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Abstract

Optimal transport (OT) distances are finding
evermore applications in machine learning
and computer vision, but their wide spread
use in larger-scale problems is impeded by
their high computational cost. In this work
we develop a family of fast and practical
stochastic algorithms for solving the optimal
transport problem with an entropic penal-
ization. This work extends the recently de-
veloped Greenkhorn algorithm, in the sense
that, the Greenkhorn algorithm is a limit-
ing case of this family. We also provide a
simple and general convergence theorem for
all algorithms in the class, with rates that
match the best known rates of Greenkorn
and the Sinkhorn algorithm, and conclude
with numerical experiments that show under
what regime of penalization the new stochas-
tic methods are faster than the aforemen-
tioned methods.

1 Introduction

Probability distributions are the backbone of ma-
chine learning and statistics: we use them to represent
a variety of objects in learning tasks, ranging from
statistical models to data representations. Compar-
ing different distributions is often done using informa-
tion divergences such as Kullback-Leiber divergence,
yet this discards much of structural and geometric in-
formation present in the distribution. Developing a
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practical measure that captures the geometry of the
probability distribution is a problem to which the op-
timal transport (OT) distance offers an attractive so-
lution.

First formulated by Monge 1781 then revisited by Kan-
torovich 1942, OT distances have the inherent partic-
ularity of capturing the geometrical properties of the
probability measures. However, they have a drawback:
computing an OT distance has a typical cost of the
order O(n3 log n) for histograms of n points (Pele and
Werman 2009). This prevents the application of OT
distances in large-scale machine learning problems.

The idea of entropy penalization, proposed by Cuturi
2013, represents a key milestone in this field. The
benefits of such a regularization scheme are multiple:
the regularized problem has a unique solution, greater
computational stability, and can be solved efficiently
using the Sinkhorn algorithm. This new family of
distances has been used in a wide range of applica-
tions, such as image classification (Cuturi 2013), un-
supervised learning using Restricted Boltzmann Ma-
chines (Montavon, Müller, and Cuturi 2016), learning
with a Wasserstein Loss ( Frogner et al. 2015), domain
adaptation (Courty, Flamary, and Tuia 2014), com-
puter graphics (Solomon et al. 2015), and neuroimag-
ing (Gramfort, Peyré, and Cuturi 2015). The grow-
ing interest in applications for the Sinkhorn distances
has sparked the development of new and efficient al-
gorithms for its calculation, such as stochastic gradi-
ent based algorithms by Genevay et al. 2016, and fast
methods to compute Wasserstein barycenters (Cuturi
and Doucet 2014). To this end, Altschuler, Weed, and
Rigollet 2017 have developed the Greenkhorn algo-
rithm, a greedy variant of the Sinkhorn algorithm that
selects columns and rows to be updated that most vio-
late the constraints. The authors present both promis-
ing numerical results, besting the Sinkhorn algorithm,
and an insightful theoretical complexity that is linear
in n.

Our contribution: We expand on the idea of greedy
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column and row selection by proposing a family of al-
gorithms that assign a probability of updating each
row and column. Moreover, our family allows for any
sampling so long as the probabilities are proportional
to the violation of each column or row with respect
to the transport polytope. We call our algorithm
Stochastic Sinkhorn. We explain the idea behind this
family of methods, show how Greenkhorn is a limiting
case, and propose several other instances of the algo-
rithm. We develop an all encompassing convergence
theorem that recovers the best known O(n/ε2) iter-
ation complexity for the Greenkhorn algorithm. Fi-
nally, we exhibit some numerical experiments that ex-
plicit the relevance of Stochastic Sinkhorn in a par-
ticular regime of penalization, along with a discus-
sion around the computational properties of the al-
gorithms.

1.1 The Optimal Transport problem

The discrete OT problem can be seen as a problem of
optimal resource allocation given by a linear program

T ∗ ∈ arg min
T∈Rn×n

+

〈T,C〉 ,

subject to T1 = r, T>1 = c, (1)

where r, c ∈ ∆n
def
= {x ∈ Rn |

∑n
i=1 xi = 1} are respec-

tively the initial and target distributions, C ∈ Rn×n+

the transport cost matrix and 1 is a vector of all ones
of an appropriate dimension. Matrices T ∈ Rn×n+ that
satisfy the transport constraints in (1) represent valid
transportation maps between r and c, where Tij will
represent the mass transported from ri to cj . The
matrix T ∗ is a transportation map that minimizes the
transportation cost, the computed minimum 〈T ∗, C〉 is
the optimal transport value and it defines a distance
between r and c (Villani 2008). The transportation
map T ∗ can be computed using the network simplex or
interior point methods (Pele and Werman 2009), but
the computational cost is in both cases O(n3 log(n)).
It is this cubic cost in the dimension that makes this
notion of distance infeasible in high-dimensional set-
tings, such as in computer vision or high dimensional
inference.

1.2 Entropic regularization and the Sinkhorn
algorithm

An interesting approach to alleviate the computational
burden was proposed by Cuturi 2013 through the in-
troduction of an entropic regularization as follows

T ∗λ = arg min
T∈Rn×n

+

〈T,C〉 − 1

λ
E(T ),

subject to T1 = r, T>1 = c, (2)

where the entropy is E(T ) =
∑n
i,j=1−Tij log(Tij).

Due to the strong convexity introduced by the entropic
regularization, the problem (2) now has a unique so-
lution. What is more, using duality theory (2) has a
smooth and unconstrained dual formulation. Leverag-
ing on the dual Cuturi showed that (2) can be equiva-
lently re-written as the following matrix scaling prob-
lem: find u, v ∈ Rn+ such that

D(u)AD(v)1 = r and D(v)A>D(u)1 = c, (3)

where A = e−λC with the exponential taken element-
wise and D(u) denotes a diagonal matrix with the
elements of u on the diagonal. With the (u, v) so-
lution to (3), the solution to (2) is simply given by
T ∗λ = D(u)AD(v). This matrix scaling problem can
now be efficiently solved using the celebrated Sinkhorn
algorithm, as proposed by Cuturi 2013.

The Sinkhorn algorithm is a fixed point iteration algo-
rithm for solving (3) which alternately scales the row
and column sums to match the desired marginals

uk+1 = r./(Avk),

.vk+1 = c./(A>uk), (4)

where we have used x./y to denote elementwise divi-
sion of vectors1. On top of being a simple and fast al-
gorithm, the Sinkhorn algorithm is also GPU-friendly
since its highest cost is a matrix vector product which
can be parallelized. The resulting distance 〈T ∗λ , C〉 de-
fined by (2) has been dubbed the Sinkhorn distance.

Notation: For the sake of brevity, we use r(T ) = T1
and c(T ) = T>1 to denote the row sum and column
sum vectors of T , respectively. Let Ur,c be the trans-
port polytope defined by

Ur,c
def
= {T ∈ Rn×n+ | r(T ) = r, c(T ) = c}.

Since we need to solve (3), in order to discuss conver-
gence results, we need to define a distance that mea-
sures how far are the scaled iterates from the transport
polytope Ur,c. We will use in all the following work the
`1 distance

dist(A,Ur,c)
def
= ‖r(A)− r‖1 + ‖c(A)− c‖1 (5)

which, as argued by Altschuler, Weed, and Rigollet,
is much more suitable to compare probability distri-
butions than the `2 distance. A simple example to
see this: taking p = ( 1

n , ...
1
n , 0....0) ∈ ∆2n and q =

(0, 0....0, 1
n , ...

1
n ) ∈ ∆2n as two probability distribu-

tions with disjoint supports, we see that ‖p− q‖1 = 2,
while ‖p−q‖2 = 1√

n
and thus decreases as n increases,

despite being clearly distinct distributions for all n.

1In other words x./y = D(y)−1x
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1.3 Greedy Sinkhorn: Greenkhorn algorithm

Greenkhorn is a greedy version of Sinkhorn proposed
by Altschuler, Weed, and Rigollet 2017 where at each
iteration only one coordinate of u or v is updated
in (4), picking each time the one with highest violation
with respect to the corresponding marginal. These vi-
olations are computed with the following function

ρ(a, b) = b− a+ a log(
a

b
), for a, b ∈ R+ (6)

dρ(u, v) =

n∑
i=1

ρ(ui, vi), for u, v ∈ Rn+. (7)

For vectors in the simplex u, v ∈ ∆n, we have
that dρ(u, v) coincides with the Kullback-Leiber diver-
gence. For this reason, dρ is known as the generalized
Kullback-Leiber divergence. It is not a distance be-
cause it is not symmetric, but it verifies dρ ≥ 0 and
dρ(u, v) = 0 ⇔ u = v. Therefore, if u, v are two vec-
tors of positive entries, dρ(u, v) will return some mea-
surement on how far they are from each other. Let
ρr(M) (resp. ρc(M)) be the vector of the row sum
violations (resp. column sum violations) of a given
matrix M ∈ Rn×n+ with respect to r (resp. c), where
the violations are computed using ρ, that is

ρr(M) = (ρ(ri, ri(M)))i=1..n ∈ Rn+,
ρc(M) = (ρ(ci, ci(M)))i=1..n ∈ Rn+.

We will refer to the concatenation of these two vectors
as the marginal violations denoted by

ρ(M) = (ρr(M), ρc(M))i=1..n ∈ R2n
+ . (8)

The marginal violations vector ρ(M) measures how far
the matrix M is from the transport polytope Ur,c in
the sense that M ∈ Ur,c if and only if all entries of
ρ(M) are equal to zero.

The Greenkhorn algorithm uses ρ(M) to guide the
choice of which row or column should be updated. As
the name indicates, the algorithm chooses the row or
column index greedily, that is the index of maximal
value in ρ(M), see Algorithm 1. This greedy variation
of Sinkhorn is expected to perform better in practice,
mainly because it does not update rows or columns
that already match the correct marginal sum value.

Altschuler, Weed, and Rigollet proved that, to reach
an ε > 0 approximate solution, the Greenkhorn al-
gorithm and the Sinkhorn algorithm converge in at
most 28nε−2 log( sl ) and 28ε−2 log( sl ) iterations, re-
spectively, where s = ‖A‖1 is the total mass and l the
smallest entry of the matrix A. Altschuler, Weed, and
Rigollet also claimed that the Greenkhorn algorithm
can be implemented in such a way that the iteration
cost is linear in n, consequently the overall complex-
ity of either the Sinkhorn algorithm or Greenkhorn is

Algorithm 1: Greenkhorn

Data: A ∈ Rn×n+ , r, c ∈ Rn+, ε > 0
1 initialization: u,v = 1
2 while dist(D(u)AD(v),Ur,c) ≥ ε do
3 I = arg maxi=1..2n ρ(D(u)AD(v))
4 if I ≤ n (corresponds a row update) then
5 uI = rI ./(Av)I
6 else
7 vI−n = cI−n./(A

>u)I−n
Result: u, v ∈ Rn+ such that D(u)AD(v) ∈ Ur,c

quadratic in n, which is stark contrast to the cubic
dependency of the interior point type methods (Pele
and Werman 2009). Since the authors omitted the de-
tails on how such a linear iteration complexity can be
achieved, we have given the details in Section 4.1. The
ε−2 dependency of Greenkhorn and Sinkhorn is also in
contrast with logarithmic dependency on ε in interior
point based methods. Thus Greenkhorn and Sinkhorn
are well suited for the large dimensional setting where
we can tolerate an approximate solution. This is typi-
cally the case in the problems that we are interested in
here, such as problems that arise in large dimensional
machine learning.

2 Greedy Stochastic Sinkhorn

While the greedy strategy in the Greenkhorn algo-
rithm is, in some sense, optimal for one step, it may
not be the best strategy over a number of iterations.
Here we introduce a more flexible, and less aggressive
updating strategy.

At each iteration of the Stochastic Sinkhorn algorithm,
instead of picking the column or row with the highest
violation, as is done in the Greenkhorn algorithm, we
will assign to each row and column a probability of
being updated. Because we want the columns and rows
with highest violation to be updated more frequently,
we assign a higher probability to columns and rows
with a higher violation. We do this using an increasing
probability function.

Definition 1 We say that Ψ is a increasing probabil-
ity function if

∀h ∈ R2n
+ Ψ(h) =

(
g(hk)∑2n
i=1 g(hi)

)
k=1..2n

∈ ∆2n (9)

where g : R+ → R+ is an increasing positive function.

Several examples of an increasing probability function
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are given as follow

Ψ(h) =

(
1

2n

)
i=1,...,2n

, (10)

Ψ(h) =

(
hαi∑

j=1..2n h
α
j

)
i=1..2n

, (11)

Ψ(h) =

(
e(hi/T )∑

j=1..2n e
(hj/T )

)
i=1..2n

, (12)

where T, α > 0 are parameters. If ρ is our current
vector of violations, then Ψ(ρ) = p ∈ ∆2n defines
a probability distribution. Furthermore, since Ψ is
built on top of an increasing function, a larger viola-
tion ρi will result in a larger probability pi. See Algo-
rithm 2 for the pseudocode of this family of stochastic
algorithms. In the next section we prove that Algo-
rithm 2 converges for any increasing probability func-
tion. This is particularly interesting when we consider
that the Greenkhorn algorithm is a limiting case of
Stochastic Sinkhorn. Indeed, the selection criteria of
the Greenhkorn algorithm corresponds to taking the
limit over α→∞ of the probability function (11).

3 Convergence analysis

We now present our main convergence theorem, dis-
cuss its consequences and proof.

Theorem 2 Consider the sequence of matrices Ak
def
=

D(uk)AD(vk) produced by Algorithm 2 with an in-
creasing probability function Ψ as defined in (9). Then
for a given ε > 0, we have that

∃k ∈ N, k ≤ 28n

ε2
log
(s
`

)
, (13)

such that E
[
dist(Ak, Ur,c)

]
≤ ε.

We make several interesting remarks on the conse-
quence of this theorem.

1. Since dist(Ak, Ur,c) is a positive random variable,
by Markov’s inequality we have that the con-
vergence in expectation given in Theorem 2 also
proves that dist(Ak, Ur,c) converges in probability
to zero. The variance also converges to zero at a
O(n/ ε) rate, as proven in the appendix.

2. The convergence rate given in Theorem 2 is ex-
actly the same rate as given by Altschuler, Weed,
and Rigollet 2017 for the Greenkorn algorithm.

3. Remarkably the rate of convergence does not de-
pend on the choice of probability function Ψ.
Thus, in theory, a uniform selection of the coor-
dinates gives the same asymptotic convergence as
the Greenkhorn selection criteria.

Algorithm 2: Stochastic Sinkhorn

Data: A ∈ Rn×n+ , r, c ∈ Rn+, Ψ, ε
Result: u, v ∈ Rn+ such that D(u)AD(v) ∈ Ur,c

1 initialization: u,v = 1
2 while dist(D(u)AD(v),Ur,c) ≥ ε do
3 p = Ψ(ρ(D(u)AD(v))) ∈ ∆2n

4 Sample index I with
P (I = i) = pi, ∀i ∈ {1, 2, . . . , 2n}

5 if I ≤ n (corresponds a row update) then
6 uI = rI ./(Av)I
7 else
8 vI−n = cI−n./(A

>u)I−n

Before moving onto the proof, we need several auxil-
iary lemmas.

3.1 Useful lemmas

Our analysis is based on the dual objective of (1) given
by

f(x, y) =

n∑
i,j=1

Aije
xi+yj − 〈r, x〉 − 〈c, y〉 . (14)

Let X = D(ex) and Y = D(ey). By writing out the
first order optimality conditions of f(x, y) we arrive at

r(XAY ) = r and c(XAY ) = c . (15)

That is, the row sum and column sum of XAY is r
and c, respectively. By denoting u = ex and v = ey

the given scaling vectors, we see that (15) is the matrix
scaling problem (3). Throughout this section we use
(uk, vk) to denote the (u, v) vectors of Algorithm 2
after completing the kth iteration. We also denote
(xk, yk) = (log(uk), log(vk)).

The proof of Theorem 2 is based on the four next lem-
mas. Our first lemma is an extension to the stochastic
setting of a lemma by Altschuler, Weed, and Rigollet.
It links the expectation of the dual objective value to
a type of condition number of the matrix A.

Lemma 3 Let ((uk, vk))k∈N and the associated
((xk, yk))k∈N be a sequence of scaling vectors produced
by the Stochastic Sinkhorn Algorithm 2. Then the fol-
lowing inequalities hold

E
[
f(xk, yk)

]
− min
x,y∈R

f(x, y) ≤ f(0, 0)− min
x,y∈R

f(x, y)

≤ log(
s

l
),

where l = mini,j |Aij | and s = ‖A‖1. As a direct con-
sequence, we also have

f(0, 0)−E
[
f(xk, yk)

]
≤ log(

s

l
) .
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The next lemma is a useful inequality on ordered series
of real number.

Lemma 4 (Chebyshev inequality) Let a1 ≤ a2 ≤
. . . ≤ an ∈ R and b1 ≤ b2 ≤ . . . ≤ bn be two ordered
sequences. It follows that

1

n

n∑
i=1

aibi ≥

 1

n

n∑
j=1

aj

 1

n

n∑
j=1

bj

 . (16)

Next we have a lemma that is a generalization of the
Pinsker inequality.

Lemma 5 The following generalized Pinsker inequal-
ity holds for v, u ∈ Rn+

‖u− v‖1 ≤
√

7‖u‖1dρ(u, v) , (17)

where dρ(u, v) is defined as in (7).

The final lemma was presented by Altschuler, Weed,
and Rigollet 2017, and it links the evolution of dual
objective (14) and the marginal violations.

Lemma 6 Let ((uk, vk))k∈N and the associated
((xk, yk))k∈N be a sequence of scaling vectors produced
by the Stochastic Sinkhorn Algorithm 2. For a given
k, if (uk+1, vk+1) was obtained by updating coordinate
I of uk then the following identity holds

f(xk, yk)− f(xk+1, yk+1) = ρ(rI , rI(D(uk)AD(vk)))

and if they were obtained by updating coordinate J of
vk then

f(xk, yk)− f(xk+1, yk+1) = ρ(cJ , cJ(D(uk)AD(vk)))

Since ρ ≥ 0 then the sequence of real numbers
(f(xk, yk))k∈N is decreasing.

3.2 Proof of Theorem 2

Proof: Let Dk
def
= E

[
dist(Ak, Ur,c)

]
and let k∗ ∈ N

be an integer such that Dk > ε for all k < k∗ (in
other terms, an index such that the algorithm has not
converged yet at the corresponding iteration).

Recall that ρ(Ak) is the vector of all 2n marginal viola-
tions for the matrix Ak, as defined in (8). We will write
its components as ρi(A

k) for a given index i. Recall
that Ψ(ρ(Ak)) is the vector of probabilities of picking
each row and column, and similarly we will write its
components Ψi(ρ(Ak)), which is then the probability
of picking index i. We start the proof by showing that
D2
k is upper bounded by the following conditional ex-

pectation

E
[
ρI(A

k) | Ak
]

=

2n∑
i=1

Ψi(ρ(Ak))ρi(A
k),

where I is the index randomly sampled at iteration
k. Let k < k∗ and since we assume that (9) holds for
some function g, we have that

E
[
ρI(A

k) | Ak
]

=

2n∑
i=1

g(ρi(A
k))∑2n

j=1 g(ρj(Ak))
ρi(A

k)

(16)

≥ 1

n

2n∑
i=1

ρi(A
k)

(17)

≥
(
‖r − r(Ak)‖1 + ‖c− c(Ak)‖1

)2
28n

,

(18)

where we applied Lemma 4 in the first inequality which
relies on the monotonicity of g, and the generalized
Pinsker inequality (17) in the second inequality with
a = (r, c), b = (r(Ak), c(Ak)) and used that ‖a‖1 =
‖r‖1 + ‖c‖1 = 2. Taking expectation in (18), using the
law of total expectation and the fact that E

[
X2
]
≥

E [X]
2

for any random variable X gives

E
[
ρI(A

k)
] (18)

≥
E
[
‖r − r(Ak)‖1 + ‖c− c(Ak)‖1

]2
28n

=
1

28n
D2
k >

ε2

28n
. (19)

To conclude, we now use Lemma 6 to re-write
E
[
ρI(A

k) | Ak
]

as

E
[
f(xk, yk)− f(xk+1, yk+1) | xk, yk

]
=

2n∑
i=1

Ψi(ρ(Ak))ρi(A
k) = E

[
ρI(A

k) | Ak
]
. (20)

Thus taking expectation in (20) gives

E
[
f(xk, yk)− f(xk+1, yk+1)

]
= E

[
ρI(A

k)
]

(19)
>

ε2

28n
. (21)

Summing over k = 0, . . . , k∗ − 1 in (21) and using
telescopic cancellation we have that

f(x0, y0)−E
[
f(xk

∗
, yk

∗
)
]
>
k∗ε2

28n
. (22)

Combining the above with

f(0, 0)−E
[
f(xk, yk)

]
≤ log

(s
`

)
,

as proven in Lemma 3, we have that

28n

ε2
log
(s
`

)
> k∗. (23)

This proves that for a given integer k∗

∀k < k∗, Dk > ε, ⇒ 28n

ε2
log
(s
`

)
> k∗. (24)
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The contrapositive of the above statement is given by

k∗ ≥ 28n

ε2
log
(s
`

)
⇒ ∃k < k∗, Dk ≤ ε. (25)

Choosing k∗ = d 28nε2 log
(
s
`

)
e concludes the proof.

Corollary 7 If we choose Ψ as either (10), (11)
or (12) then the Stochastic Sinkhorn algorithm con-
verges at a O( nε2 ) rate according to Theorem 2.

Proof: The proof follows by observing that (10), (11)
or (12) are increasing probability functions. That is,
the functions x 7→ ex/T , x 7→ xα and x 7→ 1 are posi-
tive increasing real-valued functions.

4 Numerical experiments

In this section we provide some empirical insights
into the behaviour of the Stochastic Sinkhorn algo-
rithm. We consider both real and synthetic datasets:
MNIST digits and random histograms. The authors of
both Cuturi 2013 and Altschuler, Weed, and Rigollet
2017 provided numerical experiments where Sinkhorn
and Greenkhorn perform considerably better than
other Optimal Transport algorithms. We will show
how Stochastic Sinkhorn has a similar efficiency for
monotonic probability functions (9). In particular, we
will show that for (11) with α = 1, Stochastic Sinkhorn
outperforms Greenkhorn in the short-term for regimes
of small penalization. Finally we will discuss the com-
putational properties of the three algorithms, in par-
ticular some drawbacks of Greenkhorn and Stochastic
Sinkhorn in comparaison with Sinkhorn, and give in-
sights on how to bypass them. But first, we explicity
show how Greenkhorn and Stochastic Sinkorn have lin-
ear iteration complexities.

4.1 Updating the marginal violation

The Greenkhorn Algorithm 1 and the Stochastic
Sinkhorn Algorithm 2 must re-compute marginal vi-
olations

ρ(Ak) =
[
ρ(ri, ri(A

k))i=1..n, ρ(ci, ci(A
k))i=1..n

]
,

at each iteration. Calculating ρ(Ak) from scratch at
each iteration would cost O(n2), which would defeat
the purpose of both algorithms of having a linear iter-
ation complexity. Fortunately ρ(Ak) can be updated
on the fly with only O(n) operations. To see this, sup-
pose we have stored c(Ak), r(Ak) and ρ(Ak) and now
we wish to calculate ρ(Ak+1). Suppose we sample an
index I in Algorithm 2 such that I ∈ {1, . . . , n}, con-
sequently we update

uk+1
I = rI ./(Av

k)I (26)

while vk+1 = vk and uk+1
i = uki for i 6= I remain

unaltered. We can thus calculate the ith component
of r(Ak+1) via

ri(A
k+1) = (D(uk+1)AD(vk)1)i = uk+1

i Ai:v
k

(26)
=

{
uk+1
I AI:v

k if i = I,

ri(A
k) if i 6= I.

The column sum vector can be updated using

c(Ak+1) = D(vk)

n∑
i=1

Ai:u
k+1
i

= D(vk)AI:u
k+1
I −D(vk)Ai:u

k
i + c(Ak).

Thus both r(Ak+1) and c(Ak+1) can be updated using
O(n) operations. Since ρ(ri, ri(A

k+1)) = ρ(ri, ri(A
k))

for i 6= I, only n + 1 components of ρ(Ak+1) need to
re-computed, which costs O(n) operations. The O(n)
cost of the case where I ∈ {n + 1, . . . 2n} can be de-
duced in an analogous way.

4.2 Experiments

We perform experiments on MNIST dataset. We take
pairs of elements from the 28 × 28 pixels MNIST
dataset, that we then vectorize into 1D arrays r and
c (in the sense that, for example, the 2 by 2 matrix
((1, 2), (3, 4)) becomes the vector (1, 2, 3, 4) ). The cost
matrix C is then constructed so that Cij equals the `1
distance between pixels i and j in the 28×28 grid. We
then apply the Sinkhorn, Greenkhorn and Stochastic
Sinkhorn algorithms to compute a diagonal scaling of
A = e−λC . This process is then repeated 20 times, for
each time we randomly sample a pair of images from
the MNIST dataset. Finally, we report the average
performance of the algorithms over these 20 experi-
ments.

The choice of λ defines the penalization, and we high-
light the fact that regimes of low penalization, corre-
sponding to higher values of λ (2), are of particular
interest since they change the least the solution of the
original non-regularized problem (1). For this setting,
Stochastic Sinkhorn with (11) for α = 1 is clearly the
best choice overall, see Figure 1.

We also compared in Figure 2 the Stochastic Sinkhorn
for various choices of parameters. As expected, using
the probability function (11) with α → +∞ or (12)
with T → 0, the Stochastic Sinkhorn algorithm re-
duces to the Greenkhorn algorithm

Notice also that the standard deviation for Stochastic
Sinkhorn (represented as errorbars) tends to 0, which
is a very important property because of the stochas-
tic nature of the algorithms. In fact, this means that
not only the expectation of the distance tends to zero,
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Figure 1: Evolution of distance from transport
polytope for Sinkhorn, Greenkhorn and Stochastic
Sinkhorn ( (11) with α = 1) in regimes of low penal-
ization (λ = 10) on MNIST dataset. For the x-axis,
one should read “number of row and column updates”
in the sense that one iteration on the x-axis represents
one update of a row or a column.

but also the variance, a fact which we prove in the
appendix.

4.3 Discussion and block algorithms

While Stochastic Sinkhorn and Greenkhorn empiri-
cally perform better than Sinkhorn, they also have
two computational drawbacks: firstly they are not
parallelizable. In fact, each iteration of Sinkhorn (4)
is a rescaling of u and v involving a matrix-vector
product that can be parallelized. Greenkhorn and
Stochastic Sinkhorn update only one element per
iteration which does not involve a similar product that
we can parallelize. Secondly, the greedy algorithms
compute at each iteration the marginal violations,
which, despite only costing O(n), it does represent an
additional computational cost per iteration.

One solution to these issues is to re-compute these
marginal violations only once every d iterations: for
example in Greenkhorn we compute marginal viola-
tions ρ(Ak) and we update not only the index of high-
est value, but the d indexes of highest values. Some-
thing similar can be done in Stochastic Sinkhorn by
sampling d indexes without replacement instead of just
one. By doing so, on the one hand we reduce com-
putation time for computing the marginal violations
by a factor d, and on the other hand the algorithms
described are now parallelizable because updating d
components of u and v does involve a matrix-vector
product.

This idea is motivated by the numerical results
of Altschuler, Weed, and Rigollet where the authors

Figure 2: Stochastic Sinkhorn with different probabil-
ity functions, and Greenkhorn as limiting case. Up:
polynomial probabilities (11), down: softmax proba-
bilities (12). For the x-axis, one should read “number
of row and column updates” in the sense that one it-
eration on the x-axis represents one update of a row
or a column.

concluded that the efficiency of Greenkhorn is mainly
due to the fact that is does not update rows and
columns that already match desired sums, more than
the fact that it updates indexes with highest marginal
violations. This means that the procedure of updat-
ing d indexes instead of just one is expected to have a
similar efficiency, which is indeed the result we get in
our own numerical experiments as shown in Figure 3.

5 Conclusion

We presented a family of stochastic algorithms for
entropy-regularized OT problems. We were able to
derive convergence rates for a very broad class of prob-
ability functions, along with numerical experiments
where a simple and intuitive choice of probability func-
tions performed the best. We also proposed and tested
simple numerical solutions to the drawbacks of the
greedy algorithms.
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Figure 3: Evolution of distance from transport poly-
tope for Block Stochastic Sinkhorn compared to
Stochastic Sinkhorn ( (11) with α = 1). For the x-axis,
one should read “number of row and column updates”
in the sense that one iteration on the x-axis represents
one update of a row or a column.
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