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Abstract
The standard techniques for online learning of combinatorial objects perform multiplicative updates
followed by projections into the convex hull of all the objects. However, this methodology can be
expensive if the convex hull contains many facets. For example, the convex hull of n-symbol Huff-
man trees is known to have exponentially many facets (Maurras et al., 2010). We get around this
difficulty by exploiting extended formulations (Kaibel, 2011), which encode the polytope of combi-
natorial objects in a higher dimensional “extended” space with only polynomially many facets. We
develop a general framework for converting extended formulations into efficient online algorithms
with good relative loss bounds. We present applications of our framework to online learning of
Huffman trees and permutations. The regret bounds of the resulting algorithms are within a factor
of O(

√
log(n)) of the state-of-the-art specialized algorithms for permutations, and depending on

the loss regimes, improve on or match the state-of-the-art for Huffman trees. Our method is general
and can be applied to other combinatorial objects.

Keywords: online learning, extended formulation, combinatorial object, hedge

1. Introduction

This paper introduces a general methodology for developing efficient and effective algorithms for
learning combinatorial structures. Examples include learning the best permutation of a set of ele-
ments for scheduling or assignment problems, or learning the best Huffman tree for compressing
sequences of symbols. Online learning algorithms are being successfully applied to an increasing
variety of problems, so it is important to have good tools and techniques for creating good algo-
rithms that match the particular problem at hand.

Prediction Game 1 Prediction game for the combinatorial classH ⊂ Rn+.
1: For each trial t = 1, . . . , T

2: The learner predicts (perhaps randomly) with an object ĥ
t−1

in classH.
3: The adversary reveals a loss vector `t ∈ [0, 1]n.

4: The learner incurs a (expected) linear loss E[ĥ
t−1
· `t].
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The online learning setting proceeds in a series of trials where the algorithm makes a prediction
or takes an action associated with an object in the appropriate combinatorial space and then receives
the loss of its choice in such a way that the loss of any of the possible combinatorial objects can be
easily computed (See Prediction Game 1). The algorithm can then update its internal representation
based on this feedback and the process moves on to the next trial. Unlike batch learning settings,
there is no assumed distribution from which losses are randomly drawn. Instead the losses are drawn
adversarially. In general, an adversary can force arbitrarily large loss on the algorithm. So instead
of measuring the algorithm’s performance by the total loss incurred, the algorithm is measured
by its regret, the amount of loss the algorithm incurs above that of the single best predictor in
some comparator class. Usually the comparator class is the class of objects in the combinatorial
space being learned. To make the setting concrete, consider the case of learning Huffman trees for
compression1. In each trial, the algorithm would (perhaps randomly) predict a Huffman tree, and
then obtain a sequence of symbols to be encoded. The loss of the algorithm on that trial is the
average bits per symbol to encode the sequence using the predicted Huffman tree. More generally,
the loss could be defined as the inner product of any loss vector from the unit cube and the code
lengths of the symbols. The total loss of the algorithm is the expected average bits per symbol
summed over trials. The regret of the algorithm is the difference between its total loss and the
sum over trials of the average bits per symbol for the single best Huffman tree chosen in hindsight.
Therefore the regret of the algorithm can be viewed as the cost of not knowing the best combinatorial
object ahead of time. With proper tuning, the regret is typically logarithmic in the number of
combinatorial objects.

One way to create algorithms for these combinatorial problems is to use one of the well-
known so-called “experts algorithms” like Randomized Weighted Majority (Littlestone and War-
muth, 1994) or Hedge (Freund and Schapire, 1997) with each combinatorial object is treated as an
“expert”. However, this requires explicitly keeping track of one weight for each of the exponentially
many combinatorial objects, and thus results in an inefficient algorithm. Furthermore, it also causes
an additional loss range factor in the regret bounds as well. There has been much work on creating
efficient algorithms that implicitly encode the weights over the set of combinatorial objects using
concise representations. For example, many distributions over the 2n subsets of n elements can be
encoded by the probability of including each of the n elements. In addition to subsets, such work
includes permutations (Helmbold and Warmuth, 2009; Yasutake et al., 2011; Ailon, 2014), paths
(Takimoto and Warmuth, 2003; Kuzmin and Warmuth, 2005), and k-sets (Warmuth and Kuzmin,
2008).

There are also some general tools for learning combinatorial concepts. The Component Hedge
algorithm of Koolen et al. (2010) is a powerful generic technique when the implicit encodings are
suitably simple. The Component Hedge algorithm works by performing multiplicative updates on
the parameters of its implicit representation. However, the implicit representation is typically con-
strained to lie in a convex polytope. Therefore Bregman projections are used after the update to
return the implicit representation to the desired polytope. A limitation of Component Hedge is its
projection step which is generally only computationally efficient when there are a small (polyno-
mial) number of constraints on the implicit representations.

1. Huffman trees (Cormen et al., 2001) are binary trees which construct prefix codes (called Huffman codes) for data
compression. The plaintext symbols are located at the leaves of the tree and the path from the root to each leaf defines
the prefix code for the associated symbol.
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Suehiro et al. (2012) introduced another projection-based algorithm which specializes the Com-
ponent Hedge algorithm for structures that can be formulated by submodular functions2. There are
also projection-free algorithms for online learning. Follow the Perturbed Leader (FPL) (Kalai and
Vempala, 2005) and its generalization (Dudík et al., 2017) are based on adding random perturba-
tions to the cumulative loss of each component, and then predicting with the combinatorial object
with minimum perturbed loss. Hazan and Kale (2012) introduced a projection-free online algorithm
using the Frank-Wolfe technique.

The problem of concisely specifying the convex hulls of complicated combinatorial structures
(e.g. permutations and Huffman trees) using few constraints has been well studied in the combi-
natorial optimization literature. A powerful technique – namely extended formulations – has been
developed to represent these polytopes as a linear projection of a higher-dimensional polyhedron so
that the polytope description has far fewer (polynomial instead of exponential) constraints (Kaibel
and Pashkovich, 2013; Kaibel, 2011; Conforti et al., 2010).

Contributions: The main contributions of this paper are:

1. The introduction of extended formulation techniques to the machine learning community. In
particular, the fusion of Component Hedge with extended formulations results in a new method-
ology for designing efficient online algorithms for complex classes of combinatorial objects. Our
methodology uses a redundant representation for the combinatorial objects where one part of the
representation allows for a natural loss measure while another enables the simple specification
of the class using only polynomially many constraints. We are unaware of previous online learn-
ing work exploiting this kind of redundancy. To better match the extended formulations to the
machine learning applications, we augment the extended formulation with slack variables.

2. A new and faster prediction technique. Component Hedge applications usually predict by first
re-expressing the algorithm’s weight or usage vector as a small convex combination of combi-
natorial objects, and then randomly sample from the convex combination. The redundant rep-
resentation often allows for a more direct and efficient way to generate the algorithm’s random
prediction, bypassing the need to create convex combinations. This is always the case for ex-
tended formulations based on “reflection relations” (as in permutations and Huffman Trees).

3. A new and elegant initialization method. Component Hedge style loss bounds depend on the dis-
tance from the initial hypothesis to the best predictor in the class, and a roughly uniform ini-
tialization is usually a good choice. The initialization of the redundant representation is more
delicate. Rather than directly picking a feasible initialization, we introduce the idea of first creat-
ing an infeasible encoding with good distance properties, and then projecting it into the feasible
polytope. This style of implicit initialization improves bounds in some existing work (e.g. sav-
ing a log n factor in Yasutake et al. (2011)) and has been used to good effect in another domain
(Rahmanian and Warmuth, 2017).

Paper Outline: Section 2 contains an overview of the Component Hedge algorithm and extended
formulations. Section 3 explains our methodology. We then explore the concrete application of our
method on Huffman trees and permutation using extended formulations constructed by reflection
relations in Section 4. Section 5 describes our fast prediction technique in the case of using reflection

2. For instance, permutations belong to such classes of structures (see Suehiro et al. (2012)); but Huffman trees do not
as the sum of the code lengths of the symbols is not fixed.
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relations. Finally, Section 6 concludes with contrasting our bounds with those of FPL (Kalai and
Vempala, 2005), Hedge (Freund and Schapire, 1997) and OnlineRank (Ailon, 2014) and describing
directions for future work. The Appendix A contains a summary of our notations.

2. Background

Online learning is a rich and vibrant area, see Cesa-Bianchi and Lugosi (2006) for a textbook treat-
ment. The implicit representations for structured concepts (sometimes called ‘indirect representa-
tions’) have been used for a variety of problems (Helmbold et al., 2002; Helmbold and Schapire,
1997; Maass and Warmuth, 1998; Takimoto and Warmuth, 2002, 2003; Yasutake et al., 2011;
Koolen et al., 2010). Recall from the Prediction Game 1, that t ∈ {1..T} is the trial index, H
is the class of combinatorial objects, ĥ

t−1
∈ H is the algorithm’s selected object at time t, and `t is

the loss vector revealed by the adversary.

Component Hedge: Koolen et al. (2010) developed a generic framework called Component Hedge
which results in efficient and effective online algorithms over combinatorial objects in Rn+ with lin-
ear loss. Component Hedge maintains a “usage” vector v in the polytope V which is the convex
hull of all objects in the combinatorial classH. In each trial, the weight of each component (i.e. co-
ordinate) vi of v is updated multiplicatively by its associated exponentiated loss: vi ← vi e

−η `i .
Then the weight vector v is projected back to the polytope V via relative entropy projection. V is

often characterized with a set of equality constraints (i.e. intersection of affine subspaces). Iterative
Bregman projection (Bregman, 1967) is often used; it enforces each constraint in turn. Although
this can violate previously satisfied constraints, repeatedly cycling through them is guaranteed to
converge to the proper projection if all the facets of the polytope are equality constraints.

Finally, to sample with the same expectation as the usage vector, the usage vector is decomposed
into corners of the polytope V . Concretely, v is written as a convex combination of some objects in
H using a greedy approach which zeros out at least one component in each iteration.

Component Hedge relies heavily on an efficient characterization of the polytope V both for
projection and decomposition. If directly characterizing the polytope V is either difficult or requires
exponentially many facets, Component Hedge cannot be directly applied. In those cases, we show
how extended formulations can help with efficiently describing the polytope V .

Extended Formulations: Many classes of combinatorial objects have polytopes whose discrip-
tion requires exponentially many facets in the original space (e.g. see Maurras et al. (2010)). This
has triggered the search for more concise descriptions in alternative spaces. In recent years, the
combinatorial optimization community has given significant attention to the technique of extended
formulation where difficult polytopes are represented as a linear projection of a higher-dimensional
polyhedron (Magnanti and Wolsey, 1995; Conforti et al., 2010; Kaibel, 2011; Kaibel and Pashkovich,
2013). There are many complex combinatorial objects whose associated polyhedra can be described
as the linear projection of a much simpler, but higher dimensional, polyhedra (see Figure 1).

Concretely, assume a polytope V ⊂ Rn+ is given and described with exponentially many con-
straints in matrix-vector multiplication form as V = {v ∈ Rn+ | M1v ≤ d} in the original space
Rn+ . We assume that using some additional variables x ∈ Rm+ , V can be written efficiently as

V = {v ∈ Rn+ | ∃x ∈ Rm+ : M2v +M3x ≤ f}3 (1)

3. Note that for each v ∈ V there exists a x ∈ X , but it is not necessarily unique.
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Space

V ⊂ Rn
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facets/constraints

Extended
Space

(V ⊂ Rn,X ⊂ Rm)

Polynomial
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projection hard projection easy

Add Extended
Formulation X

Project out X

Figure 1: Extended formulation.

with r = poly(n) constraints. Vector x ∈ Rm+ is an extended formulation4 belonging to the set
X = {x ∈ Rm+ | ∃v ∈ Rn+ : M2v +M3x ≤ f} (2)

Extended formulations incur the cost of additional variables for the benefit of a simpler (although,
higher dimensional) polytope.

3. The Method

Here we describe our general methodology for using extended formulations to develop new learn-
ing algorithms. Consider a class H of combinatorial objects and its convex hull V . We assume
there is no efficient description of V in Rn+, but it can be efficiently characterized via an extended
formulation x ∈ X as in Equations (1) and (2).

As described in Section 2, in order to apply Component Hedge (especially the projection), we
need to have equality constraints instead of inequality ones. Thus, we introduce slack variables
s ∈ Rr+, where r is the number of constraints. Equation (1) now becomes

V = {v ∈ Rn+ | ∃x ∈ Rm+ , s ∈ Rr+ : M2v +M3x+ s = f}
Now, in order to keep track of a usage vector v ∈ V , we use the following novel representation:

W = {(v,x, s)︸ ︷︷ ︸
w

∈ Rn+m+r
+ |M2v +M3x+ s = f}

where W is characterized by r affine constraints. We refer to W as the augmented formulation.
Observe that, despite potential redundancy in representation, all three constituents are useful in
this new encoding: v is needed to encode the right loss, x is used for efficient description of the
polytope, and s is incorporated to have equality constraints.

3.1 XF-Hedge Algorithm

Having developed the well-equipped space W , Component Hedge can now be applied. Since v
is the only constituent over which the loss vector `t is defined, we work with Lt = (`t,0,0) ∈
[0, 1]n+m+r in the augmented formulation spaceW . We introduce a new type of Hedge algorithm
combined with extended formulation – XF-Hedge (See Algorithm 2). Similar to Component Hedge,
XF-Hedge consists of three main steps: Prediction, Update, and Projection.

4. Throughout this paper, w.l.o.g., we assume x is in positive quadrant of Rn, since an arbitrary point in Rn can be
written as x = x+ − x− where x+,x− ∈ Rn

+.
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Algorithm 2 XF-Hedge
1: w0 = (v0,x0, s0) ∈ W – a proper prior distribution discussed in 3.2
2: For t = 1, . . . , T

3: Set ĥ
t−1
← Prediction(wt−1) where ĥ

t−1
∈ H is a random object s.t. E

[
ĥ
t−1
]

= vt−1

4: Incur a loss ĥ
t−1
· `t

5: Update:
6: Set ṽt−1

i ← vt−1
i e−η `

t
i for all i ∈ [n]

7: Set wt ← Projection(ṽt−1,xt−1, st−1)︸ ︷︷ ︸
w̃t−1

where wt = arg min
w∈W

∆
(
w||w̃t−1

)

Prediction: Randomly select an object ĥ
t−1

from the combinatorial class H in such a way that
E
[
ĥ
t−1
]

= vt−1. The details of this step depend on the combinatorial class H and the extended
formulation used for W . In Component Hedge and similar algorithms (Helmbold and Warmuth,
2009; Koolen et al., 2010; Yasutake et al., 2011; Warmuth and Kuzmin, 2008), this step is usually
done by decomposing5 vt−1 into a convex combination of objects in H. In Section 5, we present
a faster O(m + n) prediction method for combinatorial classes H whose extended formulation is
constructed by reflection relations.

Update: Having defined Lt = (`t,0,0), the updated w̃t−1 is obtained using a trade-off between
the linear loss and the unnormalized relative entropy (Koolen et al., 2010):

w̃t−1 = arg min
w∈Rr

∆(w||wt−1) + ηw ·Lt, where ∆(a||b) =
∑
i

ai log
ai
bi

+ bi − ai

Using Lagrange multipliers, it is fairly straight-forward to see that only the v components of wt−1

are updated:

∀i ∈ {1..n}, ṽt−1
i = vt−1

i e−η `
t
i ; x̃t−1 = xt−1; s̃t−1 = st−1.

Thus this step takes O(n) time.

Projection: We use an unnormalized relative entropy Bregman projection to project w̃t−1 back
intoW obtaining the new wt for the next trial.

wt = arg min
w∈W

∆(w||w̃t−1) (3)

Let Ψ0, . . . ,Ψr−1 be the r hyperplanes where the r constraints of M2v + M3x + s = f are
satisfied, i.e. w ∈ Ψk if and only if w satisfies the kth constraint. Then W is the intersection
of the Ψk’s. Since the non-negativity constraints are already enforced by the definition of ∆(·||·),
it is possible to solve (3) using iterative Bregman projections6 (Bregman, 1967). Starting from
p0 = w̃t−1, we iteratively compute:

pk = arg min
p∈Ψ(k mod r)

∆(p||pk−1)

5. Note that according to Caratheodory’s theorem, such decomposition exists inW using at most n+m+ r+1 objects
(i.e. corners of the polytopeW).

6. In Helmbold and Warmuth (2009) Sinkhorn balancing is used for projection which is also a special case of iterative
Bregman projection.
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repeatedly cycling through the constraints. It is known that pk converges in Euclidean norm to the
unique solution of (3) (Bregman, 1967; Bauschke and Borwein, 1997).

The projection step dominates the running time of the algorithm7. Projecting onto any of the
r hyperplanes reduces to finding the sole non-negative (real) zero of a univariate polynomial of
degree at most n (see Appendix F) so Newton’s method takes O(n log log(1/ε1)) time to get an
ε1-close solution. With r constraints (r ∈ O(n log n) for our applications), each cycle through
the constraints takes O(r n log log(1/ε)) time. Letting Cε be the number of cycles to have an ε-
accurate projection, the whole projection step takes O(Cε rn log log(1/ε1)) time. These kinds of
cyclic Bregman projections are believed to have fast linear convergence (Dhillon and Tropp, 2007),
and empirically are very efficient (Koolen et al., 2010). Note that exact convergence is not essential.
For example, if the projection step estimates each wt within ε = 1/6n2√mT then the additional
loss over the entire sequence of T trials is less than 1 unit (see Appendix H). Therefore, with the
linear convergence assumption, the projection step takes O(r log(nmT )n log log(1/ε1)) time.

3.2 Regret Bounds

Similar to Component Hedge, the general regret bound depends on the initial weight vectorw0 ∈ W
via ∆(w(h)||w0) where w(h) ∈ W is the augmented formulation of the object h ∈ H against
which the algorithm is compared (the best h for the adversarially chosen sequence of losses).

The following Lemma is somewhat optimistic that optimal tuning of η requires knowledge of
the loss of the best h as well as its distance from the initialw0. However only slightly worse bounds
can be achieved with doubling tricks to handle the unknown loss (see, e.g. Cesa-Bianchi and Lugosi
(2006)) and a smart initialization of w0 provides an upper bound on ∆(w(h)||w0) for any object
h ∈ H.

Lemma 1 Let L∗ := min
h∈H

∑T
t=1 h · `

t. By proper tuning of the learning rate η:

E

[
T∑
t=1

ĥ
t−1
· `t
]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗∆(w(h)||w0) + ∆(w(h)||w0)

The proof uses standard techniques from the online learning literature (see, e.g. , Koolen et al.
(2010)) and is given in Appendix B. In order to get good bounds, the initial weight w0 must be
“close” to all corners h of the polytope, and thus in the“middle" ofW . In previous works (Koolen
et al., 2010; Yasutake et al., 2011; Helmbold and Warmuth, 2009), the initial weight is explicitly
chosen and it is often set to be the uniform usage of the objects. This explicit initialization approach
may be difficult to perform when the polytope has a complex structure.

Here, instead of explicitly selecting w0 ∈ W , we implicitly design the initial point. First, we
find an intermediate “middle” point w̃ ∈ Rn+m+r with good distance properties, and then project
w̃ intoW to obtain the initial w0 for the first trial.

A good choice for w̃ is U 1 where 1 ∈ Rn+m+r is the vector of all ones, and U ∈ R+ is
an upper-bound on the infinity norms of the corners of polytope W . This leads to the nice bound
∆(w(h)||w̃) ≤ (n + m + r)U for all objects h ∈ H. The Generalized Pythagorean Theorem
(Herbster and Warmuth, 2001) ensures that the same bound holds for w0 (see Appendix C for the
details).

7. If the model is being trained on data where predictions are not required, then the expensive projection step can be
deferred until the predictions are needed.
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Lemma 2 Assume that there exists U ∈ R+ such that ‖w(h)‖∞ ≤ U for all h ∈ H. Then the
initialization method finds a w0 ∈ W such that for all h ∈ H, ∆(w(h)||w0) ≤ (n+m+ r)U .

Combining Lemmas 1, and 2 gives the following guarantee.

Theorem 3 If each `t ∈ [0, 1]n and ‖w(h)‖∞ ≤ U for all h ∈ H, then XF-hedge’s regret is:

E

[
T∑
t=1

ĥ
t−1
· `t
]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗ (n+m+ r)U + (n+m+ r)U

4. XF-Hedge Examples Using Reflection Relations

One technique for constructing extended formulations is called reflection relations (Kaibel and
Pashkovich, 2013), and this technique can be used to efficiently describe the polytopes of permuta-
tions and Huffman trees. Here we describe how reflection relations can be used with the XF-Hedge
framework to create concrete learning algorithms for permutations and Huffman trees.

As in Yasutake et al. (2011) and Ailon (2014), we consider losses that are linear in the first
order representation of the objects (Diaconis, 1988). For permutations of n items, the first order
representation is vectors v ∈ Rn where each of the elements of {1, 2, . . . , n} appears exactly once8

and for Huffman trees on n symbols, the first order representation is vectors v ∈ Rn where each vi
is an integer indicating the depth of the leaf corresponding to symbol i in the coding tree. At each
trial the loss is v · ` where the adversary’s ` is a loss vector in the unit cube [0, 1]n. This type of
loss is sufficiently rich to capture well-known natural losses like average code length for Huffman
trees (when ` is the symbol frequencies) and sum of completion times for permutations9 (when ` is
the task completion times).

Constructing Extended Formulations from Reflection Relations Kaibel and Pashkovich (2013)
show how to construct polynomial size extended formulations using a canonical corner of the poly-
tope and a fixed sequence of hyperplanes. These have the property that any corner of the desired
polytope can be generated by reflecting the canonical corner through a subsequence of the hyper-
planes. These reflections are one-sided in the sense that they map the half-space containing the
canonical corner to the other half-space. For example, the corners of Figure 2 (Left) can be gen-
erated in this way. Of course the hard part is to find a good sequence of hyperplanes with this
property.

A key idea for generating the entire polytope is to allow “partial reflections” where the point
to be reflected can not just be kept (skipping the reflection) or replaced by its reflected image, but
mapped to any point on the line segment joining the point and its reflected image as illustrated
in Figure 2 (Right). Since any point in the convex hull of the polytope can be constructed by at
least one sequence of partial one-sided reflections, every point in the polytope has an alternative
representation in terms of how much each reflection was used to generate it from the canonical
corner (see Figure 2). Each of these parameterized partial reflections is a reflection relation,

For each reflection relation, there will be one additional variable indicating the extent to which
the reflection occurs, and two additional inequalities for the extreme cases of complete reflection

8. In contrast, Helmbold and Warmuth (2009) work with the second order representation (i.e. Birkhoff polytope), and
consequently losses, which is a more general loss family (see Yasutake et al. (2011) for comparison).

9. To easily encode the sum of completion times, the predicted permutation represents the reverse order in which the
tasks are to be executed.
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(1)→ (2)↘

(3) ↓
P2

P1

P0

P3

hyperplane

v =̂ (x = xmin)

vreflected =̂ (x = xmax)

v′ =̂ (xmin ≤ x ≤ xmax)

Figure 2: (Left) The 6 corners of the polytope are generated by subsequences of one-sided reflec-
tions through lines (1), (2), and (3), starting from the canonical point P0. Using partial
reflections, we can generate the entire polytope. (Right) A partial reflection of v to v′

corresponds to (=̂) a variable x indicating how far v′ moves towards v’s image vreflected.

and no reflection. Therefore, if the polytope can be expressed with polynomially many reflection re-
lations, then it has an extended formulation of polynomial size with polynomially many constraints.
Appendix D provides more details about the type of results shown by Kaibel and Pashkovich (2013).

Extended Formulations for Objects Closed under Re-Ordering Assume we want to construct
an extended formulation for a class of combinatorial objects which is closed under any re-ordering
(both Huffman trees and permutations both have this property). Then reflection relations corre-
sponding to swapping pairs of elements are useful. Swapping elements i and j can be implemented
with a hyperplane going through the origin and having normal vector ei− ej (here ei is the ith unit
vector). The identity permutation is the natural canonical corner, so the one-sided reflections are
only used for v where vi ≤ vj .

Implementing the reflection relation for the i, j swap uses an additional variable along with two
additional inequalities. Concretely, assume v ∈ Rn is going into this reflection relation and v′ ∈ Rn
is the output, so v′ is in the convex combination of v and its reflection. It is natural to encode this
as v′ = γv + (1 − γ)vreflected. However, we found it more convenient to parameterize v′ by its
absolute distance x from v, rather than the relative distance γ ∈ [0, 1]. Using this parameterization,
we have v′ = v + x (ei − ej) constrained by (ei − ej) · v ≤ (ei − ej) · v′ ≤ −(ei − ej) · v.
Therefore the possible relationships between between v′ and v can be encoded with the additional
variable x and the following constraints:10

v′ = mx+ v wherem = ei − ej , 0 ≤ x ≤ vj − vi. (4)

Notice that x indicates the amount of change in the ith and jth elements which can go from zero
(remaining unchanged) to the maximum swap capacity vj − vi.

Suppose the desired polytope is described using m reflection relations and with canonical point
c. Then starting from c and successively applying the equation in (4), we obtain the connection
between the extended formulation space X and original space V:

v = M x+ c, v, c ∈ V ⊂ Rn, x ∈ X ⊂ Rm, M ∈ {−1, 0, 1}n×m.

10. In general v (and thus vj and vi) may be functions of the variables for previous reflection relations.
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Figure 3: An extended formulation for permutation on n = 3 items. The canonical permutation is
[1, 2, 3]. Elements of v are in blue, x in red, and the intermediate values are in green.

Kaibel and Pashkovich (2013) showed that the m reflection relations corresponding to the m
comparators in an arbitrary n-input sorting network11 generates the permutation polytope (see Fig-
ure 3). A similar extended formulation for Huffman trees can be built using an arbitrary sorting
network along with O(n log n) additional comparators and simple linear maps (which do not re-
quire extra variables) and the canonical corner c = [1, 2, . . . , n − 2, n − 1, n − 1]T (see Section
2.24 in Pashkovich (2012) for more details). Note that the reflection relations are applied in reverse
order than their use in the sorting network (see Figure 3).

Learning Permutations and Huffman Trees As described in the previous subsections, the poly-
tope V of both permutations and Huffman trees can be efficiently described using m inequality and
n equality constraints12:

V = {v ∈ Rn+|∃x ∈ Rm+ : Ax ≤ b and v = Mx+ c}
Adding the slack variables s ∈ Rm+ , we obtain the augmented formulationW:

W = {w = (v,x, s) ∈ Rn+2m
+ |Ax+ s = b and v = Mx+ c}

Note that all the wire values (i.e. vi’s), as well as xi’s and si’s are upperbounded by U = n.
Using the AKS sorting networks with m = O(n log n) comparators (Ajtai et al., 1983), we can
obtain the regret bounds below from Theorem 3:

Corollary 4 XF-Hedge has the following regret bound when learning either permutations or Huff-
man trees:

E

[
T∑
t=1

ĥ
t−1
· `t
]
−min
h∈H

T∑
t=1

h · `t = O
(
n (log n)

1
2

√
L∗ + n2 log n

)

5. Fast Prediction with Reflection Relations

From its current weight vector w = (v,x, s) ∈ W , XF-Hedge randomly selects an object ĥ
from the combinatorial class H in such a way that E

[
ĥ
]

= v. In Component Hedge and similar

11. A sorting network is a sorting algorithm where the comparisons are fixed in advance. See e.g. (Cormen et al., 2001).
12. Positivity constraints are excluded as they are already enforced due to definition of ∆(·||·), and Huffman trees require

additional O(n logn) inequality constraints beyond those corresponding to the sorting network.

10
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algorithms (Helmbold and Warmuth, 2009; Koolen et al., 2010; Yasutake et al., 2011; Warmuth and
Kuzmin, 2008), this is done by decomposing v into a convex combination of objects inH followed
by sampling. In this section, we give a new more direct prediction method for combinatorial classes
H whose extended formulation is constructed by reflection relations. Our method is faster due to
avoiding the decomposition.

The values x and x+ s can be interpreted as amount swapped and the maximum swap allowed
for the comparators in the sorting networks, respectively. Therefore, it is natural to define xi/(xi +
si) as swap probability associated with the ith comparator for i ∈ {1..m}. Algorithm 3 incorporates
the notion of swap probabilities to construct an efficient sampling procedure from a distribution D
which has the right expectation. It starts with the canonical object (e.g. identity permutation) and
feeds it through the reflection relations. Each reflection i is taken with probability xi/(xi + si).
The theorem below (proved in the Appendix G) guarantees the correctness and efficiency of this
algorithm.

Theorem 5 (i) Given (v,x,s) ∈W ⊆ Rn+2m, Algorithm 3 samples h from a distribution D such
that ED[h] = v.
(ii) The time complexity of Algorithm 3 is O(n+m).

Using the AKS sorting networks (Ajtai et al., 1983),m ∈ O(n log n), so Algorithm 3 predicts in
O(n log n) time. This improves the previously known O(n2) prediction procedure for mean-based
algorithms13 for permutations (Yasutake et al., 2011; Suehiro et al., 2012).

Algorithm 3 Fast-Prediction
1: Input: (x, s) ∈ R2m

+

2: Output: A prediction ĥ ∈ H ⊆ Rn
3: ĥ← c – the canonical corner in Rn
4: for k = 1 to m do
5: (ik, jk)← wire indices associated with the k-th comparator
6: if xi = 0 then
7: continue
8: else
9: Switch the ikth and jkth components of ĥ w.p. xk/(xk + sk).

return ĥ

6. Conclusion and Future Work

Table 1 contains a comparison of the regret bounds for the new XF-Hedge algorithm, OnlineRank
(Ailon, 2014), Follow the Perturbed Leader (FPL) (Kalai and Vempala, 2005), and the Hedge al-
gorithm (Freund and Schapire, 1997) which inefficiently maintains an explicit weight for each of
the exponentially many permutations or Huffman trees. For permutations, the regret bound of gen-
eral XF-Hedge methodology is within a factor

√
log n of the state-of-the-art algorithm OnlineRank

13. It also matches the time complexity of prediction step for non-mean-based permutation-specialized OnlineRank
(Ailon, 2014) and also the general FPL (Kalai and Vempala, 2005) algorithm both for permutations and Huffman
Trees.
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Algorithm Permutation
Huffman Tree

`t ∈ Unit Cube `t ∈ Unit Simplex

XF-Hedge O
(
n(log n)

1
2

√
L∗

+n2 log n

)
O
(
n(log n)

1
2

√
L∗

+n2 log n

)
O
(
n(log n)

1
2

√
L∗

+n2 log n

)
OnlineRank O(n

√
L∗ + n2) – –

FPL O
(
n

3
2 (log n)

1
2

√
L∗

+n3 log n

)
O
(
n

3
2 (log n)

1
2

√
L∗

+n3 log n

)
O
(
n(log n)

1
2

√
L∗

+n2 log n

)
Hedge Algorithm O

(
n

3
2 (log n)

1
2

√
L∗

+n3 log n

)
O
(
n

3
2 (log n)

1
2

√
L∗

+n3 log n

)
O
(
n(log n)

1
2

√
L∗

+n2 log n

)
Table 1: Comparing the regret bounds of XF-Hedge with other existing algorithms in different

problems and different loss regimes.

(Ailon, 2014). When compared with the generic explicit Hedge algorithm (which is not computa-
tionally efficient) and FPL, XF-Hedge has a better loss bound by a factor of

√
n.

When comparing on Huffman trees, we consider two loss regimes: one where the loss vectors
are from the general unit cube, and consequently, the per-trial losses are in O(n2) (like permuta-
tions), and another where the loss vectors represent frequencies and lie on the unit simplex so the
per-trial losses are in O(n). In the first case, as with permutations, XF-Hedge has the best asymp-
totic bounds. In the second case, the lower loss range benefits Hedge and FPL, and the regret bounds
of all three algorithms match.

In conclusion, we have presented a general methodology for creating online learning algorithms
from extended formulations. Our main contribution is the XF-Hedge algorithm that enables the
efficient use of Component Hedge techniques on complex classes of combinatorial objects. Because
XF-Hedge is in the Bregman projection family of algorithms, many of the tools from the expert
setting are likely to carry over. This includes lower bounding weights for shifting comparators
(Herbster and Warmuth, 1998), long-term memory (Bousquet and Warmuth, 2002), and adapting the
updates to the bandit setting (Audibert et al., 2011). Several important areas remain for potentially
fruitful future work:

More Applications There is a rich literature on extended formulation for different combinatorial
objects (Conforti et al., 2010; Kaibel, 2011; Pashkovich, 2012; Afshari Rad and Kakhki, 2017;
Fiorini et al., 2013). Which combinatorial classes have both natural online losses and suitable
extended formulations so XF-Hedge is appropriate? For instance, building on the underlying ideas
of XF-Hedge, Rahmanian and Warmuth (2017) developed a family of learning algorithms focusing
on extended formulations constructed by dynamic programming.

More Complex Losses The redundant representation we introduced can be used to express dif-
ferent losses. Although our current applications do not assign loss to the extended formulation
variables (x) and their associated slack variables (s), these additional variables enable the expres-
sion of different kinds of losses. For what natural losses could be these additional variables useful?

12
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Appendix A. Table of Notations

Symbol Description
n The dimensionality of the combinatorial object
H The set of all objects in Rn+
h A particular object inH
T The number of trials
` The loss vector revealed by the adversary in [0, 1]n

V The convex hull of all objects inH
v A point inH
m The dimensionality of the extended formulation
x A point in extended formulation
X The space of extended formulations x
W The augmented formulation
w A point in the augmented formulationW
s The slack vector in the augmented formulation
r The dimensionality of the slack vector

∆(·||·) the unnormalized relative entropy
i.e. ∆(w1||w2) =

∑
iw1,i log

w1,i

w2,i
+ w2,i − w1,i

w(h) A point inW associated with the object h
U An upper-bound for ‖w(h)‖∞
L∗ The cumulative loss of the best object in hindsight

i.e. min
h∈H

∑T
t=1 h · `

t

M the n×m matrix representing the affine transformation
corresponding to m reflection relations

c the canonical point inH e.g. [1, 2, . . . , n]T for permutations
A, b the m×m matrix of coefficients and m-dimensional vector

of constant terms specifying X along x ≥ 0 i.e. Ax ≤ b

Table 2: Table of notations in the order of appearance in the paper.

Appendix B. Proof of Lemma 1

Proof Assuming w = (v,x, s) and L = (`,0,0):

(1− e−η)vt−1 · `t = (1− e−η)wt−1 ·Lt ≤
∑
i

wt−1
i (1− e−η Lt

i)

= ∆(w(h)||wt−1)−∆(w(h)||w̃t−1) + ηw(h) ·Lt

= ∆(w(h)||wt−1)−∆(w(h)||w̃t−1) + η h · `t

≤ ∆(w(h)||wt−1)−∆(w(h)||wt) + η h · `t

The first inequality is obtained using 1−e−ηx ≥ (1−e−η)x for x ∈ [0, 1] as done in Littlestone
and Warmuth (1994). The second inequality is a result of the Generalized Pythagorean Theorem
(Herbster and Warmuth, 2001), since wt is a Bregman projection of ŵt−1 into the convex set W
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which contains w(h). By summing over t = 1 . . . T and using the non-negativity of divergences,
we obtain:

(1− e−η)
T∑
t=1

vt−1 · `t ≤ ∆(w(h)||w0)−∆(w(h)||wT ) + η
T∑
t=1

h · `t

−→ E

[
T∑
t=1

ht−1 · `t
]
≤
η
∑T

t=1 h · `
t + ∆(w(h)||w0)

1− e−η

Let L∗ = min
h∈H

∑T
t=1 h · `

t. We can set the learning rate η =

√
2 ∆(w(h)||w0)

L∗ as instructed in

Koolen et al. (2010) and obtain the following regret bound:

E

[
T∑
t=1

ht−1 · `t
]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗∆(w(h)||w0) + ∆(w(h)||w0) �

Appendix C. Proof of Lemma 2

Proof Let w̃ = U 1 in which 1 ∈ Rm+n+r is a vector with all ones in its components. Now letw0

be the Bregman projection of w̃ ontoW , that is:

w0 = arg min
w∈W

∆(w||w̃)

Now for all h ∈ H, we have:

∆(w(h)||w0) ≤ ∆(w(h)||w̃) Pythagorean Theorem

=
∑

i∈{1..n+m+r}

(w(h))i log
(w(h))i
U

+ U − (w(h))i

≤
∑

i∈{1..n+m+r}

U (w(h))i ≤ U

= (n+m+ r)U �

Appendix D. Construction of Extended Formulation Using Reflection Relations

Instead of starting with a single corner, one could also consider passing an entire polytope as an input
through the sequence of (partial) reflections to generate a new polytope. Using this fact, Theorem 1
in Kaibel and Pashkovich (2013) provides an inductive construction of higher dimensional polytopes
via sequences of reflection relations. Concretely, let Pnobj be the polytope of a given combinatorial

object of size n. The typical approach is to properly embed Pnobj ⊂ Rn into P̂nobj ⊂ Rn+1, and
then feed it through an appropriate sequence of reflection relations as an input polytope in order to
obtain an extended formulation for Pn+1

obj ⊂ Rn+1. Theorem 1 in Kaibel and Pashkovich (2013)
provides sufficient conditions for the correctness of this procedure. Again, if polynomially many
reflection relations are used to go from n to n + 1, then we can construct an extended formulation
of polynomial size for Pnobj with polynomially many constraints. In this paper, however, we work
with batch construction of the extended formulation as opposed to the inductive construction.
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Appendix E. Facets Constructed by Reflection Relations

Lemma 6 LetM be the matrix representing the affine transformation corresponding tom reflection
relations and

A = Tri(MTM) + I, b = −MTc

in which Tri(·) is a function over square matrices which zeros out the upper triangular part of the
input including the diagonal. Then the extended formulation space X is

Ax ≤ b, x ≥ 0

or equivalently with slack variables s

Ax+ s = b, x, s ≥ 0

Proof Let vk be the vector in V after going through the kth reflection relation. Also denote the kth
column of M by Mk. Observe that v0 = c and vk = c +

∑k
i=1Mixi. Let Mk = er − es. Then,

using (4), the inequality associated with the kth row of Ax ≤ b will be obtained as below:

xk ≤ vk−1
s − vk−1

r = −MT
k v

k−1 = −MT
k

(
c+

k−1∑
i=1

Mixi

)

−→ xk +
k−1∑
i=1

MT
k Mixi ≤ −MT

k c = bk

Thus:

∀ i, j ∈ [m] Aij =


MT
i Mj i > j

1 i = j

0 i < j

, ∀ k ∈ [m] bk = −MT
k c

which concludes the proof. �

Appendix F. Projection onto Each Constraint

Each constraint of the polytope in the augmented formulation is of the form aTw = a0. Formally,
the projection w∗ of a give point w to this constraint is solution to the following:

arg min
aTw∗=a0

∑
i

w∗i log

(
w∗i
wi

)
+ wi − w∗i

Finding the solution to the projection above for general hyperplanes and Bregman divergence
can be found in Section 3 of Dhillon and Tropp (2007). Nevertheless, for the sake of completeness,
we also provide the solution for the particular case of Huffman trees and permutations described by
W in Section 4 as well. Using the method of Lagrange multipliers, we have:

L(w∗, µ) =
∑
i

w∗i log

(
w∗i
wi

)
+ wi − w∗i − µ

2m+n∑
j=1

aiw
∗
i − a0


∂L

∂w∗i
= log

(
w∗i
wi

)
− µai = 0, ∀i ∈ [n+ 2m]

∂L

∂µ
=

2m+n∑
j=1

aiw
∗
i − a0 = 0
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Replacing ρ = e−µ, we have w∗i = wi ρ
ai . By enforcing ∂L

∂µ = 0, one needs to find ρ > 0 such
that:

n+2m∑
i=1

aiwi ρ
ai − a0 = 0 (5)

Observe that due to the structure of matrices M and A (see Lemma 6), ai ∈ Z and ai ≥ −1 for
all i ∈ [n + 2m], and furthermore a0 ≥ 0. Multiplying by ρ, we can re-write equation (5) as the
polynomial below:

f(ρ) = φkρ
k + . . .+ φ2ρ

2 − φ1ρ− φ0 = 0

in which all φi’s are non-negative real numbers and k ≤ n. Note that f(0) < 0 and f(ρ) → +∞
as ρ → +∞. Thus f(ρ) has at least one positive root. However, it can not have more than one
positive roots and we can prove it by contradiction. Assume that there exist 0 < r1 < r2 such that
f(r1) = f(r2) = 0. Since f is convex on positive real line, using Jensen’s inequality, we can obtain
the contradiction below:

0 = f(r1) = f

(
r2 − r1

r2
× 0 +

r1

r2
× r2

)
<
r2 − r1

r2
f(0) +

r1

r2
f(r2) =

r2 − r1

r2
f(0) < 0

Therefore f has exactly one positive root which can be found by Newton’s method starting from
a sufficiently large initial point. Note that if the constraint belongs to v = Mx+ c, then all the ai’s
are in {−1, 0, 1} and polynomial f(ρ) will be quadratic, so there is a closed form for the positive
root.

Appendix G. Proof of Theorem 5

Proof Let x = [x1, x2, . . . , xm]T . Using induction, we prove that by the end of the ith loop of Al-
gorithm 3, the obtained distribution D(i) has the right expectation for x(i) = [x1, . . . , xi, 0, . . . , 0].
Concretely,

∑
h∈H PD(i) [h] · h = M x(i) + c. The desired result is obtained by setting i = m

as v = M x + c (see Appendix E). The base case i = 0 (i.e. before the first loop of the algo-
rithm) is indeed true, since D(0) is initialized to follow PD(0) [c] = 1, and x(0) = 0, thus we have
v(0) = Mx(0) + c = c. Now assume that by the end of the (k − 1)st iteration we have the right
distributionD(k−1), namely v(k−1) =

∑
h∈H PD(k−1) [h]·h. Also assume that the kth comparator is

applied on ith and jth element14. Thus the kth column ofM will beMk = ei−ej . Now, according
to (4) the swap capacity at kth comparator is:

xk + sk = vk−1
j − vk−1

i

=
∑
h∈H

PD(k−1) [h] · (hj − hi)

= −
∑
h∈H

PD(k−1) [h] ·MT
k h

= −MT
k

∑
h∈H

PD(k−1) [h] · h (6)

14. Note that j > i as in sorting networks the swap value is propagated to lower wires
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Now observe:

v(k) = Mx(k) + c

= xkMk +Mx(k−1) + c

= xkMk + v(k−1)

= xkMk +
∑
h∈H

PD(k−1) [h] · h

=
xk

xk + sk
Mk (xk + sk) +

∑
h∈H

PD(k−1) [h] · h

= − xk
xk + sk

MkM
T
k

∑
h∈H

PD(k−1) [h] · h+
∑
h∈H

PD(k−1) [h] · h According to (6)

=

(
I − xk

xk + sk
MkM

T
k

)∑
h∈H

PD(k−1) [h] · h

=

(
sk

xk + sk
I +

xk
xk + sk

Tij

)∑
h∈H

PD(k−1) [h] · h

=
∑
h∈H

sk
xk + sk

PD(k−1) [h]︸ ︷︷ ︸
PD(k) [h]

·h+
xk

xk + sk
PD(k−1) [h]︸ ︷︷ ︸

PD(k) [Tij h]

·Tij h

=
∑
h∈H

PD(k) [h] · h

in which Tij is the row-switching matrix obtained by swapping the ith and jth rows of the iden-
tity matrix. For Huffman trees, the linear maps introduced in Pashkovich (2012) are used to set
the depths of the leaves. It is straightforward to see that these linear maps maintain the equality
v(k) =

∑
h∈H PD(k) [h] · h when applied to v(k) and all h’s in H. This concludes the inductive

proof.

The final distribution D over objects h ∈ H is decomposed into individual actions of swap/pass
through the network of comparators independently. Thus one can draw an instance according to the
distribution by simply doing independent Bernoulli trials associated with the comparators. It is also
easy to see that the time complexity of the algorithm is O(n + m) since one just needs to do m
Bernoulli trials. �

Appendix H. Additional Loss with Approximate Projection

Each iteration of Bregman Projection is described in Appendix F. Since it is basically finding a
positive root of a polynomial (which n/(n+m) of the time is quadratic), each iteration is arguably
efficient. Now suppose, using iterative Bregman projections, we reached at ŵ = (v̂, x̂, ŝ) which
is ε-close to the exact projection w = (v,x, s), that is ‖w − ŵ‖2 < ε. In this analysis, we work
with a two-level approximation: 1) approximating mean vector v by the mean vector ṽ := M x̂+ c
and 2) approximating the mean vector ṽ by the mean vector v(p̂) (where p̂ = x̂/(x̂ + ŝ) with
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coordinate-wise division) obtained from Algorithm 3 with x̂ and ŝ as input. First, observe that:

‖v − ṽ‖2 = ‖M (x− x̂)‖2
≤ ‖M‖F ‖x− x̂‖2
≤ (
√

2n) ε (7)

Now suppose we run Algorithm 3 with x̂ and ŝ as input. Similar to Appendix G, let Mk be the
k-th column ofM , and let Tαβ be the row-switching matrix that is obtained from switching α-th and
β-th row in identity matrix. Additionally, let v(k)(p̂) be the mean vector associated with the distri-
bution D(k) obtained by the end of k-th loop of the Algorithm 3 i.e. v(k)(p̂) :=

∑
h∈H PD(k) [h] ·h

(so v(m)(p̂) = v(p̂)). Also for all k ∈ {1..m} define ṽ(k) := c +
∑k

i=1Mi x̂i (thus ṽ(m) = ṽ).
Furthermore, let δ(k) := v(k)(p̂)− ṽ(k). Now we can write:

v(k)(p̂) =
∑
h∈H

PD(k) [h] · h

=
∑
h∈H

ŝk
x̂k + ŝk

PD(k−1) [h] · h+
x̂k

x̂k + ŝk
PD(k−1) [h] · Tαβ h

= (
ŝk

x̂k + ŝk
I +

x̂k
x̂k + ŝk

Tαβ)
∑
h∈H

PD(k−1) [h] · h

= (I − x̂k
x̂k + ŝk

MkM
T
k )v(k−1)(p̂) since I − Tαβ = MkM

T
k

= (I − x̂k
x̂k + ŝk

MkM
T
k ) ṽ(k−1) + (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

= (I − x̂k
x̂k + ŝk

MkM
T
k )

(
c+

k−1∑
i=1

Mi x̂i

)
+ (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

=

(
c+

k−1∑
i=1

Mi x̂i

)
− x̂k
x̂k + ŝk

MkM
T
k

(
c+

k−1∑
i=1

Mi x̂i

)

+ (I − x̂k
x̂k + ŝk

MkM
T
k ) δ(k−1)

= ṽ(k)−Mkx̂k −
x̂k

x̂k + ŝk
MkM

T
k

(
c+

k−1∑
i=1

Mi x̂i

)
+ (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

︸ ︷︷ ︸
δ(k)

Now define p̂k := x̂k
x̂k+ŝk

and let errk := −MT
k

(
c+

∑k−1
i=1 Mi x̂i

)
− (x̂k + ŝk), which is –

according to Lemma 6 – the error in the k-th row of Ax + s = b using x̂ and ŝ i.e. amount by
which (Ax̂+ ŝ)k falls short of bk, violating the k-th constraint of Ax+ s = b. Thus we obtain:

δ(k) = −Mkx̂k + p̂kMk (x̂k + ŝk + errk) + (I − p̂kMkM
T
k ) δ(k−1)

= p̂kMk errk + (I − p̂kMkM
T
k ) δ(k−1) p̂k =

x̂k
x̂k + ŝk
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Observe that δ(0) = c− c = 0. Thus, by unrolling the recurrence relation above, we have:

v(p̂)− ṽ = δ(m) =

m∑
k=1

p̂kMk errk
m∏

i=k+1

(I − p̂iMiM
T
i )

Note that since I − p̂iMiM
T
i is a n × n doubly-stochastic matrix,

∏k−1
i=1 (I − p̂iMiM

T
i ) is

also a n × n doubly-stochastic matrix, and consequently, its Frobenius norm is at most
√
n. Thus

we have:

‖v(p̂)− ṽ‖2 = ‖δ(m)‖2 ≤
m∑
k=1

|p̂k| ‖Mk‖2 |errk|
√
n ≤
√

2n

m∑
k=1

|errk|

=
√

2n ‖err‖1 err := (err1, . . . , errm)

≤
√

2nm ‖err‖2 (8)

Observe that we can bound the 2-norm of the vector err as follows:

‖err‖2 = ‖ −Ax̂− ŝ+ b‖2
= ‖A(x− x̂) + (s− ŝ)‖2 b = Ax+ s

≤ ‖A‖F ‖x− x̂‖2 + ‖s− ŝ‖2
≤ ‖MTM + I‖F ε+ ε

≤
(
‖MT ‖2 ‖M‖2 + ‖I‖2

)
ε+ ε

= (2n+
√
n+ 1) ε (9)

Therefore, if we perform Algorithm 3 with inputs x̂ and ŝ, combining the inequalities (7), (8),
and (9), the generated mean vector v(p̂) can be shown to be close to the mean vector v associated
with the exact projection:

‖v − v(p̂)‖2 ≤ ‖v − ṽ‖2 + ‖ṽ − v(p̂)‖2
≤ (
√

2n) ε+
√

2nm (2n+
√
n+ 1) ε

=
√

2n (1 +
√
m (2n+

√
n+ 1)) ε

Now we can compute the total expected loss using approximate projection:∣∣∣∣∣
T∑
t=1

vt−1(p̂) · `t
∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

(
vt−1 + (vt−1 − vt−1(p̂))

)
· `t
∣∣∣∣∣

=

∣∣∣∣∣
T∑
t=1

vt−1 · `t +
T∑
t=1

(vt−1 − vt−1(p̂)) · `t
∣∣∣∣∣

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+

∣∣∣∣∣
T∑
t=1

(vt−1 − vt−1(p̂)) · `t
∣∣∣∣∣

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+

T∑
t=1

‖vt−1 − vt−1(p̂)‖2 ‖`t‖2

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+ T

(√
2n (1 +

√
m (2n+

√
n+ 1)) ε

) √
n
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For Huffman trees, the linear maps introduced in Pashkovich (2012) have this property that
‖F (a) − F (a′)‖2 ≤ ‖a − a′‖2 for all vectors a and a′ where F (·) is the linear map. Using this
property, it is straightforward to observe that this analysis can be extended for Huffman trees in
which these linear maps are also used along with the reflection relations.

Setting ε = 1
(
√

2n) (1+
√
m (2n+

√
n+1))T

, we add at most one unit to the expected cumulative loss
with exact projections.
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