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Abstract

Gradient-based optimization and Markov Chain
Monte Carlo sampling can be found at the heart
of several machine learning methods. In high-
dimensional settings, well-known issues such as
slow-mixing, non-convexity and correlations can
hinder the algorithms’ efficiency. In order to
overcome these difficulties, we propose Ada-
Geo, a preconditioning framework for adaptively
learning the geometry of the parameter space
during optimization or sampling. In particu-
lar, we use the Gaussian process latent vari-
able model (GP-LVM) to represent a lower-
dimensional embedding of the parameters, iden-
tifying the underlying Riemannian manifold on
which the optimization or sampling is taking
place. Samples or optimization steps are conse-
quently proposed based on the geometry of the
manifold. We apply our framework to stochas-
tic gradient descent, stochastic gradient Langevin
dynamics, and stochastic gradient Riemannian
Langevin dynamics, and show performance im-
provements for both optimization and sampling.

1 INTRODUCTION

The performances of a large number of machine learning
methods rely heavily on the deployment of two main algo-
rithms: gradient-based optimization (e.g. deep neural net-
works [Goodfellow, Bengio, and Courville, 2016], kernel
methods [Scholkopf and Smola, 2002], variational meth-
ods [Blei, Kucukelbir, and McAuliffe, 2017]) and Markov
Chain Monte Carlo sampling-based learning [e.g. Robert,
2004; Gelman et al., 2013].

The advantages and results that these methods produce are
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well-known and established, but when the geometry of the
parameter space becomes hard to explore (e.g. because of
non-convexity, strong correlations between parameters, or
multimodality), then a number of practical issues arise and
convergence is not reachable within a reasonable amount
of time. In this sense, preconditioning can help: by precon-
ditioning, we mean the application of a transformation (the
so-called preconditioner) to the parameter space, aimed at
helping numerical solvers in their tasks. High-dimensional
preconditioning can be crucial in this sense: by adaptively
correcting the directions in which the algorithm explores
the space, it is possible to obtain significant improvements
in efficiency when trying to sample the relevant domain ar-
eas of e.g. a posterior distribution over the parameters. This
yields a better characterization. In this context, precondi-
tioning refers to the practice of scaling each coordinate dif-
ferently.

In this paper, we propose a new preconditioning algorithm
that exploits the advantages of probabilistic dimensionality
reduction through Gaussian process latent variable mod-
els (GP-LVM) [Lawrence, 2005]. The proposed concept
operates as follows: after ¢ iterations of sampling or op-
timization, a set of samples of parameter vectors ® =
{61,...,0;} is obtained. By defining a latent variable
model, ® can be described through a lower-dimensional
(latent) set €2. Assuming the existence of a mapping f be-
tween the two sets,

0 =f(w) +n, (1)

where w € €2 and 7 denotes a noise term. In particular,
GP-LVMs assume a Gaussian process form for f: this gen-
erative model can capture the non-linearities hidden in the
parameters and can describe them effectively. By making
some assumptions of smoothness over the GP mapping f,
we can access the full distribution of the derivative process
(also a Gaussian Process), and we are not limited to a point
estimation of the natural gradient.

Under the assumption of a smooth mapping, the intrinsic
structure of the topological space that contains the param-
eters is learned as a lower-dimensional Riemannian mani-
fold, equipped with a locally varying metric tensor which
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encapsulates the geometrical properties of the space. In
this work, we suggest performing sampling and optimiza-
tion by exploiting the geometrical insights of the parame-
ter space learned through GP-LVM. Finally, we show an-
alytically how to take advantage of the distribution of the
Riemannian metric tensor which such models yield [Tosi
et al., 2014]. Code for our method is available online at
https://github.com/gabb7/AdaGeo.

To the best of our knowledge, no generic approach based
on dimensionality reduction techniques was previously ap-
plied to improve optimization and sampling methods. The
contributions of this paper are listed as follows:

e we develop a generic framework for combining di-
mensionality reduction techniques with sampling and
optimization methods;

e we contribute to gradient-based optimization methods
by coupling them with appropriate dimensionality re-
duction techniques. In particular, we improve the per-
formances of gradient descent and stochastic gradient
descent, when training respectively a Gaussian Pro-
cess and a neural network;

e we contribute to gradient-based Markov Chain Monte
Carlo by developing an AdaGeo version of stochas-
tic gradient Langevin dynamics; the information gath-
ered through the latent space is employed to compute
the steps of the Markov chain; and

e we extend the approach to stochastic gradient Rieman-
nian Langevin dynamics, thanks to the geometric ten-
sor naturally recovered by the GP-LVM model.

The paper is structured as follows: in section 2 we sum-
marize the previous work that go into the same direction;
section 3 contains a short review of GP-LVMs; in section
4 the novel methods and algorithms this work proposes are
introduced and explained; in section 5 the results of some
experiments are presented; finally in 6 we sum up the con-
tributions of this paper and draw some conclusions.

2 RELATED WORK

Markov Chain Monte Carlo [Robert, 2004] methods are of-
ten the preferred choice for sampling-based Bayesian pos-
terior inference. Recent developments include, among oth-
ers, Hamiltonian Monte Carlo [Neal, 2011] and Particle
MCMC [Andrieu, Doucet, and Holenstein, 2010]: both
are at the core of probabilistic programming languages
(respectively Stan [Carpenter et al., 2016] and Anglican
[Tolpin et al., 2016]) and are deployed to perform Bayesian
probabilistic inference. Recently, stochastic optimization
algorithms [Robbins and Monro, 1951] were combined
with Langevin dynamics [Neal, 2011] to develop a class
of methods based on stochastic gradient descent capable

of sampling from posterior distributions. The resulting al-
gorithm is called stochastic gradient Langevin dynamics
[Welling and Teh, 2011].

In an attempt to overcome the sampling issues introduced
in the previous section, successful approaches include the
results of Riemannian geometry [Do Carmo and Flaherty
Francis, 1992], as in Riemannian Hamiltonian Monte Carlo
[Girolami and Calderhead, 2011] and stochastic gradient
Riemannian Langevin dynamics [Patterson and Teh, 2013].

On the optimization side, we focus our attention on
gradient-based optimization algorithms, such as stochas-
tic gradient descent (SGD). SGD processes only a small
batch of data, chosen randomly within the total dataset,
to approximate the gradients and propose computation-
ally cheap updates. Recent developments mainly address
how learning rates can be dynamically modified through
time (e.g. AdaGrad [Duchi, Hazan, and Singer, 2011],
Adadelta [Zeiler, 2012], Adam [Kingma and Ba, 2014] and
RMSProp).

3 A BRIEF REVIEW OF GP-LVM

The aim of this work is to identify meaningful lower-
dimensional representations of the parameter space in or-
der to boost the performances of sampling and optimization
algorithms. First of all, we introduce the idea of probabilis-
tic dimensionality reduction with latent variable models.
Later, we incorporate Gaussian processes into the frame-
work and illustrate the formulation of Gaussian process la-
tent variable models.

3.1 Probabilistic Dimensionality Reduction with
Latent Variable Models

We would like to relate a set of observed variables @ C R
to a set of lower-dimensional latent (unobserved) variables
Q C R? (with Q < D) and define a joint distribution
over them. By finding such representation we perform di-
mensionality reduction on ®: such a model is known as a
latent variable model.

First, a prior distribution p(€2) is introduced over the latent
space, which induces a distribution over ®. This relation is
described by the probabilistic mapping

;5 = fi(wi) +nj, )

where w; is the latent point associated with the ith observa-
tion 6;, j is the index of the features of ® and 7 is a noise
term (typically n ~ N(0, 3710)).

The classic approach would suppose the latent variables to
be marginalized out and the parameters to be optimized by
maximizing the model likelihood. An alternative method
proposes instead to marginalize the parameters and opti-
mize the latent variables: this procedure (together with
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other considerations and assumptions) would lead to the
formulation of Gaussian process latent variable model (GP-
LVM) [Lawrence, 2005].

3.2 Gaussian process latent variable model

Gaussian processes (GP) describe distributions over func-
tions. They are defined as a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion [Rasmussen and Williams, 2006]. A Gaussian process
is fully specified by a mean function m(-) and a covariance
function k(-, -). If a real-valued stochastic process f(-) is a
Gaussian process, it will be denoted as

fC) ~ GP(m(-), k() 3)
where m(-) and k(-, -) are respectively defined as

m(w) =E[f(w)], )
k(w,w') =E[(f(w) — m(w)) (fw) —m(w))]. &)

From a GP, it is possible to instantiate a Gaussian dis-
tributed vector which has covariance matrix K, where
K;; = k(wi,wj). For simplicity of notation, the mean
function is usually taken to be equal to zero, without loss
of generality.

In the context of probabilistic dimensionality reduction,
Gaussian process latent variable models use GPs to define
a prior over the mapping f (appearing in eq. 2). As sug-
gested above, the likelihood of the data @ given the latent
2 is computed by marginalizing the mapping and optimiz-
ing the latent variables. The resulting likelihood is given
by

—

j=1
B ~ (©)
=[[N(6.;10,K).
j=1
Thus eq. 2 becomes
Qi’j = K(wi7ﬂ)K71®;7j +n;. (7)

For differentiable kernels, it is possible to compute the Ja-
cobian of the mapping f analytically. Let J be such Jaco-
bian, defined as

_9fi

J 8wj'

In the context of GP-LVMs, the Jacobian follows a Gaus-
sian distribution. We can see this if the rows of J are as-
sumed to be independent:

J; ®)

D

pIQ.8) =[N | na, . Za), ©)

i=1

and in the case of GP-LVM, for every latent point w,,

—-

p(‘] | G,Qaﬂ) N(Jz, | u’Ji,;vEJ)
=1
D ~ ~
=TIV (3. | oKL KSLO.,
i=1
K. — 0K} K LK. )
(10)
where:
- Ok(wy,, w.) n=1,...,N
()= oo 12l O
N Phlw,w.)  i=1,...,Q
K, ) =0t TR (12)
( )u 90 9o ® I=1,...,Q

4 OUR APPROACH

In the next sections we show how our GP-LVM-based tech-
nique can be applied to optimization and sampling algo-
rithms. First, in section 4.1 we take a look at gradient-
based optimization. Second, we consider the framework
of Bayesian sampling (section 4.2). Third, the theoretical
framework for Riemannian extensions is described in sec-
tion 4.3.

4.1 AdaGeo Gradient-based Optimization

Optimization represents the most straightforward applica-
tion of our approach. Consider the problem of finding the
minimum of an objective function ¢(0):

0" = argmeing(ﬂ). (13)

This could be tackled with an iterative gradient-based
method of the form:

0,41 =6, — A6, (14)

where AB; = A60,(Vgg). We propose, after ¢ steps of
optimization, to: firstly, train the GP-LVM on the samples
® = {04,...,0,}; secondly, build the supporting latent
space (2 and; finally, move the computation to this latent
space to exploit its meaniningful topological structures,

Wiyl = Wi — Awt. (15)

The gradients Vgg(€), computed in the observed space,
can be mapped into the latent space through the expected
Jacobian J¢ of the transformation f:

Vug(f(w)) = E[J¢]Veg(). (16)

The mapping in eq. 2 can yield the actual update in
the observed parameter space. It is straightforward to
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plug this framework into gradient-based optimization algo-
rithms and formulate an AdaGeo version of the previously
cited stochastic gradient descent and relative developments
(e.g. AdaGrad [Duchi, Hazan, and Singer, 2011], Adadelta
[Zeiler, 2012] and Adam [Kingma and Ba, 2014]).

Empirically, we find that the best strategy is to alternate
phases of classic optimization updates to phases of latent
updates. This is to overcome the exploration issues GP-
LVMs suffer from: these models tend to map those por-
tions of the space that data did not cover onto a single point
[Duvenaud et al., 2014]. Alternating the updates means
being able to explore the space through SGD (or one of
its variants), codify it with GP-LVM and exploit the newly
acquired topological information until exhaustion; the pro-
cess is then repeated. This scheme becomes necessary as
the GP-LVM optimizer starts to saturate and gets stuck
somewhere along the way if the optimum is far from the
starting point. The algorithm can be written as shown in al-
gorithm 1. Here Ty and T, refer to the number of iterations
performed respectively in the parameter and latent spaces.

Algorithm 1 AdaGeo gradient-based optimization

1: while convergence is not reached do
2: Perform Ty iterations with classic updates:

Af; = A8 (Vey(6))

3: Train the GP-LVM model on the samples got by
optimization

4: Continue performing T, using the AdaGeo opti-
mizer:

Aw; = Awi(Vg(f(w)))
Wil = Wy — Awt
and moving back to the parameter space with
011 = f(wig1).

5: end while.

4.2 AdaGeo Bayesian Sampling

Consider a dataset X = {xj,...,xy}, modeled with
a generative model whose likelihood is p(X,0) =
1Y, p(xi, 0) and parameterized by 8 € R”, on which we
impose some prior p(@). To perform statistical inference,
we would like to be able to sample from the posterior

p(X | 0)p(6)

p(o1%) = P2

a7

However, the denominator (known as model evidence, or
marginal likelihood) is often intractable and hence doesn’t
allow the posterior distribution to be expressed in a closed-
form. An approximation is consequently required: Monte

Carlo-based sampling is one of the most popular ap-
proaches used to estimate the posterior by drawing a set
of iid samples 64, . .., 0y from p(6 | X).

We specifically focus on Metropolis-adjusted Langevin al-
gorithms (MALA). Part of the family of Markov Chain
Monte Carlo, these methods rely on two main mechanisms:

e Langevin Dynamics [Neal, 2011], where opportunely
scaled Gaussian noise is used alongside the gradients
of the target distribution;

e Metropolis-Hastings acceptance/rejection steps.

While Langevin dynamics push the system towards re-
gions of high probability, the acceptance/rejection steps
help mixing and convergence.

4.2.1 Stochastic Gradient Langevin Dynamics

Stochastic gradient Langevin dynamics (SGLD) [Welling
and Teh, 2011] belongs to the class of samplers previ-
ously described and extends stochastic optimization [Rob-
bins and Monro, 1951] results. Typically, the iterative al-
gorithms belonging to this category behave as follows. At
each step ¢, a mini-batch X; = {xy1,...,X¢,} is stochas-
tically extracted from the dataset and employed to estimate
the gradients in the update rule

¢ N
AG, = é (Vo log p(6;) + — ; Vg log p(xti | 00) :

(18)
where €, is a time-evolving learning rate. The mini-batch
strategy allows a faster (albeit less precise) approximation
of the gradient that doesn’t need a pass over the whole
dataset: this gives improved scalability.

Unfortunately MAP estimations would not capture the ef-
fects of uncertainty and lead to overfitting (and possibly to
other troubles with e.g. multimodality). A classic Bayesian
way to deal with uncertainty consists of using Markov
Chain Monte Carlo [Metropolis et al., 1953] (MCMC).
As mentioned above, by combining stochastic optimization
updates with Langevin dynamics we get the SGLD algo-
rithm:

€ N &
AG, = 5 (Ve logp(6:) + — ;Ve log p(xi | 09) +
e ~ N(Oa €tI)>
(19)
where the step sizes decreases towards 0, with the learning
rate satisfying

o
E €t = OQ,
t=1

oo
D el < oo (20)
t=1
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Ast — oo the samples will approach the posterior distribu-
tion. In particular, for large enough ¢ the system will transi-
tion into Langevin dynamics and converge to the true pos-
terior distribution. When Langevin dynamics occur, the al-
gorithm does not need acceptance/rejection steps [Welling
and Teh, 2011].

4.2.2 AdaGeo Stochastic Gradient Langevin
Dynamics

Next, we show how our framework can be integrated into
SGLD. After ¢ steps of sampling, we obtain a set of param-
eter vectors @ = {64,...,0;}. With GP-LVM, it is pos-
sible to construct the ()-dimensional latent space €2 (where
@ < D), which would condense the relevant features of
© in a simpler configuration. The update can be now per-
formed in the latent space; subsequently the GP-LVM map-
ping f(w) in eq. 2 would be used to move back onto the
original space and obtain the new observation.

In the case of the SGLD sampler, the latent update can be
written as:

Awt =

% (Vw log p(f(w:)) + % va logp(xtz‘f(wt))> + 7,

i=1

21
mne ~ N(O, 6,51).

As before, we can compute the “latent” gradients of the
likelihood with the Jacobian of the mapping f (eq. 16).
The new algorithm we built, AdaGeo Stochastic Gradient
Langevin Dynamics, as we call it, is described as algorithm
2.

Algorithm 2 AdaGeo Stochastic Gradient Langevin dy-
namics

1: Sample ¢ values in the original space using classic
SGLD and construct the set @ = {04, ...,6;}

2: Train the GP-LVM model on ®, obtaining in this way
amappingf: Q2 — ©

3: Choose wy as the latent point corresponding to the last
item in the dataset 8, and use it as next starting point

4: fort, =1: Ndo

5: Compute the update in the latent space as described
in eq. 21, which yields w;,_ 1

6: Compute ;1 through: ;1 = f(ws_+1)

7: end for

4.3 Riemannian Extensions

In the following sections the theoretical framework neces-
sary to plug GP-LVM into the Riemannian development of
the stochastic gradient Langevin dynamics is shown and
explained.

4.3.1 GP-LVM Local Metric

A trained GP-LVM can grant access to relevant information
about the intrinsic geometry of the latent space, i.e. the
metric tensor.

If the covariance function of a Gaussian process is differ-
entiable (as it is the case, for example, for the widely-used
squared exponential), it is straightforward to show that the
mapping f in eq. 2 is also differentiable. Under this as-
sumption, the pull-back metric acting from the latent space
2 to the observed space @ can be computed [Do Carmo
and Flaherty Francis, 1992]. Thus, we are able to define
the Riemannian metric tensor over the manifold. The Rie-
mannian metric G is defined as follows.

Definition (Riemannian metric) A Riemannian metric G
on a manifold M is a symmetric and positive definite ma-
trix which defines a smoothly varying inner product:

(a,b), =a'J"Jb=a'G(z)b (22)

in the tangent space T, M, for each point x € M, a,b €
T, M, where {-,-), denotes the inner product. The matrix
G is called the metric tensor.

Intuitively, the metric tensor G gives information about the
geometry (e.g. related to distances and geodetic lines) of
the latent space. Let J be the Jacobian of f. Then the tensor

G=J'J (23)

defines a local inner product over the latent space. Eq. 10,
together with eq. 23, yields a distribution over the metric
tensor G [Tosi et al., 2014]

G ~ Wo (D, %5,E[J7] E[JD, (24)

where WV denotes the non-central Wishart distribution [An-
derson, 1946], which is a generalization to multiple dimen-
sions of the chi-squared distribution.

The expected metric tensor can be computed as
E[J'J]=E[IT]E[J] + DX;. (25)

Note that the second term in the last equation, depending
on the covariance of the Jacobian, makes the metric tensor
expand as the uncertainty over the mapping increases.

4.3.2 Stochastic Gradient Riemannian Langevin
Dynamics

As mentioned above, issues in MCMC schemes may arise
if the components of 8 have different scales or large corre-
lations, as in these cases the isotropic proposal distribution
of the stochastic gradient Langevin dynamics will lead to
slow mixing. We propose to gather information about the
geometry of the space though GP-LVM, but an alternative
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approach employing preconditioning tools consists in ap-
plying the Riemannian metric tensor G to the updates. In
this way the issues encountered in the parameter space (e.g.
different scales or large correlations) could be overcome
and sampling improved.

The stochastic gradient Riemannian Langevin dynamics
(SGRLD) sampler [Patterson and Teh, 2013] puts together
the advantages of exploiting a known Riemannian geom-
etry with the scalability of the stochastic optimization ap-
proaches. The update rule can be written as:

€ 1
Al = éﬂ(et) +G72(0)m:

(26)
e ~ N(07 EtI),
where the jth component of y(8) is given by
n); =
1 N &
G~ (0) (Ve log p(6) + — > Velogp(xy | 0))
i=1 J
D 9G(8)
-2 G (o G (o

> (a0 e o)

D
+ (G71(9)),,Tr (G*(G)f’é?) )

With respect to the non-Riemannian version of the algo-
rithm, it is possible to make some changes: the first term in
1(0) is the gradient of the log-likelihood, already seen be-
fore, preconditioned with the matrix G(0) and hence tak-
ing into account the geometry of the space; the second and
third term describe the derivatives of the curvature of the
manifold. Notice the noise term in (26) is appropriately
preconditioned as well. Typically the Fisher information
matrix is used as G, but of course an analytical form is
necessary (and rarely obtainable in the majority of prob-
lems).

4.3.3 AdaGeo Stochastic Gradient Riemannian
Langevin Dynamics

Beyond the classic formulation of SGRLD, we now de-
scribe our proposal for incorporating dimensionality reduc-
tion into its framework. Analogous to the SGLD case, the
update in the observed space in eq. 26 can be converted into
the one acting in the latent space:

€ _1
Aw; = éﬂ(wt) + Go® (wi)m
mne ~ N(O, EtI),

(28)

where the jth component of p(w) is given by
p(w); =

<G;1(w) (vw logp(f(w))—O—% Z Ve logp(xi | f(w)))>

J

&uk

< W) ~—1
—2; (G;l(w)MGw (w))

ik

Q
+3 (G5 (), Tr (G;l(w)%iw)) .9

k=1

The matrix G, is computed by the GP-LVM according
to eq. 24. This is an important theoretical contribution
of our paper: if the update is performed in the latent
space, the Riemannian metric tensor can be accessed and
exploited to hopefully increase the quality of the updates
and the exploration of the (original) observed space. The
proposed algorithm (AdaGeo Stochastic Gradient Rieman-
nian Langevin Dynamics) is described in algorithm 2, with
AdaGeo-SGRLD updates instead of AdaGeo-SGLD ones.

S RESULTS

This section contains the experimental results: in section
5.1 AdaGeo-SGLD is used to sample from a “banana” dis-
tribution; section 5.2 shows how a AdaGeo-powered ver-
sion of SGD can be used to speed up training of a small
neural network; in section 5.3 it is possible to find an ap-
plication of AdaGeo to gradient descent to train a Gaussian
Process.

5.1 Sampling High-dimensional Banana Distributions

We employed the AdaGeo version of the SGLD sampler to
sample from a probability density, the so-called “banana”
distribution. In D dimensions this particular PDF p(0) as-
sumes the form

07 (02 — D07 +100b)> Z

200 2

p(0) o exp

(30)
which is a particularly interesting density to sample from:
the only observable interaction occurs between the first two
components of @ (visible in figure 1), masked by the re-
maining components which act as Gaussian noise. First,
a vanilla Metropolis-Hastings sampler is run for 35,000
steps, with 10,000 samples discarded as burn-in and a thin-
ning factor of 250, yielding 100 samples. Due to the
high dimensionality of the problem, samplers relying on
Langevin dynamics would require prohibitive amounts of
time to reach convergence, hence the choice of the sim-
ple Metropolis-Hastings. Afterwards, a GP-LVM model
is trained on the 100 samples, using squared exponential
kernel and latent dimension = 5. In this experiment
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Figure 1: Contour plot showing the level curves of the
density generated by a 50-dimensional banana distribution.
The figure displays the interaction between the first and
second components of 6.

and in the following ones, @ is chosen based on the best
empirical results (an alternative to explore would be using
an ARD kernel to identify the meaningful latent compo-
nents). At this point it is possible to sample directly from
the 5-dimensional latent space, using then the probabilistic
mapping to move back to the real “observed” space. The
update in the latent space is computed using the SGLD rule
(section 4.2.1), whose functioning is made possible by the
reduced dimensionality. 1000 burn in iterations are allowed
before starting to sample 250 samples, with a thinning fac-
tor of 100 (here the total number of steps is 26,000). No-
tice that in this case we don’t alternate classic and latent
updates. Results are shown in figure 2 and 3: it is pos-
sible to see that the relevant areas of the distributions are
well covered by the samples, and that the main characteris-
tics are represented properly (e.g. the banana-shaped struc-
ture in fig. 2 and the noise in fig. 3). Together with a
better coverage of the distribution, it is important to note
that a relevant speed-up is obtained, as the sampler acts
on a 5-dimensional latent space. Autocorrelation plots can
be found in the supplementary material (appendix A) and
show quantitatively the improvement in samples quality.

5.2 Logistic Regression on MNIST with Neural
Networks

The second experiment aims at speeding up the training
algorithm for a neural network used for classification on
the MNIST dataset, while showing the advantages that our
method could bring to optimization. Logistic regression on
MNIST is implemented through a simple fully connected
neural network, consisting of a single layer of 784 nodes
featuring a sigmoid activation function. The total num-

v
* MH sampler £
10 4 +AdaGeo-sampler s
¢ ?
< 0
—10
T T T
—20 —10 0 10 20

Figure 2: First, our AdaGeo-SGLD sampler trains on the
samples returned by a first run of a Metropolis-Hastings
algorithm (samples in red). Thanks to those, a lower-
dimensional latent space is identified and then sampled
from using a SGLD method. The samples obtained using a
5-dimensional latent space are plotted in blue.

1 |
0 N [ ]
<
—1
-2 +MH sampler
- AdaGeo-sampler
T T T T T

—-1.5 —1 —0.5 0 0.5 1 1.5

Figure 3: Confounding noise happening between the com-
ponents of 8. As an example, we show the samples of 603
against 015, but this kind of plot would be similar for every
pair of components.



AdaGeo: Adaptive Geometric Learning for Optimization and Sampling

10044 .
—SGD
—— AdaGeo-SGD
5 10042 |
k3]
=]
£
@ 0 |
.—8 10
on
g
=}
'510—0 2 |
Z
Z
1070.4 |
I I I I I I

0 1 2 3 4 5 6
n of epochs

Figure 4: Neural network loss function during training, ob-
tained with vanilla SGD (red) and AdaGeo-SGD (blue), as
described in section 5.2.

ber of weights that such a network has is 7,850. Out of
the 60,000 MNIST images, 50,000 are used for training
and 10,000 for testing. During training, cross-entropy loss
is minimized. As a fair comparison, we choose to train
the network using vanilla stochastic gradient descent and
the corresponding AdaGeo version, described as algorithm
1. For the MNIST experiment we have chosen Ty = 20
and T,, = 30, while we have used a surprisingly low-
dimensional latent space with ) = 9. Results are shown
in figure 4: with AdaGeo-SGD updates we are able to out-
perform vanilla SGD and reach the local optimum almost 2
epochs in advance.

5.3 Gaussian Process Training

The third and last experiment demonstrates further the ad-
vantages that AdaGeo could bring to optimization. Here
we make use of the Concrete Compressive Strength Data
Set [Yeh, 1998]: the model trains on 8 quantitative vari-
ables in order to predict a scalar real quantity. The idea is
to use a simpler kernel (the GP-LVM one, squared expo-
nential) to fit the hyperparameters of a more complex one.
The latter is composed by a linear composition of differ-
ent kernels [Rasmussen and Williams, 2006]: radial basis
function, Matérn kernel with parameter v = 5/2, another
Matérn kernel with parameter v = 3/2, a linear kernel and
some bias, yielding a total of 9 parameters.

We run both gradient descent with Nesterov momentum
and AdaGeo-gradient descent for 1000 iterations, with
Te = 15, T, = 15, and learning rates respectively €jyent =
1073, €opserved = 1075, The dimension of the latent space is
equal to 3. As we can see from figure 5, AdaGeo success-
fully improves the performances of gradient descent and
significantly speeds up training.
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Figure 5: Negative log-likelihood during training of a
Gaussian Process, as described in section 5.3. A latent
space of dimension 3 is used here to optimize a function
whose parameters lie in a 9-dimensional space.

6 CONCLUSION

We propose a novel method that introduces dimensionality
reduction techniques, namely Gaussian process latent vari-
able models, into optimization and sampling algorithms, in
order to boost their performances and overcome the issues
deriving from high dimensionality (non-convexity, corre-
lations, different scales etc.). In particular, we show how
to include our approach in existing (gradient-based) opti-
mization and sampling (stochastic gradient Langevin dy-
namics, stochastic gradient Riemannian Langevin dynam-
ics) algorithms. We prove that in this way, by identifying
the underlying topological structure of the variable space,
sampling and optimization performances are significantly
improved. Furthermore, the methods that this work illus-
trates help sampling even in the simpler cases that don’t re-
quire gradients (Metropolis-Hastings, Gibbs, etc.). Indeed,
through dimensionality reduction the problems of sampling
a high-dimensional space are efficiently tackled.

Due to its modular nature, the approach presented in this
paper is suitable for a large number of potential applica-
tions (more sophisticated gradient-based optimization al-
gorithms, variational inference, Hamiltonian Monte Carlo,
Riemannian stochastic gradient descent). The discussion of
the particular formulations of those fall beyond the scope of
this paper and will be the subject of future research efforts.
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