y)]

]
. Then, there is a p-tampering (resp. p-resetting)

attack Atam (resp. Ares) that increases the average error µ = ErrD(d) by p·ν
1+p·µ−p

(resp.
p·ν

1+p·µ
). Moreover, if D is efficiently samplable and f,Loss are efficiently computable, then

Atam,Ares could achieve arbitrarily close biases in polynomial time.

Even if the average error µ = ErrD(d) is not small, the variance ν (see Corollary 7) could
be negligible. However, for some natural cases this cannot happen, e.g., if the loss function
Loss(·) is Boolean and L is deterministic, then ν = µ · (1− µ).

We also demonstrate the power of p-tampering and p-resetting attacks on PAC learners
by increasing the error of deterministic PAC learners. In particular, the following corollary
follows from Theorem 6 by letting f(S) = 1 if RiskD(h) ≥ ε and f(S) = 0 otherwise.

Corollary 8 (p-tampering attacks on PAC learners) For P = (X ,Y,D,H,Loss), let
D ∈ D, n ∈ N, L be a deterministic learner for P, and suppose PrS←Dn, h=L(S)[RiskD(h) ≥
ε] = δ. Then, there a p-tampering attack Atam and a p-resetting attack Ares such that

Pr
S←Dn,Ŝ←Atam(S),h=L(Ŝ)

[RiskD(h) ≥ ε] ≥ δ +
p · (δ − δ2)

1 + p · δ − p
= δ ·

(
1 + p ·

1− δ

1 + p · δ − p

)

and similarly Ares can achieve bias of p·(δ−δ2)
1+p·δ

. Moreover, if D is efficiently samplable
and both L,Loss are efficiently computable, then both Atam,Ares could be implemented in
polynomial time and make RiskD(h) ≥ 0.99 · ε happen with similar probabilities.

New biasing attacks. We now describe the high level structure of the attacks of The-
orem 6. Recall Definition 5 and that the p-tampering attacker has an internal ‘tampering’
algorithm Tam that is executed with independent probability p. Thus, we only need to
describe the relevant tampering algorithms Tam and the general attacks will be defined
accordingly. We will first describe our tampering algorithms in an ideal model where the
certain parameters (see Definition 9) of the function f are given for free by an oracle. In
Section A.3 we eliminate this idealized assumption by approximating the oracle efficiently.

Definition 9 (Function f̂) Let f : Supp(Dn) 7→ R for distribution D and some n ∈ N,
and let d≤i ∈ Supp(D)i for some i ∈ [n]. We define the following functions.

9
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• fd≤i
(·) is a function defined as fd≤i

(d≥i+1) = f(z) where z = (d≤i, d≥i+1) = (d1, . . . , dn).

• f̂ [d≤i] = Ed≥i+1←Dn−i [fd≤i
(d≥i+1)]. We also use µ = f̂ [∅] to denote f̂ [d≤0] = E[f(S)].

The key idea in both of our attacks is to design them (efficiently) based on oracle access
to f̂ . The point is that f̂ could later be approximated withing arbitrarily small 1/ poly(n)
factors, thus leading to sufficiently close approximations of our attacks. After describing
the ‘ideal’ version of the attacks, we will then make them efficient by approximating f̂ .

We describe both of the attacks using functions with range [−1,+1] instead. To get the
results of Theorem 6 we simply need to scale the parameters back appropriately.

Our Ideal p-Tam attack below, might repeat a loop indefinitely, in Section A.3, we show
that one can cut this loop after a large enough polynomial number of rounds.

Construction 1 (Ideal p-Tam):
Let D be an arbitrary distribution, and let f : Supp(D)n 7→ [−1,+1] be an arbitrary
function. For any i ∈ [n], given a prefix d≤i−1 ∈ Supp(D)i−1,13 ideal p-Tam is a p-tampering
attack defined as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
.

2. Return di with probability 1− r[d≤i], otherwise sample di ← D and go to step 1.

We now describe our p-resetting attack.

Construction 2 (Ideal p-Res):
Let D be an arbitrary distribution, and let f : Supp(D)n 7→ [−1,+1]. For any i ∈ [n], and
given a prefix d≤i−1 ∈ Supp(D)i−1, the p-Res tampering algorithm works as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

2+p·(1+f̂ [d≤i−1])
.

2. With probability 1− r[d≤i] output the given di.
3. Otherwise sample d′i ← D (i.e., ‘reset’ di) and return d′i.

See Section A for full proof of Theorem 6 using attacks of Constructions 1 and 2.

4. Feasibility of PAC Learning under (Variants of) p-Tampering Attacks

In this section, we study the non-targeted case where PAC learning could be defined.
We show that realizable problems that are PAC learnable (without attacks), are usually
PAC learnable under p-tampering attacks as well. Essentially we bound the probability of
some bad event happening (see Definition 11) in a manner similar to Occam algorithms
(Blumer et al., 1987) by relying on the realizability assumption and relying on the specific
property of the p-tampering attacks. In particular, we crucially rely on the fact that any
p-tampering distribution D̂ of a distribution D contains a (1 − p) · D measure in itself.
In fact, we show (see Theorem 16) that in a close scenario to p-tampering in which the
adversary can choose the (≤ p fraction of the) tampering locations, PAC learning might
suddenly become impossible. This shows that the ‘mistake-free’ nature of p-tampering is
indeed not enough for PAC learnability.14

13. Note that here di is the ‘original’ untampered value for block i, while d1, . . . , di−1 might be the result of
tampering.

14. We note that bounded-budget noise and in fact malicious has also been discussed outside of PAC learning;
e.g., (Angluin et al., 1997) in the membership query model of Angluin (Angluin, 1987).

10
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Definition 10 For problem P = (X ,Y,D,H,Loss), distribution D ∈ D, and training se-
quence S = ((x1, y1), . . . , (xn, yn)) ← Dn, we say that the event Badε(D,S) holds, if there
exists an h ∈ H such that h(xi) = yi for every i ∈ [n] and RiskD(h) > ε.

Definition 11 (Special PAC Learnability) A realizable problem P = (X ,Y,D,H,Loss)
is called special (ε(n), δ(n))-PAC learnable if for all D ∈ D, n ∈ N, PrS←Dn [Badε(D,S)] ≤
δ(n). Special (ε(n), δ(n))-PAC learnability under poisoning attacks is defined similarly,
where the inequality holds for every A ∈ AD tampering with the training set Ŝ ← A(S).

It is easy to see that if P is special (ε(n), δ(n))-PAC learnable, then it is (ε(n), δ(n))-
PAC learnable through a ‘canonical’ learner L who simply finds and outputs a hypothesis h
consistent with the training sample set S. Such an h always exists due to the realizability
assumption. In fact, many efficient PAC learning results follow this very recipe.15 That
motivates our next definition.

Definition 12 (Efficient Realizability) We say that the problem P = (X ,Y,D,H,Loss)
is efficiently realizable, if there is a polynomial-time algorithm M , such that for all D ∈ D,
and all S ← Dn, M(S) outputs some h ∈ H such that RiskD(h) = 0.

Theorem 13 (PAC learning under p-tampering) For any p ∈ (0, 1), if a realizable
problem P = (X ,Y,D,H,Loss) is (ε(n), δ(n))-special PAC learnable, then for any q ∈ (0, 1−
p), P is also (ε′(m), δ′(m))-special PAC learnable under p-tampering poisoning attacks for
ε′(m) = ε(m·(1−p−q)), δ′(m) = e−2m·q

2
+δ(m·(1−p−q)). Thus, if P is efficiently realizable

and special PAC learnable, then P is also efficiently PAC learnable under p-tampering.

Proof Suppose we sample S ← Dm. By a Chernoff bound, an adversary that tampers
with each of the examples in S independently with probability p, will not change more than
a p + q fraction of the elements of S except with probability at most e−2mq2 . Thus, with
high probability, at least (1− p− q) ·m ≥ n examples in the tampered training sequence Ŝ
are sampled from D without any control from the adversary. Since P is special (ε(n), δ(n))-
PAC learnable, with probability at least 1 − δ(n), these n ‘untampered’ examples from D
will eliminate any hypothesis with risk larger than ε. Since the tampered sequence Ŝ of a
p-tampering attack is in Supp(D)n, due to realizability, there is at least one h such that
RiskD(h) = 0. Hence, the learner can still find and output at least one h ∈ H for which
RiskD(h) ≤ ε. If further, P is efficiently realizable, h can be found in polynomial time.

Bounded Budget Attackers. A p-tampering attacker does not have a control over which
training examples become tamperable, and they each become so with independent probabil-
ity p. Here we define two types of tampering attackers who do have control over which exam-
ples they tamper with, yet with a ‘bounded budged’ limiting the number of such instances.
Our definitions are inspired by the notions of adaptive corruption (Canetti et al., 1996)

15. For example, properly learning monomials (Valiant, 1984), or using 3-CNF formulae to learn 3-term
DNF formulae (Pitt and Valiant, 1988); the latter is an example of realizable but not proper learning.
As an example where the realizability assumption does not necessarily hold, see e.g., (Diochnos, 2016),
for learning monotone monomials under a class of distributions - including uniform.

11
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and strong adaptive corruption defined by Goldwasser, Kalai, and Park (Goldwasser et al.,
2015) in the secure multi-party (coin-flipping) protocols.

Definition 14 (p-budget tampering) The class of strong p-budget tampering attacks
Ap

bud = ∪D∈DAD is defined as follows. For D ∈ D, any A ∈ AD has a (randomized)
tampering algorithm Tam such that:

1. Given oracle access to D, TamD(·) always outputs something in Supp(D).
2. Given any training sequence S = (d1, . . . , dn), the tampered output Ŝ = (d̂1, . . . , d̂n)

is generated by A inductively (over i ∈ [n]) as d̂i ← Tam
D(1n, d̂1, . . . , d̂i−1, di).

3. The number of location i where Tam changes di is bounded: |{i | di 6= d̂i}| ≤ p · n.
Weak p-budged tampering attacks are defined similarly, with the following difference. The
tampering circuit’s execution Tam

D(1n, d̂1, . . . , d̂i−1, d1, . . . , di−1) is not given di, but it could
either output d̂i ∈ Supp(D) or a special symbol ⊥, in which case AD will choose d̂i = di.

In Theorem 15, we extend Theorem 13 and prove that PAC learning is possible under weak
p-budget poisoning attacks. This positive result holds even if the tampering algorithm
is given all the history of tampered and untampered blocks (i.e., it is given given input
(1n, d̂1, . . . , d̂i−1, d1, . . . , di)). See Section B for a proof.

Theorem 15 (PAC learning under weak p-budget attacks) For any p ∈ (0, 1), if a
realizable problem P = (X ,Y,D,H,Loss) is (ε(n), δ(n))-special PAC learnable, then, P is
also (ε(n · (1− p)), δ(n · (1− p)))-special PAC learnable under weak p-budget tampering.

In contrast to Theorem 15, the following theorem shows that, in general, PAC learning
(of PAC learnable problems) is not possible under strong p-budget poisoning attacks.

Theorem 16 (Impossibility of PAC learning under strong p-budget tampering)
For any constant p ∈ (0, 1), there is a problem P = (X ,Y,D,H,Loss) that is PAC learnable
(when no attack happens), but it is not PAC learnable under strong p-budget tampering.

Proof Suppose X = [k] for a constant k where 1/p < k ≤ 2/p. (Such integer k exists
because p < 1 implies 2/p − 1/p > 1.) Let Y = {0, 1}, and suppose D consists of all
(x, c(x))x←X where x← X is the uniform sample from X and c is an an arbitrary function
(concept) in YX , H contains all of YX , and Loss(b0, b1) = |b0 − b1| is natural for classifiers.

PAC learnability of P trivially follows from the fact that |X | = k is finite. Therefore,
enough samples will reveal the concept function c (defined through D) completely. On the
other hand, consider two concepts c0, c1 where c0(x) = 0 for all x ∈ [k], and c1(x) = 0 for
all x ∈ [k − 1] and c1(k) = 1. Let D0 ≡ (U, c0(U)). Consider the following strong p-budget
tampering attacks AD for D ∈ {D0, D1}: whenever di = (k, b) for b ∈ {0, 1}, AD substitutes
di with d̂i = (0, 0). If AD manages to tamper with all di = (k, b) examples, then the (tam-
pered) training examples would be identically distributed for both cases of D0, D1. On the
other hand, the probability that AD runs out of its p ·n tampering budget is 2Ω(−n) which is
at most o(n) for sufficiently larger n. Therefore, if there is any (ε(n), δ(n)) PAC learning for
P under such strong p-tampering attacks, it would require ε(n)+δ(n) ≥ Ω(1/k) ≥ Ω(1/p).
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Appendix A. Full Proof of Theorem 6

In this section we prove Theorem 6.

A.1. Proving Theorem 6 for the p-Tampering Case

Here we prove that Construction 1 does have the properties stated for the p-tampering
attack of Theorem 6 when we have access to the idealized oracle. In Section A.3 we remove
this assumption by approximating the idealized oracle efficiently. All the notation below is
with respect to Construction 1.

Proposition 17 Ideal p-Tam attack is well defined. Namely, r[d≤i] ∈ [0, 1] for all d≤i ∈
Supp(D)i.

Proof Both f̂ [d≤i], f̂ [d≤i−1] are in [−1, 1]. Therefore 0 ≤ 1− f̂ [d≤i] ≤ 2 and 3− p− (1−
p) · f̂ [d≤i−1] ≥ 2 which implies 0 ≤ r[d≤i] ≤ 1.

In the following, let Atam be the p-tampering adversary using tampering algorithm Ideal
p-Tam.16

Claim 1:
Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed on S ≡ Dn

using ideal p-Tam tampering algorithm. For every prefix d≤i ∈ Supp(D)i we have:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
=

2− p · (1− f̂ [d≤i])

2− p · (1− f̂ [d≤i−1])
.

Proof During its execution, ideal p-Tam keeps sampling examples and rejecting them until
a sample is accepted. For ℓ ∈ N we define Rℓ to be the event that is true if the ℓ’th sample
in the tampering algorithm is rejected, conditioned on reaching the ℓth sample. We have

Pr[Rℓ] =
∑

di

Pr[D = di] ·

(
1− f̂ [d≤i]

3− p− (1− p) · f̂ [d≤i−1]

)

=

∑
di
Pr[D = di] · (1− f̂ [d≤i])

3− p− (1− p) · f̂ [d≤i−1]

=
1− f̂ [d≤i−1]

3− p− (1− p) · f̂ [d≤i−1]
.

16. Therefore, AD, inductively runs p-Tam over the current sequence with probability p. See Definition 5.
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Let c[d≤i−1] =
1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
. Then we have

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·



∞∑

j=0

(1− r[d≤i]) ·

j∏

ℓ=1

Pr[Rℓ]




= 1− p+ p ·



∞∑

j=0

(1− r[d≤i]) · c[d≤i−1]
j




= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)

=
2− p+ p · f̂ [d≤i]

2− p+ p · f̂ [d≤i−1]
.

The following corollary follows from Claim 1 and induction.

Corollary 18 By applying the attack Atam based on ideal p-Tam tampering algorithm, the
distribution after the attack would be as follows

Pr[Ŝ = z] =
2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z].

Corollary 19 The p-tampering attack Atam (based on Ideal p-Tam tampering algorithm)
biases f(·) by p·ν

2−p+p·µ
where µ = E[f(S)], ν = Var[f(S)].

Proof It holds that E[f(Ŝ)] is equal to:

∑

z∈Supp(D)n

Pr[Ŝ = z] · f(z) =
∑

z∈Supp(D)n

2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z] · f(z)

=
2− p

2− p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2− p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)2




=
(2− p) · µ

2− p+ p · µ
+

p · (ν + µ2)

2− p+ p · µ
= µ+

p · ν

2− p+ p · µ
.

A.2. Proving Theorem 6 for the p-Resetting Case

Here we prove that Construction 2 does have the properties stated for the p-resetting attack
of Theorem 6 when we have access to the idealized oracle. In Section A.3 we remove this
assumption by approximating the idealized oracle efficiently. All the notation below is with
respect to Construction 2.

17
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Proposition 20 Ideal p-Res algorithm is well defined. I.e., r[d≤i] ∈ [0, 1] for all d≤i ∈
Supp(D)i.

Proof We have f̂ [d≤i] ∈ [−1,+1] and f̂ [d≤i−1] ∈ [−1,+1]. Therefore 0 ≤ 1 − f̂ [d≤i] ≤ 2
and 2 + p · (1 + f̂ [d≤i−1]) ≥ 2 which implies 0 ≤ r[d≤i] ≤ 1.

In the following let Ares be the p-tampering adversary using ideal p-Res. (See Definition 5.)

Claim 2:
Let Ŝ = (D̂1, . . . , D̂n) be the distribution after the attack Ares (using ideal p-Res tampering
algorithm) is performed on S ≡ Dn. For all d≤i ∈ Supp(D)i it holds that:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
=

2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

Proof We define R0 to be the event that is true if the given sample is rejected. We have

Pr[R0] =
∑

di

Pr[D = di] ·

(
1− f̂ [d≤i]

2 + p · (1 + f̂ [d≤i−1])

)

=

∑
di
Pr[D = di] · (1− f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])

=
1− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])
.

Therefore, we conclude that:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p · (1− r[d≤i] + Pr[R0])

= 1− p+ p ·

(
1 +

f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)

= 1 + p ·

(
f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)

=
2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

The following corollary follows from Claim 2 and induction.

Corollary 21 By applying attack Ares (using ideal p-Res), the distribution after the attack
is:

Pr[Ŝ = z] =
2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z].

Corollary 22 The p-resetting attack Ares (using ideal p-Res) biases the function by p·ν
2+p+p·µ

where µ = E[f(S)], ν = Var[f(S)].
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Proof It holds that µ̂ = E[f(Ŝ)] is equal to:

∑

z∈Supp(D)n

Pr[Ŝ = z] · f(z) =
∑

z∈Supp(D)n

2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z] · f(z)

=
2 + p

2 + p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2 + p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)2




=
(2 + p) · µ

2 + p+ p · µ
+

p(ν + µ2)

2 + p+ p · µ
= µ+

p · ν

2 + p+ p · µ
.

A.3. Approximating the Ideal Attacks in Polynomial Time

In this subsection, we describe the efficient version of the attacks of Theorem 6 and prove
their properties. We first describe the efficient version of our p-resetting attack, where
achieving efficiency is indeed simpler. We then go over the efficient variant of our p-
tampering attack. In both cases, we describe the modifications needed for the tampering
algorithms and it is assumed that such tampering algorithms are used by the main efficient
attackers (see Definition 5).

A.3.1. Efficient p-Resetting Biasing

The p-resetting attack of Construction 2 is not efficient since it needs oracle access to the
idealized oracle providing partial averages. In general, we can not compute such averages
exactly in polynomial time, however in order to make those attacks efficient, we can rely on
approximating the partial averages and consequently the corresponding rejection probabili-
ties. To get the efficient version of the attack of Construction 2 we can pursue the following
idea. For every prefix d≤i, the efficient attacker first approximates the partial average f̂ [d≤i]

by sampling a sufficiently large polynomial number of random continuations d
(1)
≤n−i, . . . d

(ℓ)
≤n−i

and getting the average Ej∈[ℓ][f(d≤i, d
(j)
≤n−i] as an approximation for the partial average. By

Hoeffding inequality, this average is a good approximation of f̂ [d≤i] with exponentially high
probability. Consequently, the rejection probabilities can be approximated well making the
final distributions statically close to the distribution of the ideal attack, meaning that the
amount of bias is close to the ideal bias as well.

Now we formalize the ideas above.

Definition 23 (Semi-ideal oracle f̃ [·]) For distribution D, if for all d≤i ∈ Supp(D)i we
have f̃ε[d≤i] ∈ f̂ [d≤i]± ε, then, we call f̃ε[·] an ε-approximation of f̂ [·]. For simplicity, and
when it is clear from the context, we simply write f̃ [·] and call it a semi-ideal oracle.

The following lemma immediately follows from the Hoeffding inequality.

Lemma 24 (Approximating f̂ [·] efficiently) Consider an algorithm that on inputs d≤i
and ε performs as follows where ℓ = −10 ln(ε/2)/ε2.
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1. Sample (d1≤n−i, . . . , d
ℓ
≤n−i)← (Dn−i+1)ℓ.

2. Output f̃ε[d≤i] = Ej∈[ℓ] f(d≤i, d
j
≤n−i).

Then it holds that Pr[|f̃ε[d≤i]− f̂ [d≤i]| ≥ ε] ≤ ε.

The above lemma implies that if f is efficiently computable and D is efficiently sam-
plable, any q-query algorithm can approximate the semi-ideal oracle f̃ [·] in time poly(q ·n/ε)
and total error (of failing in one of the queries) by at most ε. Based on this efficient ap-
proximation of f̃ [·], we now describe our efficient version of the Ideal p-Res attack in the
semi-ideal oracle model of f̃ [·], by essentially using the semi-ideal oracle f̃ [·] instead of the
ideal oracle f̂ [·].

Construction 3 (Efficient p-Res):
Efficient p-Res is the same as ideal p-Res of Construction 2 but it calls the semi-ideal oracle
f̃ε[·] instead of the ideal oracle f̂ [·].

In the following we analyze the bias achieved by the Efficient p-Res algorithm. We
simply pretend that all the queries to the semi-ideal oracle are within ±ε approximation
of the ideal oracle, knowing that the error of ε-approximating all of the queries is itself at
most ε and can affect the average also by at most O(ε). First we show that the rejection
probabilities are approximated well.

Lemma 25 Let r[.] and r̃[.] respectively be the rejection probabilities of the Ideal and
Efficient p-Res. Then, for every d≤i ∈ Supp(D)i we have |r[d≤i]− r̃[d≤i]| ≤ O(ε).

Proof Let p′ ∈ p± ε, q′ ∈ q ± ε for p, q ∈ (0, 1). We first show that p′

1+q′
∈ p

1+q
±O(ε).

∣∣∣∣
p′

1 + q′
−

p

1 + q

∣∣∣∣ =
∣∣∣∣
p′ − p+ p′ · q − p · q′

(1 + q) · (1 + q′)

∣∣∣∣ ≤
∣∣p′ − p+ p′ · (q − q′) + q′ · (p′ − p)

∣∣ ≤ 3 · ε

Now using this general statement we conclude that |r[d≤i]− r̃[d≤i]| ≤ 3 · ε.

Now we want to argue that when we approximate the p-resetting tampering algorithm’s
rejection probabilities as proved in Lemma 25, it leads to ‘close probabilities’ of sampling
final outputs. We prove the following general lemma that will be also useful for the case of
Efficient p-Tam attack. For the case of p-resetting, we only need the special case of k = 1.

Notation. For p ∈ [0, 1] and distributions X,Y , by Z ≡ (1 − p)X + pY we denote the
distribution Z in which we sample from X with probability 1− p, and otherwise (i.e., with
probability p) we sample from Y .

Definition 26 ((p, k, ρ)-variations) For any distribution D, function ρ : Supp(D)→ [0, 1],
and k ∈ N, the (p, k, ρ)-variation of D is Dp,k,ρ ≡ (1 − p)D + pZ, where Z is defined as
follows.

1. Sample (d1, . . . , dk)← Dk.
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2. Sequentially go over d1, . . . , dk, and with probability ρ[di] return di and exit.

3. If nothing was returned after reading all the k samples, return a fresh sample dk+1 ←
D.

Lemma 27 (Implication of approximating rejection probabilities) Let D be a dis-
tribution and ρ : Supp(D) → [0, 1] and ρ′ : Supp(D) → [0, 1] be two functions such that
∀d ∈ Supp(D), |ρ(d) − ρ′(d)| ≤ ε. Then, for every k ∈ N and every d ∈ Supp(D), it holds
that ∣∣∣∣ln

(
Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤
p

1− p
· (k2 + k) · ε.

Before proving the lemma above, we note that it indeed implies that the max divergence
(Dwork et al., 2010) of Dp,k,ρ and Dp,k,ρ′ is at most O(k2 · ε).
Proof Let a = Ed←D[ρ(d)] and a′ = Ed←D[ρ

′(d)]. We have

Pr[Dp,k,ρ = d]

Pr[D = d]
= (1− p) + p · ((1− a)k +

∑

i∈[k−1]

ρ(d) · (1− a)i).

With a similar calculation for Pr[Dp,k,ρ′ = d] we get

Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]
=

(1− p) + p · ((1− a)k +
∑

i∈[k−1] ρ(d) · (1− a)i)

(1− p) + p · ((1− a′)k +
∑

i∈[k−1] ρ(d) · (1− a′)i)

= 1 +
p · ((1− a)k − (1− a′)k +

∑
i∈[k−1] ρ(d) · (1− a)i − ρ′(d) · (1− a′)i)

(1− p) + p · ((1− a′)k +
∑

i∈[k−1] ρ(d) · (1− a′)i)

≤ 1 +
p · (k · ε+

∑
i∈[k−1](2i+ 1) · ε)

1− p

= 1 +
p

1− p
(k2 + k) · ε

≤ e
p

1−p
(k2+k)·ε

.

Similarly, we have
Pr[Dp,k,ρ′=d]

Pr[Dp,k,ρ=d] ≤ e
p

1−p
(k2+k)ε

which implies that

∣∣∣∣ln
(
Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤
p

1− p
· (k2 + k) · ε.

The following lemma states that the averages of a function over two distributions that
are ‘close’ (under max divergence) are indeed close real numbers.

Lemma 28 Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two joint distributions such
that Supp(X) = Supp(Y ) and for every prefix x≤i such that Pr[Xi = xi|x≤i−1] > 0, we have

∣∣∣∣ln
(
Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣ ≤ ε.
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Then, for any function f : Supp(X)→ [−1,+1] we have

E[f(X)] ≥ E[f(Y )]− eε·n + 1.

Proof First, we note that for every x ∈ Supp(X) it holds that

∣∣∣∣ln
(
Pr[X = x]

Pr[Y = x]

)∣∣∣∣ =

∣∣∣∣∣∣

∑

i∈[n]

ln

(
Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣∣∣
≤ n · ε.

Now we can show that E[f(Y )]−E[f(X)] is equal to

∑

x∈Supp(X)

(Pr[Y = x]− Pr[X = x]) · f(x)

≤
∑

x∈Supp(X)

|(Pr[Y = x]− Pr[X = x]) · f(x)|

≤
∑

x∈Supp(X)

∣∣∣∣min(Pr[X = x],Pr[Y = x]) ·

(
max(Pr[X = x],Pr[Y = x])

min(Pr[X = x],Pr[Y = x])
− 1

)
· f(x)

∣∣∣∣

≤ (en·ε − 1) ·
∑

x∈Supp(X)

|min(Pr[X = x],Pr[Y = x]) · f(x)| ≤ en·ε − 1.

Putting things together. Now we show how to choose the parameters of the Efficient
p-Res. Suppose ε′ is the parameter of Theorem 6. If we choose ε as the parameter of our
attack we can bound the final bias as follows. Firstly, if the approximation algorithm of
Lemma 24 gives us a semi-ideal oracle f̃ε[.], then based on Lemma 25 we can approximate
the rejection probabilities with error at most O(ε). Then based on Lemma 27 the attack Ares

that uses efficient p-Res generates a distribution that is O( p
1−p · ε)-close to the distribution

of the attack Ares that uses ideal p-Res. Now we can use Lemma 28 (for k = 1) to argue

that bias of efficient adversary is (e
O(n·ε· p

1−p
)− 1)-close to bias of ideal adversary. Also note

that, if the approximation algorithm fails to provide a semi-ideal oracle for all queries, then
bias of efficient attack is at least −2 because the function range is [−1,+1]. However, the
probability of this event is bounded by O(n ·ε) because adversary needs at most 2n number
of queries to f̃ . Therefore, the difference of bias of efficient and ideal adversary is at most

O(n · ε) + e
O(n·ε· p

1−p
) − 1 which is at most O(n · ε+ n · ε · p

1−p) if the exponent in e
O(n·ε· p

1−p
)

is at most 1. As a result, if we choose ε = o(ε′/(n · p
1−p)) = o(ε′ · (1 − p)/(n · p)), we can

indeed guarantee that bias of efficient adversary is ε′-close to bias of ideal adversary.

A.3.2. Efficient p-Tampering Biasing

Building upon the ideas developed above to make our Ideal p-Res tampering algorithm
polynomial time, here we focus on our Ideal p-Tam attack. We start by describing a variant
of the original attack of Construction 1 where we cut the rejection sampling procedure after
k iterations.
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Construction 4 (Ideal k-cut p-Tam):
Ideal k-cut p-Tam is the same as ideal p-Tam of Construction 1 but it is forced to stop and
return a fresh sample if the first k samples were rejected.

Now we show that the new modified attack of Construction 4 will lead to a close distribution
compared to the original attack of Construction 1.

Lemma 29 Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed
on S ≡ Dn using ideal p-Tam tampering algorithm. Also, let Ŝ′ = (D̂′1, . . . , D̂

′
n) be the

joint distribution after Atam attack is performed on S using Ideal k-cut p-Tam tampering
algorithm. For every prefix d≤i ∈ Supp(D)i:

∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2 · (2− p)k−1
.

Proof Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
and c[d≤i−1] =

1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
as it was defined in

proof of Claim 1. We have

Pr[D̂′i = di | d≤i−1]

Pr[D = di]
= (1− p) + p ·


(c[d≤i−1])

k +
∑

j∈[k−1]

(1− r[d≤i]) · (1− c[d≤i)]
j)




= (1− p) + p ·

(
(c[d≤i−1])

k +
(1− r[d≤i]) · (1− c[d≤i−1]

k)

1− c[d≤i−1]

)
.

Also, in the proof of Claim 1 we showed that

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)
.

Therefore, we conclude that

Pr[D̂′i = di | d≤i−1]

Pr[D̂i = di | d≤i−1]
=

(1− p) + p ·
(
(c[d≤i−1])

k +
(1−r[d≤i])·(1−c[d≤i−1]

k)
1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

)

= 1 +
p ·
(
(r[d≤i]−c[d≤i−1])·c[d≤i−1]

k

1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

) .

We also know that c[d≤i−1] ≤
1

2−p because f̂ [d≤i−1] ∈ [−1,+1]. So we have

Pr[D̂′i = di | d≤i−1]

Pr[D̂i = di | d≤i−1]
= 1 +

p ·
(
(r[d≤i]−c[d≤i−1])·c[d≤i−1]

k

1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

)

≤ 1 +
p · c[d≤i−1]

k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2(2− p)k−1
≤ e

p

(1−p)2(2−p)k−1 .
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Also for the inverse ratio, we have

Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di | d≤i−1]
= 1 +

p ·
(
(c[d≤i−1]−r[d≤i])·c[d≤i−1]

k

1−c[d≤i−1]

)

(1− p) + p ·
(
(c[d≤i−1])k +

(1−r[d≤i])·(1−c[d≤i−1]k)
1−c[d≤i−1]

)

≤ 1 +
p · c[d≤i−1]

k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2(2− p)k−1
≤ e

p

(1−p)2(2−p)k−1 .

Therefore, we can finally conclude that

∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2(2− p)k−1
.

Lemma 30 Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed
on S ≡ Dn using ideal p-Tam tampering algorithm. Also, let Ŝ′ = (D̂′1, . . . , D̂

′
n) be the

joint distribution after Atam attack is performed on S using Ideal k-cut p-Tam tampering
algorithm where k = ln(2−p)−2 ln((1−p)ε)

ln(2−p) . Then:

E[f(Ŝ′)] ≥ E[f(Ŝ)]− en·ε + 1.

Proof Using Lemma 29, for every prefix d≤i ∈ Supp(D)i we have:

∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2(2− p)k−1
≤ ε.

Now, using Lemma 28 we get E[f(Ŝ′)] ≥ E[f(Ŝ)]− en·ε + 1.

We can now describe the actual efficient variant of our Ideal p-Tam attack.

Construction 5 (Efficient k-cut p-Tam):
Efficient k-cut p-Tam is the same as Ideal k-cut p-Tam of Construction 4 but it it calls the
semi-ideal oracle f̃ε[·] instead of the ideal oracle f̂ [·].

Lemma 31 Let r[.] and r̃[.] respectively be the rejection probabilities of the Ideal and
Efficient k-cut p-Tam. Then, for every d≤i ∈ Supp(D)i we have |r[d≤i]− r̃[d≤i]| ≤ O(ε).

The proof of above Lemma is similar to the proof of Lemma 25.
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Putting things together. Now we show how to choose the parameters of the Efficient
k-cut p-Tam. Suppose ε′ is the parameter of Theorem 6. If we choose ε as the parameter of
our attack we can bound the final bias as follows. Firstly, if the approximation algorithm of
Lemma 24 gives us a semi-ideal oracle f̃ε[.], then based on Lemma 31 we can approximate
the rejection probabilities with error at most O(ε). Then based on Lemma 27 the attack
Atam that uses efficient k-cut p-Tam generates a distribution that is O( p

1−p · k
2 · ε)-close to

the distribution of the attack Atam that uses ideal k-cut p-Tam. Now we can use Lemma 28

to argue that bias of efficient adversary is
(
e
O(n·ε·k2· p

1−p
)−1

)
-close to bias of ideal adversary.

Also note that, if the approximation algorithm fails to provide a semi-ideal oracle for all
queries, then bias of efficient attack is at least −2 because the function range is [−1,+1].
However, the probability of this event is bounded by O(k ·n · ε) because adversary needs at
most (k+1) ·n number of queries to f̃ . Therefore, the difference of bias of efficient and ideal

adversary is at most O(k ·n · ε)+e
O(k2·n·ε· p

1−p
)−1 which is at most O(n · ε+k2 ·n · ε · p

1−p) if

the exponent in eO(k2·n·ε· p

1−p
) is at most 1. As a result, if we choose ε = o(ε′/(k2 ·n · p

1−p)) =

o(ε′ · (1− p)/(k2 · n · p)), we can indeed guarantee that bias of efficient adversary (that uses
efficient k-cut p-Tam tampering algorithm) is ε′-close to bias of ideal adversary (that uses
ideal k-cut p-Tam). Now we want to select our other parameter k. Based on Lemma 30, if

we choose k = ω( ln((1−p)ε
′)

ln(2−p) ) the bias of attack Atam that uses ideal k-cut p-Tam would be

ε′-close to the bias of attack Atam that uses ideal p-Tam. Therefore, the bias of the Atam

that uses efficient k-cut attack is 2 · ε′-close to the bias of Atam that uses ideal p-Tam.

Appendix B. Proof of Theorem 15

Proof Intuitively, in any weak p-budget tampering attack, the adversary can choose the
locations of the tampering but has no control over the sampled di when di is not tampered
with.17 More formally, compare the actual attack to the following ‘ideal’ experiment. In
the ideal experiment, we first choose m = n · (1 − p) samples e1, . . . , em ← D before even
running the adversary. Then, we run the adversary AD who internally runs the tampering
algorithm Tam inductively as follows. We let a counter initially ℓ = 0 counting how many
of ei’s we have used so far. For every i ∈ [n], if TamD(1n, d̂1, . . . , d̂i−1, d1, . . . , di−1) out-
puts ⊥, then we increase ℓ by one choose the next eℓ, and if ℓ > m we simply use a fresh
di ← D. It is easy to see that this ideal execution is statistically identical to the real attack
experiment. On the other hand, because AD has is p-budget, Tam will output ⊥ at least
n · (1− p) times, meaning that we will use all of ei’s (i.e. ℓ gets eventually increased to m).
Because all the initial samples e1, . . . , em ← D eventually find their way into the tampered
training example sequence Ŝ, by the special PAC learnability of P, it holds that the same
learner L for P still outputs with probability 1−δ(m) a hypothesis with risk at most ε(m).

17. This seems to be also the case in strong p-budget attacks, but as we see in Theorem 16, the fact that
the adversary can first see di and then choose not to tamper with them in the strong case, will allow her
to essentially choose ‘untampered’ di’s and prevent PAC learnability.
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